Skip to main content

Film thickness effects on nanorods organic films of azo quinoline derivatives for optical applications

Research Authors
A. Z. Mahmoud, A. A. A. Darwish, Saleem I. Qashou
Research Abstract

The effect of film thickness on the structural and optical properties of bisbenzimidazo [2,1-a:2′,1′-a′] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-10,21-dione (BI-diisoQ) films was carried out. The morphology of BIdiisoQ film showed a definite shape of a nanorod with a length of around 5 μm and a diameter of approximately 20 nm. Also, X-ray diffraction patterns demonstrated that BI-diisoQ thin films are characterized by a mixture of amorphous and crystalline structure, whereas the phase-nature crystallization of BI-diisoQ film enhanced as the film thickness increased. The investigation of the absorption coefficient of BI-diisoQ films revealed two indirect allowed band gaps energy. The calculated values of nonlinear optical parameters for BI-diisoQ film were observed to be increased with the increase of film thickness. The optical properties of BI-diisoQ nanorod films indicated that these films have appropriate optical properties, and thus it can be recommended as a promised candidate material in superconductors, optoelectronic and photonic applications.

Research Department
Research Journal
Progress in Natural Science: Materials International
Research Publisher
NULL
Research Rank
1
Research Vol
Volume 29
Research Website
NULL
Research Year
2019
Research Pages
pp 402–409