Skip to main content

Effective and Promising Strategy in Management of Tomato Root-Knot Nematodes by Trichoderma harzianum and Arbuscular Mycorrhizae

Research Authors
Nivien A Nafady, Raoof Sultan, Aida M El-Zawahry, Yasser S Mostafa, Saad Alamri, Radwa G Mostafa, Mohamed Hashem, Elhagag A Hassan
Research Abstract

The ecosystem is considerably affected due to the extensive use of chemical pesticides and fertilizers. As an alternative strategy, this study aimed to assess the biocontrol potential of the bioagents arbuscular mycorrhizal fungi and plant growth-promoting Trichoderma harzianum MZ025966 against tomato root-knot nematodes (Meloidogyne javanica). Tharzianum showed a great potentiality to produce indole acetic acid (IAA) (12.11 ± 2.12 μg/mL) and exhibited a noticeable activity of ammonification. Furthermore, Tharzianum revealed protease and lipase enzymatic activity of 28.36 ± 2.82 U/mL and 12.30 ± 0.31 U/mL, respectively, which may illustrate the control mechanism of nematode eggs and juveniles. As in mycorrhizal and/or Tharzianum inoculated tomato plants, the penetration rates of nematodes, as well as the number of juveniles, females, egg mass, and galls were significantly reduced. The lowest number of juveniles was observed in the case of either single mycorrhizal inoculation (45%) or in combination with Tharzianum (55%). The enzymatic activity of glutathione peroxidase and catalase was enhanced in tomato plants inoculated with the bioagents to overcome the negative impact of nematode parasitism. Our results proved that the application of biocontrol agents not only reduced the nematode population and penetration rate but also improved the plant growth, increased the nutritional elemental content and stimulated the plant’s systematic resistance.

Research Date
Research Journal
Agronomy
Research Publisher
MDPI
Research Vol
120
Research Year
2022
Research Pages
315