Skip to main content

Quercetin Caused Redox Homeostasis Imbalance and Activated the Kynurenine Pathway

مؤلف البحث
Oluyomi Stephen Adeyemi 1,* , Chinemerem Ebugosi 1, Oghenerobor Benjamin Akpor 2 , Helal F. Hetta 3,4 , Sarah Al-Rashed 5, David Adeiza Otohinoyi 6, Damilare Rotimi 1 , Akinyomade Owolabi 2 , Ikponmwosa Owen Evbuomwan 2 and Gaber El-Saber Batiha 7
مجلة البحث
Biology
المشارك في البحث
الناشر
MDPI
تصنيف البحث
1
عدد البحث
9
موقع البحث
https://www.mdpi.com/2079-7737/9/8/219/htm
سنة البحث
2020
صفحات البحث
219
ملخص البحث

The search for new and better antimicrobial therapy is a continuous effort. Quercetin is a
polyphenol with promising antimicrobial properties. However, the understanding of its antimicrobial mechanism is limited. In this study, we investigated the biochemical mechanistic action of quercetin as an antibacterial compound. Isolates of Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, and Staphylococcus aureus were initially exposed to quercetin for antibacterial evaluation. Subsequently, S. aureus (Gram-positive) and E. coli (Gram-negative) cells were exposed to quercetin with or without ascorbic acid, and cells were harvested for selected biochemical assays. These assays included redox homeostasis (lipid peroxidation, total thiol, total antioxidant capacity), nitric oxide, and kynurenine concentration as well as DNA fragmentation. The results revealed that quercetin caused lipid peroxidation in the bacterial isolates. Lipid peroxidation may indicate ensuing oxidative stress resulting from quercetin treatment. Furthermore, tryptophan degradation to kynurenine was activated by quercetin in S. aureus but not in E. coli, suggesting that local L-tryptophan concentration might become limiting for bacterial growth. These findings, considered together, may indicate that quercetin restricts bacterial growth by promoting oxidative cellular stress, as well as by reducing the local L-tryptophan availability by activating the kynurenine pathway, thus contributing to our understanding of the molecular mechanism of the antimicrobial action of quercetin.