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ABSTRACT

To fight against pathogens, defense systems in plants mainly depend upon preformed as well as
induced responses. Pathogen detection activates induced responses and signals are transmitted
for coordinated cellular events in order to restrict infection and spread. In spite of significant
developments in manipulating genes, transcription factors and proteins for their involvement in
immunity, absolute tolerance/resistance to pathogens has not been seen in plants/crops.
Defense responses, among diverse plant types, to different pathogens involve modifications at
the physio-biochemical and molecular levels. Secreted by oomycetes, elicitins are small, highly
conserved and sterol-binding extracellular proteins with PAMP (pathogen associated molecular
patterns) functions and are capable of eliciting plant defense reactions. Belonging to multigene
families in oomycetes, elicitins are different from other plant proteins and show a different
affinity for binding sterols and other lipids. These function for sterols binding to catalyze their
inter-membrane and intra- as well as inter-micelle transport. Importantly, elicitins protect plants
by inducing HR (hypersensitive response) and systemic acquired resistance. Despite immense
metabolic significance and the involvement in defense activities, elicitins have not yet been fully
studied and many questions regarding their functional activities remain to be explained. In order
to address multiple questions associated with the role of elicitins, we have reviewed the under-
standing and topical advancements in plant defense mechanisms with a particular interest in
elicitin-based defense actions and metabolic activities. This article offers potential attributes of
elicitins as the biological control of plant diseases and can be considered as a baseline toward a
more profound understanding of elicitins.
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Introduction with PAMP functions [7,8]. Elicitins were first discovered
in the 1980s [9,10]. Certain elicitins obtain sterols from
plants and fulfill sterol demand in oomycetes e.g.
Phytophthora and Pythium which are unable to synthe-
size sterols [11,12]. In several plant-pathogenic oomy-
cetes, the multifunctional elicitins expedite infection by
triggering the necrosis of plant tissue. These usually

result in induction of a hypersensitive response (HR)

Plants innate immunity systems are able to restrict
pathogen growth and infection spreads and ensures
plant safety [1,2]. Mainly, the plant immunity consists of
two layers named as PTI (pathogen-associated molecu-
lar patterns (PAMPs)-triggered immunity) and ETI
(effector-triggered immunity) [1,3,4]. PTl is regarded as

a chief mediator of plant basal defense [5]. PAMPs/
MAMPs recognized by plants are usually peptides,
numerous secreted proteins or polysaccharides from
bacteria, and oomycetes [6]. Secreted by
oomyctes, e.g. Phytophthora, Pythium sp., elicitins are

fungi

small, highly conserved and sterol-binding proteins

and systemic acquired resistance (SAR) in several plants
and is, therefore, reckoned as the most distinguished
oomycetes PAMPs [13-19]. These small proteins may
perform the role like fungal hydrophobins and probably
function as pathogenicity factors in other plant-mic-
robe interactions.
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Elicitins comprise 1-98 amino acid domains without
arginine, histidine and tryptophan [20,21]. Six cysteine
residues have been observed in conserved positions
that make three disulfide bridges [18,22-24]. So far, elic-
itins have been divided into five diverse classes
depending upon their primary structure. Members of
class | only possess 98 amino acids elicitin domains [15].
Belonging to the same Phytophthora sp., elicitins of
class | can be further classified as acidic (o-elicitins class
1A) or basic (B-elicitins Class 1B) [8,15,25]. Both a- and
B-elicitins have the same affinity to bind with the bind-
ing site on the cell membrane. Elicitins are also grouped
on the basis of source species as cryptogein, capsicein,
parasiticein and INF1 from Phytophthora cryptogea, P.
capsici, P. parasitica and P. infestans correspondingly.

Although elicitin binding is essential for inducing
plant defenses such as the interaction of AVR9 with Cf-
9 in Lycopersicum esculentum or NIP1-Rrs1 interaction in
Hordeum vulgare, the active response cannot be
recorded in the absence of a third interactive partner
e.g. INF1 (Inverted formin 1)- NbLRK1 kinase interaction
[26,27]. The elicitins activity appears dependent on def-
inite residues. Lysine residues in A and D helices are the
essential components for the activity of elicitins [28].
This statement was confirmed by the necrotic index
and pl correlation [29] as well as a strong effect of the
Lys13Val mutation in helix A on the induction of
tobacco defense response [30]. Cell surface receptor
mediated elicitin response activates a signal transduc-
tion leading to HR for restricting pathogen growth. On
the other hand, initiation of SAR causes effective
defense against pathogen attack and spread on sites
other than the infection sites. A closer look at the litera-
ture, however, unravels many gaps. For example,

elicitins have yet to be considered as compounds of
benefit to oomycetes only. Sterol binding is an import-
ant function performed by elicitins for oomycetes, but
this should not be accompanied as an integral part of
immunity induction. Likewise, confusion exists between
elicitins and effectors due to their protein nature. Very
little information is available regarding phytohormones
and their interaction with elicitins. Therefore, we have
focused these aspects on elicitins in connection with
plant life cycle. In this article, elicitin perception and
plants responses for broad range immunity events have
been focused. This demonstrates the distinguished
functions of elicitins in plants and bacteria and show
differences between elicitins and plant/bacterial pro-
teins performing diverse roles in the life cycle of both
organisms. In addition to structural and functional sig-
nificance, the unique involvement of elicitins in trigger-
ing immunity, interaction with plant hormones and
other cellular compounds like sterols, proteins have
been emphasized. We expect the use of this knowledge
in cell recognition by elicitin and succeeding signaling
actions for engineering plants with resistance.

Elicitins, effectors and plant proteins, do
not confuse

Elicitins are members of complex multigene families in
oomycetes (Figures 1 and 2) [7]. These genes are div-
ided into different subclasses namely elicitin (ELI), and
elicitin-like (ELL) genes. ELI and ELL genes differ among
species displaying distinct expression patterns and HR
[7,21,31]. The host PRRs (pattern recognition receptors)
perceives PAMPs/MAMPs [32]. Defense against patho-
gens can be triggered by PAMPs or pathogens may
overpower host immunity by means of specialized

Genome size (MB) of different Phytophthora species
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Figure 1. Genome size (Mb) of different Phytophthora species.
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Figure 2. Phylogenetic relationship among elicitins secreted by different oomycetes. Closely related oomycete species possess
small difference among their sequences while less related oomycetes display more difference in their elicitin sequences. This lin-
eage not only maps the evolutionary history of oomycetes in terms of secreting elicitins but also present lineage of oomycetes.
All elicitins in Phytophthora species are related not only to each other but may also be linked with other oomycete species.

effectors molecules evolved during the course of evolu-
tion (Tables 1 and 2) [32,61]. Interestingly, among sev-
eral microbial molecules peculiarity between MAMPs
and effectors is not always very clear, and such mole-
cules do not sternly fit in any group [62]. Although elici-
tins resemble MAMPs in many ways, yet we appraise
that elicitins are entirely different from plant proteins.
We support this notion on the basis of two points.
Firstly, elicitins are structurally more conserved with
characteristic cysteine spacing patterns. Secondly, they
are significantly different in sequence as compared to
plant proteins by possessing C-terminal domains of dif-
ferent size that may have high proline, serine, or threo-
nine, content. This proposes a tendency to be
associated with the cell wall [63]. More generally,
sequential difference is very much related with their
identification by plants. Detailed analysis of protein
domain database has confirmed sequences unique to
elicitin only that are not found in any other organism
[64]. Consequently, in case of interaction, hosts view
them as non-self molecules. It is pertinent to mention
that some nonspecific lipid transfer proteins (nsLTP)
resemble elicitins. However, they do not share any
phylogenetic linkage with elicitins [63,65]. Because
some oomycetes need external sterol sources for life
cycle, elicitins function as sterol transporters [15]. In a
defense perspective, we notice that HR in plants
restricts the pathogens growth and HR-inducing activity
is definitely not the main function of ELls in
Phytophthora sp. But no such function can be attributed
to all plant proteins or effectors. Biochemical analyses

revealed that the intrinsic biological role of ELls is
linked to lipid binding [66]. The intrinsic jobs of ELLs
are largely unidentified [21]. The discussed data advo-
cate sterol binding/transport as a very important and
distinct function performed of elicitins contrary to the
effectors or plant proteins. Besides, the presence and
functioning of plant proteins is not limited to an inter-
action with microbes or other organisms. An entirely
convincing argument comes from PRRs based recogni-
tion. Effectors as well as plant proteins are independent
of their recognition by PRRs. As MAMPs, elicitins are
appropriately recognized by membrane bound PRRs for
triggering immune response [20]. Moreover, INF1 per-
ception is determined by SERK3/BAK1 modulating PRR
mediated immunity [5,67].

C-terminal domains in ELIs and ELLs

In most of the ELIs and ELLs, a signal peptide has been
predicted at the N-terminus. In 14 out of 17 clades, ELIs
and ELLs possess C-terminal domains of 17-291 amino
acids [7]. But 3 clades i.e. ELL-7, ELL-9, and ELL-10 were
recognized with small C-terminal domains comprising
of maximum seven amino acids [63]. Most of the ELI-1
proteins exclusively consist of a signal peptide along
with conserved elicitin domain of 98-amino acid [21].
Together with the present information, we argue that
C-terminal domains in ELIs as well as ELLs exhibit clade
specific characteristics in the composition of amino
acids and in the structure of repeats. Interestingly, the
amino acid configuration has also been reported in
many of the C-terminal domains. These appear to be
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rich in residues such as threonine, serine, and proline.
Often these residues have been observed as part of the
repeat. The predicted O-GalNAc-glycosylation sites pro-
pose glycosylated C-terminal domains [68]. In the C-ter-
minal domains, presence of Thr and Ser residues
advocates wide-ranging O-glycosylation and association
with the cell wall [63]. Planned comparisons of existing
information on structural attributes of elicitins revealed
hydrophobic regions at C-terminal end among different
ELL classes i.e. ELL-1, ELL-2, and ELL-13 [69]. According
to Eisenhaber et al. [70], these hydrophobic regions are
a part of the GPI anchor site. The GPI based anchoring
to the plasma membrane is a common ELL strategy for
tethering to the cell exterior e.g. ELL-3. Zoospore stage
cells lack cell wall [63]. Therefore, due to specific genes
expression at this stage, ELL-3 proteins can be fastened
to the plasma membrane of the motile zoospores with
the help of the GPI anchor. The zoospore surface may
be coated with oligosaccharides by using putative
O-linked glycosylation.

Is sterol binding necessarily required for
elicitin actions and the plant defense?

Optimum growth of oomycete and sporulation require
sterols [71]. Elicitins show different affinity for binding
sterols and other lipids. These bind to sterols for
catalyzing their inter-membrane and intra- as well as
inter-micelle transport. With particular reference to stoi-
chiometry, only one sterol can bind an individual elicitin
molecule [71,72]. Some oomycetes largely depend
upon external sterol sources during their life cycle e.g.
Phytophthora needs sterols for reproduction [11,71]. It is
well understood that elicitins scavenge sterols from
plant membranes and liposomes. These are also reck-
oned as sterol carriers [12]. The point of interest is
assessment of sterol carrying activity and its relation
with HR response for the role of these proteins in plant
immune responses. Normally, the growth and sporula-
tion of P. ramorum display two general inclinations with
reference to sterols. The first is the different response
curves with respect to sterol present. Secondly, high
sterols levels may cause decreased growth and sporula-
tion in P. ramorum [71,73]. Inevitably, the mechanistic
reasons for the diverse response curves or sterol dis-
crimination are largely unidentified. But evidence has
supported the dependence of this attribute upon var-
iances in the uptake and metabolism of sterol.
Moreover, it has been revealed with the help of crystal
structure of a sterol—elicitin complex that sterol binding
is critically dependent upon “the x-loop” a highly con-
served region [22]. We propose that elicitin binding

with sterol disrupt plasma membrane and, as a conse-
quence, HR is induced. However, elicitin (cryptogein)
mutants failed in sterols binding and can also elicit cell
death response in tobacco [28]. The ability of crypto-
gein and its mutants to bind sterol as well as associated
conformational modification in the ®-loop might not
be chief factors in either the production of ROS or
induction of resistance in plants [28,72]. On these bases,
it is affirmed that defense elicitation and sterol binding
are not dependent on each other.

Molecular interaction between elicitins and
phytohormones

Elicitin usually induces HR and activate JA (Jasmonic
acid) and ET (Ethylene) signaling. In tobacco, SA (sali-
cylic acid) signaling and SAR (systemic acquired resist-
ance) along with HR cell death is on record against
several pathogens in elicitin treated plants [20,74].
Elicitins like cryptogein and megaspermin may activate
SA as well as JA and ET signaling. But, in parallel, com-
promised SAR was noticed in cryptogein and y-mega-
spermin treated nahG Nicotiana plants expressing a SA
degrading salicylate hydroxylase that inhibits SA accu-
mulation and causes the up-regulation of PR genes
[74,75]. Interestingly, INF1 may induce resistance, with-
out HR, against Ralstonia by activating signaling path-
ways mediated by JA and ET in L. esculentum. The
cysteine at position 3 is necessary for inducing HR in
tobacco. The reported replacement of Cys by Ser at
position 3 revise the HR induction process and the
defense can be compromised [76]. In Arabidopsis thali-
ana, the JA signaling pathway was activated in non-
host resistance against P. infestans without any HR [77].
Therefore, in P. infestans infected tomato, INF1 can be
regarded as PAMP triggering basal defense mediated
by JA and ET independent of HR cell death [20]. But
such basal defense responses are not sufficient to sup-
press the pathogen growth. An unsolved question is
the molecular mechanism of elicitin recognition and its
downstream signaling components. We need to deter-
mine these by more systematic and theoretical analy-
ses. To reinforce the information [78], it is inferred that
elicitin capability to bind sterol is directly related with
the induction of HR and SAR in tobacco. Hence, the
ability of INF1 to induce R. solanacearum resistance and
JA and ET signaling activation in plants such as tomato
helps us to infer its probable dependence upon the
sterol binding ability. Thus, we argue that the identifica-
tion of receptor or receptor complex for recognizing
elicitins along with related elements in plants would
elucidate regulatory mechanisms for differential signal



transduction pathways. Further studies are required to
completely understand the key principles of elicitin-
phytohormone interaction.

Oxidative burst is induced by elicitins but not
always accompanied with HR cell death

HR can extremely differ in appearance and timing at
macro-/microscopic levels during various plant-patho-
gen interactions [79]. Such differences are partly attrib-
uted to different infection strategies adopted by
diverse pathogen types eliciting HR e.g. oomycetes.
Certainly, we can observe differences in fundamental
HR cell death mechanism(s) [80]. In addition to elicitin
recognition by PRRs, transmembrane proteins like
BAK1/SERK3 and SOBIR1 are also involved in host
defense responses [81]. It has been suggested that elici-
tins normally cause HR cell death in some plants but
not in all. For example, tobacco, potato and pepper
plants responded significantly to elicitins application
but radish and turnip cultivars did not respond to elici-
tin application in terms of tissue necrosis (Yu, 1995).
This has been discussed by different researchers that a
reactive oxygen species (ROS) burst is usually observed
during recognition (Table 1) [82,83]. In fact, such a burst
includes events like the influx of Ca®", activation of
MAPK (mitogen activated protein kinase) cascade and
NADPH oxidase (RBOHA and RBOHB). However, these
molecular events do not result in cell death all the time.
NtRBOHD loss of function analysis exhibits the forfeiture
of ROS production following elicitor treatment [5,84].
Notably, reduced ROS production is directly correlated
with compromised plant resistance to pathogens such
as those reported in P. infestans- potato interaction [82].
Research has provided evidence of second/late ROS
burst involved in elicitin induced HR cell death [5,80].
This aspect of research can be more easily explained
with the help of MAPKs phosphorylated TFs i.e. WRKY7,
WRKY8, WRKY9, WRKY11 that also causes elicitin-specific
late ROS burst. After analysis, it appears that the pro-
moter of RBOHB possess WRKY binding motif and the
activation of the WRKY8 and WRKY11 TFs enhanced the
RBOHB expression [61,85]. Upon elicitin perception,
such activation leads to sustained ROS burst ending at
cell death. Contrarily, it is not necessary that elicitin per-
ception ends in HR cell death. It is conceivable that
INF1 activated plant defense against R. solanacerum
without triggering HR in tomato [20]. Despite activated
JA- and ET-mediated defense responses, pathogen
growth was not suppressed [20]. According to other
studies, cell wall protein fraction (CWP) containing elici-
tin-like proteins of Pythium oligandrum could also
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activate plant defense without HR [86,87]. Even though
elicitins belonging to diverse oomycete species exhibit
different HR-inducing activities, elicitins in Phytophthora
sp. typically elicit HR in the similar kind of plants e.g.
members of family Solanaceae showing recognition of
elicitins by responsive plants as a conserved characteris-
tic of this genus. Consequently, elicitins appear as an
intermediate among general and specific elicitors.
Largely, we have come to a conclusion that some plants
may respond to elicitins by activating defense but inde-
pendent of HR. But interactive partners involved in this
response are yet to be identified.

Plant response to elicitins enhance
disease resistance

Avr gene expression activates the HR. The linked plants
defense reactions mimic the avirulent pathogens
induced effects [88]. Besides, R genes encode specific
receptors for direct/indirect interaction with elicitors.
This interaction initiates signal transduction pathways
resulting in HR and immune responses [88,89]. We have
already discussed that plant species differ in their
responses to elicitins. In continuation of this, another
distinction is the higher resistance displayed by elicitin-
responsive  plant  species to elicitin-producing
pathogens in comparison with non-elicitin producing
pathogens [76]. In P. parasitica, the lack of elicitin pro-
duction links to virulence on tobacco plants that dis-
plays a strong response to elicitins. In two
pathosystems i.e. P. parasitica - N. tabacum and P. infes-
tans — N. benthamiana, the production of elicitin in low
quantity relates with augmented virulence [10]. HR is
induced in limited plant species by INF1. Recognition of
INF1 is a key element of the N. benthamiana defense
response to P. infestans. In virulence studies involving
various P. infestans isolates, five Nicotiana sp. exhibited
resistance responses. [76,90]. These observations prove
the character of specific molecules in the Phytophthora
host range and propose elicitins as avirulence factors
dealing with resistance at the species level. y-mega-
spermin treated tobacco plants accumulate PR proteins
and show SAR. But, SAR was compromised in crypto-
gein and y-megaspermin-treated salicylate hydroxylase
expressing tobacco plants [74]. Additionally, SA accu-
mulation and PR genes up-regulation was prevented
[74]. Therefore, we can infer that elicitins link with other
signaling pathways and can control plant defense
response. Du et al. [24] cloned and transferred ELR from
wild potato to cultivated potato and confirmed the role
of elicitins in restricting infection. Enhanced resistance
to P. infestans strains recommends that elicitins
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Table 2. Effectors suppress host immunity and are considered as a part of a pathogenic bacterial strategy for the nonspecific tar-

geting of host kinases.

Oomycete species Effector Host Known host target(s) Virulence effect(s) Reference
Phytophthora AVR3a Solanum tuberosum, Stabilization of CMPG1 Overexpression suppresses INF1 [51]
infestans Nicotiana Interaction with Nicotiana perception, decreases flg22 & [52]
benthamiana benthamiana dynamin- INF1 triggered accumulation
related protein 2 (DRP2) of ROS
PexRD2 Solanum tuberosum Interaction with the kinase Suppress cell death due to [53]
domain of potato MAPKKK signaling pathway.
MAPKKKe Its overexpression enhances
susceptibility of plants to
P. infestans
AVRblb2 Nicotiana benthamiana, Interacts with papain-like Prevents secretion of the plant [54]
Lycopersicon cysteine protease C14 defense protease C14 in N.
esculentum from N. benthamiana benthamiana and tomato;
and tomato when overexpressed,
enhances susceptibility of N.
benthamiana plants to
P. infestans
Pi03192 Solanum tuberosum Interaction with NAC Prevent NTP1 and NTP2 [55]
targeted by Phytophthora relocalization from the ER to
1 (NTP1) and NTP2 the nucleus, which appears
to be key for immunity;
silencing of NTP1 or NTP2
cause high susceptibility to
P. infestans
Hyaloperonospora HaRxL44 Arabidopsis Degradation of MED19a, a Decrease salicylic acid-triggered [56]
arabidopsidis mediator in the defense reactions in
interaction between Arabidopsis,
transcriptional regulators
and RNA polymerase
Phytophthora PsCRN63 Nicotiana benthamiana, Direct interaction Overexpression causes cell [57]
sojae Glycine max with catalases death and H,0, accumulation
PsCRN115 Nicotiana benthamiana, Direct interaction Co-expression with PsCRN63 [57]
Glycine max with catalases suppress cell death and H,0,
accumulation
PSR1 Arabidopsis Interaction with PINP1 Overexpression increases [58]
helicase domain susceptibility to potato virus
X and P. infestans
Overexpression increases [59]
susceptibility of Arabidopsis
to P. capsici
PSR2 Glycine max Unknown target; inhibition Silencing reduce virulence of [58]
of the biogenesis of P. sojae
small RNAs
Pslsc1 Hydrolyzes isochorismate Salicylate metabolism pathway [60]

(salicylic acid precursor)

is disrupted leading to
suppression of salicylate-
mediated innate immunity

Effectors perform molecular or enzymatic activities that display their capability to alter host targets as well as their intracellular recognition by ETI recep-
tors. Fungi and oomycetes effectors are secreted through the endomembrane system and are afterwards carried into host cells by unknown mechanisms.
The comparative analyses of eukaryotic effectors relative to bacterial effectors underline the need for more varied effector roles of eukaryotic pathogens.

perception during infection improves resistance [24].
Moreover, some authors have driven the perception of
elicitins for plant protection against succeeding patho-
gen attack with the help of SAR. For instance, elicit pre-
treated radish, tobacco, or tomato plants exhibited
enhanced resistance against X. campestris pv.
Armoraciae, P. parasitica, and R. solanacearum, respect-
ively [10,20]. Overall, our discussion demonstrates the
strong role of elicitins in triggering plant immune
responses against oomycetes. Broadly translated, elici-
tins can function alone but their interaction with other
signaling elements as well as biochemical triggers is an
established fact. This casts light on using elicitins, its

interactive proteins, isoforms and other compounds as
a new baseline for molecular breeding of crop resist-
ance against pathogens.

Effectors vs elicitin

Elicitins are totally different from effectors. Sometimes,
confusions like the protein nature of both molecule
types, production from pathogens (oomycetes) etc.
raise questions but there exists significant differences
that are adequate to distinguish elicitins from effectors.
The main difference between effectors and elicitins lies
in interaction of effector proteins as virulence factors
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with plant R-proteins for activating plant innate immun-
ity. Normally, these effectors suppress plant defense
(Table 2) [91]. INF1 triggered HR cell death is sup-
pressed by AVR3aKl, an effector from P. infestans [51].
Prior research has unraveled more than 30 effectors
belonging to different oomycetes suppressing defense
responses triggered by INF1. In spite of many identified
effectors, earlier work focused on AVR3aKl. Mechanistic
understandings of elicitin-triggered responses and their
suppression is limited to AVR3aKI. This effector operates
by modulating the host ubiquitin proteasome system
via stabilization of the plant E3 ubiquitin ligase CMPG1
[51,91]. This suggests the evolution of an effector tool-
box among the oomycete group of plant pathogens to
modulate host responses triggered by their elicitins.
Another point to be noted is the presence of elicitins in
closely related groups/subgroups of oomycetes [92]
that is entirely contrary to presence of effector mole-
cules among pathogens. So far, no elicitin homologues
have been observed in oomycetes groups with a dis-
tant lineage. This also proposes shooting off the oomy-
cetes from their ancient progenitors as a legitimate and
essential step in origin and expansion of elicitins
among different oomycetes. These can be reckoned as
the signature character of oomycetes.

Outstanding questions in crop protection
perspectives

Elicitins production and their respective involvement in
plant defense have attracted attention across the globe.
In spite of multifaceted research efforts, some interest-
ing questions in this context still need to be answered.
The answers to these outstanding questions are
expected to initiate new and direct existing scientific
trends related to plant immunity against pathogens.
Although elicitin application has been reported [18] but
an interesting question is whether elicitins can be pro-
duced synthetically and applied exogenously for exact
evaluation of their roles in plant defense. This is of cen-
tral importance for studying pathogenesis and plant
defense reactions. This would also yield information
about the best mode of elicitin application. As far as
roles of synthetic compounds are concerned in plant
protection against pathogens, many compounds are
being applied individually as well as in combination.
Therefore, we can expect some novel results with the
application of different elicitins in combination or with
other compounds as broad range defense tactics. HR is
usually considered a common component of plant
defense [93] and elicitin actions. The growth arrest dur-
ing plant response to pathogens is actually energy

expenditure control. In parallel, different physiological
and molecular processes are also modulated. A critical
open question is the physiological and ecological cost
of elicitins production/application. The base line for
addressing such questions should be determined. Such
experimentation will recognize and increment agricul-
tural multifunctionality within ecological contexts.
Besides, it will be helpful in assessing the potential
environmental and ecological impact of pathogens as
well as elicitins for apposite regulatory frameworks.
Additionally, detection of elicitin by plant surface recep-
tors along with the molecular basis of plant response
has not been yet determined. This is arguably a signifi-
cant question to be addressed. Eventually, the research-
ers should take interest here in improved elicitin
perception as well as an understanding of plant
defense responses for engineering crops with broad
spectrum immunity to oomycetes.

Concluding remarks

We have shown the capability of elicitins to induce
resistance in plants and highlighted the significance of
processes involved in elicitin recognition as well as
actions in cells. The biological activity of elicitins for
inducing systemic resistance is the result of a combin-
ation of different factors. For example, elicitins interact
with endogenous partners in plants i.e. nsLTP1, Lys13
and Lys39 residues etc. Besides, diffusion of the more
acidic elicitins is restricted by the overall surface charge.
Achieving developmental and sustainability targets
along with new priorities under changing conditions
need fundamental changes in agri-technology.
Research has reached at exhilarating stage with the
identification of the PRRs and NB-LRRs. But many issues
have been glossed over in previous studies. Detailed
studies involving elicitin application and actions can
radically improve crop health and food security by
enhancing the performance of agricultural systems.
Knowledge regarding a revalorization and interdisciplin-
ary approach can determine the greater extent of elici-
tin functions in plant defense. Another promising line
of research is the assessment of multiple divergent 3-
UTR sequences for a given elicitin gene by studying
duplication of elicitin genes. The discussed information
signals the necessity for further investigation to
appraise more about elicitins.
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