Skip to main content

Molecular characterization of QTL for grain zinc and iron concentrations in wheat landrace Chinese Spring

Research Authors
Mengjing sun, Jingyang Tong, Y. Dong, Zongjun Pu, Jianmin Zheng, Yelun Zhang, Xueyong Zhang, Chenyang Hao, Xiaowan Xu, Qiang Cao, Awais Rasheed, Mohamed Badry Ali, Shuanghe Cao, Xianchun Xia, Zhonghu He He, Zhongfu Ni, Yuanfeng Hao
Research Abstract

Wheat is a major source of dietary energy for the growing world population. Developing cultivars with enriched zinc and iron can potentially alleviate human micronutrient deficiency. In this study, a recombinant inbred line (RIL) population with 245 lines derived from cross Zhou 8425B/Chinese Spring was used to detect quantitative trait loci (QTL) for grain zinc concentration (GZnC) and grain iron concentration (GFeC) across four environments. Three stable QTL for GZnC with all favorable alleles from Chinese Spring were identified on chromosomes 3BL, 5AL, and 5BL. These QTL explaining maxima of 8.7%, 5.8%, and 7.1% of phenotypic variances were validated in 125 resequenced wheat accessions encompassing both landraces and modern cultivars using six kompetitive allele specific PCR (KASP) assays. The frequencies of favorable alleles for QGZnCzc.caas-3BL, QGZnCzc.caas-5AL and QGZnCzc.caas-5BL were higher in landraces (90.4%, 68.0%, and 100.0%, respectively) compared to modern cultivars (45.9%, 35.4%, and 40.9%), suggesting they were not selected in breeding programs. Candidate gene association studies on GZnC in the cultivar panel further delimited the QTL into 8.5 Mb, 4.1 Mb, and 47.8 Mb regions containing 46, 4, and 199 candidate genes, respectively. The 5BL QTL located in a region where recombination was suppressed. Two stable and three less stable QTL for GFeC with favorable alleles also from Chinese Spring were identified on chromosomes 4BS (Rht-B1a), 4DS (Rht-D1a), 1DS, 3AS, and 6DS. This study sheds light on the genetic basis of GZnC and GFeC in Chinese Spring and provides useful molecular markers for wheat biofortification.

Research Date
Research Department
Research Journal
Theoretical and Applied Genetics
Research Member
Research Publisher
Springer
Research Rank
Q1
Research Vol
137
Research Website
https://link.springer.com/article/10.1007/s00122-024-04661-6?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=nonoa_20240605&utm_content=10.1007%2Fs00122-024-04661-6
Research Year
2024
Research Pages
13