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Abstract: MADS-box transcription factors are crucial regulators of inflorescence and flower devel-
opment in plants. Therefore, the recent interest in this family has received much attention in plant
breeding programs due to their impact on plant development and inflorescence architecture. The
aim of this study was to investigate the role of HvMADS-box genes in lateral spikelet development
in barley (Hordeum vulgare L.). A set of 30 spike-contrasting barley lines were phenotypically and
genotypically investigated under controlled conditions. We detected clear variations in the spike and
spikelet development during the developmental stages among the tested lines. The lateral florets in
the deficiens and semi-deficiens lines were more reduced than in two-rowed cultivars except cv. Kristina.
Interestingly, cv. Kristina, int-h.43 and int-i.39 exhibited the same behavior as def.5, def.6, semi-def.1,
semi-def.8 regarding development and showed reduced lateral florets size. In HOR1555, HOR7191
and HOR7041, the lateral florets continued their development, eventually setting seeds. In contrast,
lateral florets in two-rowed barley stopped differentiating after the awn primordia stage giving
rise to lateral floret sterility. At harvest, the lines tested showed large variation for all central and
lateral spikelet-related traits. Phylogenetic analysis showed that more than half of the 108 MADS-box
genes identified are highly conserved and are expressed in different barley tissues. Re-sequence
analysis of a subset of these genes showed clear polymorphism in either SNPs or in/del. Variation in
HvMADS56 correlated with altered lateral spikelet morphology. This suggests that HvMADS56 plays
an important role in lateral spikelet development in barley.

Keywords: MADS-box family; spike development; lateral spikelet formation; Hordeum vulgare;
phylogenetic tree

1. Introduction

Increasing the yield performance of cereal crops remains one of the major goals of
plant breeding programs [1]. One of the strategies has been to increase the number of seed
primordia per inflorescence. In rice [2], maize [3] and to a certain extent also in wheat [4,5],
this has been achieved by enhancing the number of florets. In barley (Hordeum vulgare
L.), however, grain number has been increased by suppressing floret sterility [6]. The
inflorescence architecture of barley is unique among the Triticeae. The barley inflorescence
is an unbranched spike [7], whose constituent units are called spikelets. Each spikelet
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contains a single floret and two glumes and is attached to the floral axis (the rachis). Floral
patterning of the three spikelet primordia of immature barley inflorescence—one central
and two laterals—is initiated at each rachis node. In wild barley (H. vulgare sp. spontaneum)
and domesticated barley of the two-rowed type (H. vulgare sp. vulgare), lateral floret
development is arrested, and only the central spikelets set grains [8].

Altering the fertility of lateral florets is one of the major strategies to increase the
number of grains at each rachis node. It is likely that six-rowed barley (H. vulgare convar.
hexastichon), with three fertile spikelets per rachis node, was derived from an ancestral
two-rowed form (convar. distichon (L.) Alef.) [6]. Based on the central and lateral spikelet
fertility, barley plants are categorized into four different groups [9]: (i) two-rowed barley
having a fertile central spikelet flanked by two sterile lateral ones, (ii) deficiens barley,
basically being a two-rowed barley in which the lateral spikelets are absent or extremely
reduced; (iii) six-rowed barley having three fully fertile spikelets per node; (iv) labile-barley
having the lateral spikelets fully developed or absent, fertile or sterile, even within one
individual spike. Another row-type class named intermedium barley (H. vulgare convar.
intermedium (Körn.) Mansf. (syn. H. intermedium Körn.)) displays various degrees of lateral
spikelet fertility and seed development intermediate between two- and six-rowed types [6].
Another group of barley row-type, the so-called semi-deficiens-barley, has a two-rowed
phenotype whose reduced lateral spikelets are longer than those in deficiens but smaller
than those in true two-rowed barley.

The barley row-type is regulated by several loci of which some are identified; Six-
rowed spike 1 (Vrs1 [syn = HvHox1], [7], Vrs2 [10], Vrs3 [11,12], Vrs4 [13], intermedium
spike-c (int-c [syn = Vrs5], [14]. Out of these loci, four encode transcription factors; Vrs1
(homeodomain-leucine zipper class I (corresponds to HD-Zip I in Arabidopsis)), Vrs2
(SHORT INTERNODES), Vrs4 (RAMOSA2) and Vrs5 (TEOSINTE BRANCHED1), while
Vrs3 encodes an enzyme (a histone H3K9 demethylase). Previous genetic analyses of the
intermedium barley have revealed that other genes, independently of Vrs1, can increase
the size of florets and even stimulate occasional grain setting in lateral spikelets [6]. The
results showed that the six-rowed phenotype arises in various panels of intermedium
barley carrying the two-rowed allele of Vrs1 in the presence of the six-rowed allele of Int-c,
previously considered only as a modifier of lateral spikelet fertility. The six-rowed allele of
Int-c probably arose before domestication and is associated with the enlargement of lateral
florets in wild barley. Since this allele cannot overcome the lateral florets sterility in the
genomic background of wild barleys, we infer the existence of other loci at which novel
alleles or allelic combinations were selected for after domestication to increase the grain
number of barley independently of Vrs1 [6]. Our understanding of the genetic basis of
barley inflorescence development and growth has greatly increased over the recent decades.
The spikelet arrangement patterning in two-rowed and wild barleys is regulated by the
transcriptional regulator (Vrs2), which plays a role in controlling the levels of important
developmental hormones along the spike [10,15,16].

Among the various transcription factors active in biological systems is the MADS-box
family. The name is derived from MCM1 (in yeast), AG (in Arabidopsis), DEFICIENS
(in Antirrhinum), and SRF (in mammals). These four protein families are considered as
the first four discovered transcription factors [17,18]. Many of the MADS-box genes are
crucial for floral initiation, development and growth and proposed to be the dynamic
force of the floral diversity in many plants [19,20]. Therefore, a better understanding
of MADS-box gene function can provide information on how different floral structures
evolved and identify target genes for the improvement of crop breeding programs [21]. In
Arabidopsis, most of the floral organs development genes encode MADS-box transcription
factors. The MADS-box genes in rice, maize and barley showed crucial similarities to those
in Arabidopsis, suggesting a similar function in floral development [22,23].

In the present work, we studied the relations between HvMADS-box genes and the
phenotypic development of lateral spikelets using a set of spike-variation barley lines. We
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found that HvMADS56 could be considered as a novel gene that plays an important role in
lateral spikelet development in barley.

2. Results
2.1. Phenotypic Status and Scanning Electron Microscopy (SEM) of the Tested Barley Lines

Thirty barley lines with a large variation in their spike morphology were selected
to investigate the role of HvMADS-box genes in relation to their spike and spikelet devel-
opment. Among these lines were two-rowed, deficiens, semi-deficiens and intermedium
types. The 30 barley lines were grown under controlled greenhouse conditions. At harvest,
plant height, number of tillers per plant, number of spikes per plant, main culm spike
length and weight as well as central and lateral spikelet length, width, weight and area
were measured (Table S1). The analysis of variance revealed highly significant differences
for all studied traits. The coefficient of determination (R2) and heritability in broad-sense
(Hb) ranged from 84.7 to 90.9% (for central seed width) and from 93.9 to 96.8% (for central
seed area), respectively (Table S2). Plant height ranged between 59 cm in def.8 and 128 cm
in HOR6407, with an average of 83 cm. Number of tillers per plant varied from 2.3 in
int-l.81 to 22.0 in cv. Bonus with an average of 10.6. Number of spikes per plant ranged
from 2.0 in int-l.81 to 21.3 in cv. Bonus with an average of 9.7. Spike length ranged from
4.4 cm in HOR10166 to 11.8 cm in cv. Bonus with an average of 9.2 cm. Spike weight varied
from 0.34 g in def.5 to 2.84 g in HOR7191 with an average of 1.27 g. The seed weight of the
central spikelet ranged between 0.12 g in def.5 and 1.45 g in cv. Bonus with an average of
0.87 g. Seed width of the central spikelet ranged between 3.17 mm in def.6 and 4.20 mm
in cv. Bowman with an average of 3.68 mm. Seed length of the central spikelet ranged
between 6.77 mm in HOR1555 and 16.30 mm in HOR6407 with an average of 10.45 mm.
Seed area of the central spikelet varied between 18.13 mm2 in HOR1555 and 37.90 mm2 in
int-l.81 with an average of 26.0 mm2. Seed numbers of the central spikelet ranged between
4.0 seeds in int-l.81 and 27.3 seeds in cv. Bonus with an average of 16.7 seeds. Thousand
seed weight of the central spikelet ranged between 28.8 g in def.6 and 70.1 g in int-l.81 with
an average of 52.2 g (Table S1).

Four lines showed fertile lateral spikelets and were setting seeds; hex-v.3, HOR1555,
HOR7191 and HOR7041. All the other lines showed sterile lateral spikelets. Highly sig-
nificant differences were observed for lateral spikelet weight (LSW), width (LSWi), length
(LSL), area (LSA), and thousand seeds weight (in case of fertile lateral spikelet) or thousand
spikelet weight (in case of sterile lateral spikelet) (TSW) (Table 1). Large estimates of Hb and
R2 were obtained for all lateral spikelet-related traits (Table S2). Among the sterile lateral
spikelets, the genotype def.2 showed the lowest values of lateral spikelet weight, spikelet
width, spikelet length, spikelet area and TSW recording 0.00007 g, 0.54 mm, 3.46 mm,
0.97 mm2 and 0.07 g, respectively (Table 1). The genotype int-e.4 gave the highest values
of spikelet weight, spikelet width, spikelet area and TSW recording 0.0026 g, 2.28 mm,
13.99 mm2 and 2.59 g, respectively. While the genotype int-f.19 gave the longest spikelet by
length of 12.58 mm.
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Table 1. The statistical analysis of the lateral spikelet traits in the set of 30 barley lines used in this study. Mean squares (MS)
of lateral spikelet weight (LSW), lateral spikelet width (LSWi), lateral spikelet length (LSL), lateral spikelet area (LSA) and
thousand seed or spikelet weight (TSW) in the tested lines.

Mean Squares

LSW (g) LSWi
(mm) LSL (mm) LSA (mm2) TSW (g)

Means of Tested Lines

Two-rowed

Bonus 0.0004 1.37 9.22 7.20 0.37
Bowman 0.0005 1.69 8.49 6.61 0.54

Foma 0.0005 1.62 9.37 7.63 0.48
Kristina 0.0002 0.98 6.87 3.79 0.19

Average 0.0004 1.42 8.49 6.31 0.40

Deficiens

def.2 0.0001 0.54 3.46 0.97 0.07
def.4 0.0001 0.64 5.12 1.52 0.09
def.5 0.0001 0.88 6.46 2.49 0.14
def.6 0.0002 1.09 5.12 1.75 0.17
def.8 0.0002 1.00 6.4 2.80 0.16

Average 0.0001 0.83 5.31 1.91 0.13

Semi-deficiens

semi-def.1 0.0001 0.89 6.75 3.20 0.15
semi-def.4 0.0002 0.97 5.86 3.00 0.17
semi-def.5 0.0001 0.87 6.58 2.56 0.15
semi-def.7 0.0002 0.91 7.38 3.17 0.17
semi-def.8 0.0002 0.92 6.79 3.09 0.18

Average 0.0002 0.91 6.67 3.00 0.16

Intermedium mutants

int-a.1 0.0014 1.81 11.22 10.99 1.39
int-c.5 0.0029 2.28 10.18 13.99 2.9
int-e.20 0.0007 1.44 9.67 8.34 0.72
int-e.4 0.0026 2.15 10.41 12.47 2.59
int-f.19 0.0009 1.45 12.58 9.28 0.94
int-h.43 0.0003 1.33 6.94 4.76 0.32
int-i.39 0.0004 1.13 8.51 5.63 0.41
int-l.81 0.002 2.23 10.71 12.81 2.02

int-m.85 0.0007 1.81 10.18 8.42 0.7

Average 0.00132 1.74 10.04 9.63 1.33

Intermedium barley

HOR1555 0.0416 4.12 9.77 26.84 41.56
HOR6211 0.0008 1.52 9.15 8.01 0.8
HOR7191 0.0477 4.23 10.11 27.93 47.74

HOR10166 0.0026 1.73 12.04 13.83 2.57
HOR6407 0.0007 1.19 10.13 6.79 0.75
HOR7041 0.0227 3.43 14.55 32.13 22.71

Average 0.0194 2.70 10.96 19.26 19.36

Hexastichon mutant
hex-v.3 0.0224 3.15 11.22 19.04 22.37

LSD 4.2E-06 0.0841 0.6501 0.0324 0.0421
Mean 0.0051 g 1.67 mm 8.78 mm 9.16 mm2 5.13 g

Minimum 0.0001 g 0.54 mm 3.46 mm 0.97 mm2 0.07 g
Maximum 0.0477 g 4.23 mm 14.55 mm 32.13 mm2 47.74 g

Among the four lines showing fertile lateral spikelets, hex-v.3, despite displaying the
longest lateral spikelets (11.22 mm), exhibited the lowest values of lateral spikelet weight,
width, area and TSW by 0.0224 g, 3.15 mm, 19.04 mm2 and 22.37 g, respectively (Table 1).
The genotype HOR7191 showed the highest values for spikelet weight, width, area and
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TSW by 0.0477 g, 4.23 mm, 27.93 mm2 and 47.74 g, respectively. HOR1555 genotype gave
the shortest spikelet by value of 9.77 mm.

For SEM analysis, for each individual line, five or more spikes were dissected from the
developmental stages triple mound, glum primordia, stamen primordia, lemma primordia
and awn primordia [24] from each of the lines. We detected clear variation among the
tested lines (Figure 1). The lateral florets in the deficiens lines were more reduced than the
semi-deficiens and two-rowed cultivars such as cv. Bonus. Interestingly, cv. Kristina, int-h.43
and int-i.39 showed the same appearance as def.5, def.6, semi-def.1, semi-def.8 in development
and reduced lateral floret size. Up until the awn primordium stage, the lateral spikelets of
the six-rowed lines HOR1555, HOR7191 and HOR7041 developed similar to those of two-
rowed cultivars. After the awn primordia stage, however, lateral spikelets of these HOR
lines continued their development, while those of two-rowed barley stopped differentiating
at this stage, leading to lateral floret sterility.

Figure 1. SEM of lateral spikelet development at awn primordia stage and spike form showing increase in the lateral spikelet
size and development from left to right in the lines; deficiens phenotype (cv. Kristina, int-h.43, int-i39, def.5, def.6, semi-def.1,
semi-def.8), semi-deficiens phenotype (semi-def.4, semi-def.5 and semi-def.7), two-rowed phenotype (cvs. Bonus, Bowman and
Foma), intermedium phenotype (mutants int-a.1, int-c.5, int-e.20, int-e.4, int-f.19, int-l.81, int-m.85, HOR6211, HOR10166 and
HOR6407) and Six-rowed phenotype (hex-v.3, HOR1555, HOR7191 and HOR7041).
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2.2. HvMADS-box Genes Map

We identified the DNA and protein sequences of 108 different HvMADS-box genes
located on all seven barley chromosomes; 13 on chromosome (chr) 1H, 14 on chr 2H, 17
on chr 3H, 9 on chr 4H, 13 on chr 5H, 19 on chr 6H and 23 on chr 7H (Figure 2). The
gene annotation results showed that 30 of them are Agamous-like MADS-box transcription
factors, 7 are K-box region and MADS-box transcription factor family proteins, and two are
PISTILLATA-like MADS-box transcription factors. Fifty-one genes out of the 108 genes are
orthologous to MADS-box genes in Arabidopsis or rice (or both). The other 57 genes could
be unique to barley or yet unknown in other plants like Arabidopsis or rice (Table S3).

Figure 2. Genetic map of the HvMADS-box genes. The map includes all seven barley chromosomes.
Genes are indicated to the right of each interval position. High confidence (HC) genes are marked
with red, while low confidence (LC) genes are colored with yellow. HvMADS56 is in green (Chr1-08).
Full name of each gene is given in Table S4.

2.3. Phylogenetic Analysis of HvMADS-box Genes

We performed a phylogenetic analysis of the 108 HvMADS-box genes in barley based
on their protein sequences. The results showed that these genes can be separated into three
clades. The small clade includes 16 genes with 13 high confidence and 3 low confidence
genes. The middle clade includes 27 genes with 16 high confidence and 11 low confidence
genes. The remaining 65 genes make up the large clade, including 57 high confidence and
8 low confidence genes (Figure 3). The small clade (in purple color) includes HvMADS-box
gene’ class AGL80 and one gene belonging to AGL65. The middle clade is divided into five
sub-clades and includes many of the unknown yet MADS-box genes either in barley, rice or
Arabidopsis. The last clade includes all HvMADS-box genes, which have been assigned a
function through studies in barley or through studies with their orthologous proteins in
rice and Arabidopsis (Figure 3 and Table S3).
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Figure 3. Phylogenetic tree obtained for the 108 HvMADS-box genes. A total of 108 protein sequences were
identified and annotated as MADS-box transcription factors. The genes names in the tree derived from their
names in the barley reference genome, e.g., 5HG0409590 corresponds to HORVU.MOREX.r2.5HG0409590.

2.4. In Silico Analysis of Barley HvMADS-box Genes Expression

In order to understand how the different barley HvMADS-box transcription factors
regulate floral initiation, development and growth, the Barlex database (https://apex.ipk-
gatersleben.de/apex/f?p=284:10, accessed on 9 November 2021) was explored [25]. The
Barlex database contains information on expression of genes in a wide range of barley
tissues such as; 4-day embryos (EMB), roots from seedlings (ROO1), shoots from seedlings
(LEA), young developing inflorescence (INF1), developing inflorescence (INF2), developing
tillers (NOD), developing grains (CAR5), developing grain (CAR15), etiolated seedling
(ETI), inflorescence lemma (LEM), inflorescence lodicule (LOD), dissected inflorescences
palea (PAL), epidermal strips (EPI), inflorescences rachis (RAC), roots 28 days after planting
(ROO2) and senescing leaves (SEN). It was found that 32 HvMADS-box genes were not
expressed in any of the tested tissues, while 25 genes were expressed in all tissues. The
remaining 51 genes showed different levels of expressions in one or more of the tested
tissues (Table S3). Interestingly, none of the genes in the small clade showed any expression
in the tested tissues except gene AGL65, which was expressed in all tissues. Of the genes in
the second clade, eight showed no expression, six were expressed in all tissues, and the
remaining 13 genes were expressed in one or more tissues. In the large clade, 12 genes
showed no expression, 18 genes were expressed in all tissues, while the remaining 35 genes
showed expression in one or more tissues (Table S3). In our study, we focused on the 14
HvMADS-box genes, which showed a high expression profile in the tissues or organs of the
barley inflorescence (Figure 4). The results showed that HvMADS1, 3, 6, 7, 8, 13, 21, 29, 34
and 58 are specifically highly expressed in CAR5, while MADS2, 6, 7, 8, 22, 29 and 56 are
found in LOD and MADS1, 5, 34 and 56 are highly presented in INF2.

https://apex.ipk-gatersleben.de/apex/f?p=284:10
https://apex.ipk-gatersleben.de/apex/f?p=284:10
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Figure 4. Clustering analysis of 14 HvMADS-box transcription factor gene transcripts in different barley
tissues. LEA, leaves 17 days after planting (DAP); developing inflorescence 5mm (INF1, about 30 DAP);
developing inflorescence 10–15mm (INF2, about 50 DAP); developing tillers (NOD), developing grain
5 days after anthesis (CAR5), developing grain 15 days after anthesis (CAR15), etiolated seedling
(ETI), inflorescence lemma (LEM), inflorescence lodicule (LOD), epidermal strips (EPI), inflorescences
rachis (RAC). Raw data from the https://apex.ipk-gatersleben.de/apex/f?p=284:10 website (accessed
on 9 November 2021).

2.5. MADS-box Genes Polymorphism and Lateral Spikelet Development

MADS-box genes, which were expressed mainly in tissues related to spikelet develop-
ment, identified by our in silico analysis, were re-sequenced in all 30 lines in the present
study to investigate the DNA sequence polymorphism that may affect spikelet develop-
ment among these lines. The sequence variations in these genes showed polymorphism
was largely absent among the tested lines except for HvMADS3, 6, 8, 34, 21 and 56 (Table 2).

https://apex.ipk-gatersleben.de/apex/f?p=284:10
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Table 2. Sequence variations and polymorphism at Hv-MADS3, Hv-MADS6, HvMADS8, HvMADS34, HvMADS21 and
HvMADS56, including the nucleotide (nt) position of each among the tested lines.

HvMADS3 HvMADS6 HvMADS8 HvMADS34 HvMADS21 HvMADS56
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bp
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l

Bowman G G C G A G A G T C
Bonus G G 4x GGC C G A G A G T C
Foma G G C G A G A G C T C

Kristina G G C G A C G G T C -
def.2 G G C G A G A G T C
def.4 A G C G A C G G T A
def.5 G G C G A C A G T A -
def.6 G G C G A C A G T A -
def.8 G G C G A G A G T C

semi-def.1 G G C G A G A G T C -67-
semi-def.4 G G C G A G A G A C
semi-def.5 G G C G A G G G C A C
semi-def.7 G G C G A G A G C A C
semi-def.8 G G C G A C A G T A -

int-a.1 G G C G A G A G T C
int-c.5 G G C G A G A G C T C
int-e.4 G G C G A G A G T C

Int-e.20 G G C G A G A G C T C
Int-f.19 G G C G A G A G C T C
int-h.43 G G C G A C G G T A -
int-i.39 G G C G A G G G T A -
int-l.81 G G C G A C A G T C
int-m.85 G G C G A G A G T C
hex-v.3 G G C G A G A G C T C

HOR10166 G G -21- C G A G G G T A -
HOR1555 G C C A C G A T GGC T A
HOR6211 G G -18- C G A G A G T A -
HOR6407 G G -18- C G A G A G T A -
HOR7191 G G C A C G A T GGC T A
HOR7041 G C T G A G A T GGC T A

In HvMADS3 (HORVU.MOREX.r2.3HG0202320), the results showed nucleotide sub-
stitutions from G to A in def.4 at nucleotide position 84. This single nucleotide polymor-
phism (SNP) did not change the protein. In contrast, a G to C substitution at nucleotide
position 104 in HOR1555 and HOR7041 was a nonsynonymous SNP causing a change
from serine to threonine (Table 2). The sequence polymorphism observed in HvMADS6
(HORVU.MOREX.r2.6HG0500990) was an 18 bp deletion from nucleotide 627 to 644 in
HOR6211 and HOR6407 and a 21 bp deletion from nucleotide 627 to 647 in HOR10166.
From the sequence data of HvMADS8 (HORVU.MOREX.r2.5HG0409590), we found a
GGCGGCGGCGGC insertion in cv. Bonus in the promotor region before the ATG start
codon. In addition, a synonymous SNP from C to T in HOR7041 was observed.

The re-sequence data of HvMADS34 (HORVU.MOREX.r2.5HG0424690) identified
an SNP from G to A in the promotor region and a synonymous SNP from A to C
at nucleotide position nine in HOR1555 and HOR7191. Re-sequencing of HvMADS21
(HORVU.MOREX.r2.1HG0052300) identified three synonymous SNPs from G to C at nu-
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cleotide position 123 in cv. Kristina, def.4, def.5 and def.6, semi-def.8, int-h.43 and int-l.81,
and from A to G at nucleotide position 411 in cv. Kristina, def.4, semi-def.5, int-h.43, int-i.39
and HOR10166 and from G to T at nucleotide position 573 in HOR1555, HOR7191 and
HOR7041. In addition, two insertions were observed: GGC at nucleotide positions 702-704
in HOR1555, HOR7191 and HOR7041 and C at nucleotide position 702, causing a frameshift
and immature stop codon in cv. Foma, semi-def.5, semi-def.6, int-c.5, int-e.20, int-f.19 and
hex-v.3. The results of re-sequence HvMADS56 (HORVU.MOREX.r2.1HG0042540) revealed
a nonsynonymous SNP from T to A at nucleotide position 83, causing a change from
leucine to glutamine in semi-def.4, semi-def.5 and semi-def.6, a synonymous SNP from C to A
at nucleotide position 105 in def.4, def.5 and def.6, semi-def.8, int-h.43, int-i.39, HOR10166,
HOR1555, HOR6211, HOR6407, HOR7191 and HOR7041. In addition, the results showed a
G deletion at nucleotide position 321, causing a frameshift and immature stop codon in cv.
Kristina, def.5, def.6, semi-def.8, int-h.43, int-i.39, HOR10166, HOR1555, HOR6211, HOR6407,
HOR7191 and HOR7041, as well as a 67 bp deletion in semi-def.1 (Table 2). The SNP analysis
revealed a correlation between lines with contrasting lateral spikelet phenotype and the
SNPs and in/del polymorphisms detected in the HvMADS6 and HvMADS56. Therefore,
the G deletion at nucleotide position 321 in HvMADS56 may be responsible for the sig-
nificant lateral spikelet reduction in cv. Kristina, def.5, def.6, Semi-def.8, int-h.43, int-i.39,
while the 67 bp deletion may account for the effect seen in semi-def.1. The lateral spikelet
reduction in the three lines, HOR10166, HOR6211 and HOR6407, might be due to the 18 bp
deletion in HOR6211 and HOR6407 and the 21 bp deletion in HOR10166 in HvMADS6 as
well as the G deletion at nucleotide position 321 in all of the three lines in HvMADS56.

3. Discussion

The aim of the present study was to further elucidate the genetic basis of barley spike
and spikelet development to increase seed yield. We used 30 different lines with variations
in lateral spikelet formation. Genetic and phenotypic variation remains a cornerstone in
plant breeding. Understanding the mechanisms of the relative fertility of central and lateral
spikelets will provide novel solutions to enhanced grain yield in barley [11]. This could
be achieved by increasing the number of seeds per spike which is a major goal of modern
plant breeding programs [26]. The MADS-box genes family is considered to represent the
first discovered transcription factor proteins [17,18]. In plants, MADS-box proteins are
involved in various developmental processes during flowering [27–29] and are proposed
to be the driving force behind floral diversity [19,20]. Therefore, a better understanding of
their role and function in barley could help improve cereal breeding programs.

In the current study, we found a large variation among the tested lines for all central
and lateral spikelet-related traits. All these traits had a broad-sense heritability of over 90%
(Table 1 and Table S2), which confirmed that genetic effects are the major determinant of the
phenotypic variance of these traits in barley. Our results are consistent with those obtained
by [30,31], describing different fertility degrees for lateral spikelets in the intermedium-
spike barley collection ranging from completely infertile (two-rowed like) to full fertile
(six-rowed like). Our scanning electron micrographs of the tested lines revealed clear
variation in the lateral spikelet development, especially at the awn primordia stage.

Kuijer et al. [23] analyzed 34 MADS-box genes and noticed that they regulate floret,
spikelet and spike development in barley. Our phylogenetic analysis further complemented
these results by revealing the highly conserved nature of 108 HvMADS-box genes in barley,
more than half of which (76 genes) were expressed in different barley tissues. Expression
data of many of these genes (Figure 4) from individual floral organs such as INF1, INF2,
LEM, LOD and PAL suggested a role in floret and/or spikelet and spike development in
barley. These results are consistent with those obtained by Schilling et al. [32] in wheat and
Ciaffi et al. [33] in rice, maize and wheat.

We re-sequenced 14 of the HvMADS-box genes to investigate their role in lateral
spikelet development. Sequence analysis of the 30 barley lines identified HvMADS6 and
HvMDS56 as likely regulators of lateral spikelet development (Tables 1 and 2). The G



Plants 2021, 10, 2825 11 of 16

deletion and the 67 bp deletion in HvMADS56 and 18 bp and 21 bp deletions in HvMADS6
were likely candidates for inducing the reduced stage of lateral spikelets in cv. Kristina,
def.5, def.6, semi-def.1, semi-def.8, int-h.43, int-i.39, HOR10166, HOR6211 and HOR6407.

HvMADS56, which is located on barley chromosome 1H, is very similar to the putative
ortholog in rice (OsMADS56, on chromosome 10) and putative ortholog in Brachypodium
(Bradi3g32090, on chromosome 3) [34–36] composed seven exons and six introns [32]. The
annotation result of these genes showed that they contain the characteristic K-domain and
belong to the MADS-box (type II) family [37]. Blasting the DNA and protein sequences
of HvMADS56 to the NCBI database (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed
on 9 November 2021) revealed that, HvMADS56 is similar to Arabidopsis SUPPRESSOR
OF OVEREXPRESSION OF CONSTANS (SOC1) gene. Our in silico analysis showed
that a maximum expression of HvMADS56 (HvSOC1) was in inflorescence development
organs INF2, LEM, LOD, PAL and RAC. These expression results were in agreement
with what was found in Arabidopsis [38]. Papaefthimiou et al. [39] studied HvSOC1-
like1 and HvSOC1-like2 and found that both are expressed at different stages during the
reproductive phase portentous their possible insinuation in seed development. This clearly
suggests an important role of HvMADS56 (HvSOC1) in floret and spikelet development
prior to the formation and setting of seeds. From the previous studies, SOC1 is known
as a MADS-box transcription factor that is conserved and multifunctional protein in
monocotyledons and dicotyledons [40–45], regulating flowering time, floral meristem
patterning and determinacy [46–48]. It is also well known that hormones regulate floral
organ patterning and spike and spikelet development in barley [10,16]. We suggest that
the HvMADS56 (HvSOC1) gene is functionally acting upstream of floral meristem identity
genes in barley. In Arabidopsis, Agamous-like genes such as AGL6, 17 and 24 and SOC1
interact and upregulate each other. The SOC1 gene regulates AP1, LFY, SEP3 and other
flowering time genes (Figure 5). The effects of SOC1 have also been reported in other
species [49,50]. We hypothesize that the activation of the floral meristem identity genes
and subsequent plant flowering in barley are affected by the gibberellic acid pathway
either directly or indirectly through HvSOC1 (Figure 5). This is in line with what is known
about the role of SOC1 and GA in regulating flowering and inflorescence development in
Arabidopsis and Orchid [49,50].

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 5. Suggested role of HvMADS56 (HvSOC1) in regulating spikelet development in bar-
ley through its direct effect on the floral meristem identity genes or through stimulation of the
AGAMOUS-like (AGL) genes activity. Hypothetical interactions that need further investigations in
barley are indicated by dotted lines.

4. Conclusions

In order to address the recent focus of crop breeding programs on flower develop-
ment and its effect on yield, we studied the role of MADS-box proteins in inflorescence
development in barley. Our results highlight the importance of HvMADS56 in lateral
spikelet development as well as floret and spikelet development prior to the formation
and setting of seeds. The loss-of-function of HvMADS56 due to the two deletions (a G
and a 67 bp deletion) might cause the reduction and late spikelet development in some of
the tested lines in this study. We also found that some other lines showed a reduction in
lateral spikelet size, but they did not carry a polymorphism at the tested MADS-box genes.
Thus, we conclude that HvMADS56 (HvSOC1) not only plays an important role in floret
and spikelet development but also other novel genes might be involved as well. Further
investigations will be needed to solidify this conclusion and identify the relation between
HvMADS56 and the other genes underlying the spike and spikelet development in barley.

5. Materials and Methods
5.1. Plant Materials

Seeds of 30 spring barley lines (mutants, accessions and cultivars) with variation in
lateral spikelet size were studied; two-rowed (4 lines; Foma, Bowman, Bonus, Kristina),
deficiens (5 lines; def.2, def.4 to def.6 and def.8), semi-deficiens (5 lines; semi-def.1, semi-def.4,
semi-def.5, semi-def.7 and semi-def.8), intermedium (int) mutants (9 lines; int-a.1, int-c.5, int-e.4,
int-e.20, int-f.19, int-h.43, int-i.39, int-l.81, and int-m.85), hexachiton mutants (hex-v.3) and
6 accessions from the natural barley collection classified as intermedium barley [9], barley
accessions (Hordeum vulgare L. convar. intermedium (Körn.) Mansf.). All the lines were
obtained from NordGen (the Nordic Genetic Resource Center, Alnarp, Sweden), except
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the 6 lines of the natural collection that were obtained from the German Federal ex situ
Genebank hosted at IPK Gatersleben, Germany (Table S5).

5.2. Growth Conditions and Spike Phenotyping

Three replicates from each accession of the 30 lines were germinated and grown in
the greenhouse facilities at the Department of Biology, Lund University, Lund, Sweden,
between March and August 2019. The plants were grown in potting soil from SW Horto,
Sweden (swhorto.se, article number 744704) in 1.5-L pots (a single plant/pot, 14 cm
diameter and 14 cm height) under long-day conditions, 16 h light/8 h dark and temperature
20 ± 2 ◦C during the day and 16 ± 2 ◦C during the night. After harvest, the main culm
spike of each plant was scored for central and lateral seed size; seeds weight, seed length,
seed width, seed area, thousand seed weight, as well as plant seed number and plant
seed weight, plant height (from the soil surface to the base of the spike), spike length
(from the base to the tip of the spike without awns) and number per plant and number
of tillers per plant. In addition to the lines which did not show fertility for the lateral
spikelets, spikelet weight, spikelet length, spikelet width and spikelet area of 20 lateral
florets from ten rachis nodes from the middle of the spike were measured after harvesting.
The traits were measured with a MARVIN Seed Analyzer (GTA Sensorik, Neubrandenburg,
Germany).

5.3. Scanning Electron Microscopy

Immature spike tissues (from five or more plants) at different spike developmental
stages; triple mound, glum primordia, stamen primordia, lemma primordia and awn
primordia were used for scanning electron microscopy (SEM) (Hisco Europe, Ratingen,
Germany), which was conducted as previously described by Lolas et al. [51].

5.4. Genomic DNA Isolation, Amplification and Sequencing

Leaf samples were collected in 96-well plates from seedlings with 2–3 leaves. Genomic
DNA extraction and polymerase chain reaction (PCR) amplifications were performed
as described in Matyszczak et al. [52]. For each of the tested MADS-box genes in this
study, primer pairs were designed to obtain sequence data for the whole gene by Sanger
sequencing. Primer sequences, annealing temperatures and fragment lengths for all genes
are provided in Table S6. PCR amplification profile with initial denaturation step: 3 min
at 96 ◦C followed by the main program for 40 cycles at 96 ◦C for 40 s, 60 ◦C for 40 s and
extension at 72 ◦C for 2 min, followed by a final extension for 12 min at 72 ◦C. The PCR
products were tested on 1% agarose gel. For Sanger-sequencing, 2 µL of Exoprostar was
added to 5 µL of the PCR products. The mixture was incubated at 37 ◦C for 15 min followed
by 80 ◦C for 15 min. After that, 8 µL H2O and 2 µL of 10 µM primer were added to the
Mixture and sent to the sequencing service offered by Eurofins Genomics, Germany.

5.5. Sequence Analysis and Sequence Homology Searches

Sequencher 5.2.3 DNA sequence assembly software (Gene Codes Corporation) was
used for DNA sequencing analysis, quality score assignments and construction of contigs.
Multiple sequence alignments were carried out using Clustal Omega (https://www.ebi.ac.
uk/Tools/msa/clustalo/, accessed on 9 November 2021). Barley DNA sequences of the
MADS-box genes with respective genetic and physical locations were extracted from [53,54]
using the barley genome explore (Barlex) (https://apex.ipk-gatersleben.de/apex/f?p=284:
10::::::, accessed on 9 November 2021). The positions of the MADS-box genes on all barley
chromosomes were plotted using the R package ChromoMap [55].

5.6. Phylogenetic Analysis

MADS-box protein sequences were isolated using the barley genome explorer (Barlex)
(https://apex.ipk-gatersleben.de/apex/f?p=284:10::::::, accessed on 9 November 2021).
Protein sequences (108) were isolated and annotated as the MADS-box transcription factor.

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://apex.ipk-gatersleben.de/apex/f?p=284:10::::::
https://apex.ipk-gatersleben.de/apex/f?p=284:10::::::
https://apex.ipk-gatersleben.de/apex/f?p=284:10::::::
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A multiple sequence alignment was performed using the R-package DECIPHER [56], and
then a circular phylogenetic tree was generated using the R-package ggtree [57].

5.7. Expression Data Analysis

Transcript data of the MADS-box genes for the different barley plant tissues were
isolated from the https://apex.ipk-gatersleben.de/apex/f?p=284:10:::::: website as FPKM—
fragments per kilobase of exon model per million reads mapped (accessed on 9 November
2021). Source: [25].

5.8. Statistical Analysis

The analysis of variance (ANOVA) of a randomized complete block design (RCBD)
experiment with three replications of the agronomic and central spikelet-related traits
and with four replications of the lateral spikelet-related traits was performed using SAS
software v.9.2 with PROC GLM procedure [58]. Means were compared by a Fisher’s least
significant difference (LSD) procedure at 0.05 level of significance. Broad-sense heritability
(Hb) estimates were calculated under control according to [59].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10122825/s1. Table S1: Summary statistics of the agronomic, central spikelets and
lateral spikelets related traits in the 30 tested lines; Table S2: The statistical analysis of variance,
coefficient of determination (R2), broad-sense heritability (Hb) and coefficient of variation (CV%)
of the agronomic traits, central spikelet traits and lateral spikelet traits in the set of 30 barley lines
used in this study; Table S3: List of MADS-box genes including gene ID, gene sequence, protein
sequence, tissue of expression, chromosomal position and start and end of each gene on the barley
chromosomes; Table S4: Genes ID for the map in Figure 2; Table S5: List of tested lines used in the
study; Table S6: Primer sequences, annealing temperatures and fragment lengths for the tested genes.
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Tagiri, A.; et al. The genetic basis of composite spike form in barley and ‘miracle-wheat’. Genetics 2015, 201, 155–165. [CrossRef]

6. Youssef, H.M.; Mascher, M.; Ayoub, M.A.; Stein, N.; Kilian, B.; Schnurbusch, T. Natural diversity of inflorescence architecture
traces cryptic domestication genes in barley (Hordeum vulgare L.). Genet. Resour. Crop Evol. 2017, 64, 843–853. [CrossRef]

7. Forster, B.P.; Franckowiak, J.D.; Lundqvist, U.; Lyon, J.; Pitkethly, I.; Thomas, W.T.B. The barley phytomer. Ann. Bot. 2007,
100, 725–733. [CrossRef]

8. Komatsuda, T.; Pourkheirandish, M.; He, C.; Azhaguvel, P.; Kanamori, K.; Perovic, D.; Stein, N.; Graner, A.; Wicker, T.;
Tagiri, A.; et al. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc.
Natl. Acad. Sci. USA 2007, 104, 1424–1429. [CrossRef]

9. Mansfeld, R. Das morphologische System der Saatgerste, Hordeum vulgare L. sl. Züchter 1950, 64, 843–853. [CrossRef]
10. Youssef, H.M.; Eggert, K.; Koppolu, R.; Alqudah, A.M.; Poursarebani, N.; Fazeli, A.; Sakuma, S.; Tagiri, A.; Rutten, T.;

Govind, G.; et al. VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat. Genet. 2017, 49, 157–161. [CrossRef]
11. Bull, H.; Casao, M.C.; Zwirek, M.; Flavell, A.J.; Thomas, W.T.B.; Guo, W.; Zhang, R.; Rapazote-Flores, P.; Kyriakidis, S.;

Russell, J.; et al. Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral
spikelet fertility. Nat. Commun. 2017, 8, 936. [CrossRef]

12. Van Esse, G.W.; Walla, A.; Finke, A.; Koornneef, M.; Pecinka, A.; von Korff, M. Six-rowed spike3 (VRS3) is a histone demethylase
that controls lateral spikelet development in Barley. Plant Physiol. 2017, 174, 2397–2408. [CrossRef]

13. Koppolu, R.; Anwar, N.; Sakuma, S.; Tagiri, A.; Lundqvist, U.; Pourkheirandish, M.; Rutten, T.; Seiler, C.; Himmelbach, A.;
Ariyadasa, R.; et al. Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proc. Natl. Acad. Sci. USA 2013,
110, 13198–13203. [CrossRef]

14. Ramsay, L.; Comadran, J.; Druka, A.; Marshall, D.F.; Thomas, W.T.B.; MacAulay, M.; MacKenzie, K.; Simpson, C.; Fuller, J.;
Bonar, N.; et al. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication
gene TEOSINTE BRANCHED 1. Nat. Genet. 2011, 43, 169–172. [CrossRef]

15. Boden, S.A. How hormones regulate floral architecture in barley. Nat. Genet. 2017, 49, 8–9. [CrossRef]
16. Youssef, H.M.; Hansson, M. Crosstalk among hormones in barley spike contributes to the yield. Plant Cell Rep. 2019, 38, 1013–1016.

[CrossRef]
17. Shore, P.; Sharrocks, A.D. The MADS-Box Family of Transcription Factors. Eur. J. Biochem. 1995, 229, 1–13. [CrossRef]
18. Lawton-Rauh, A.L.; Alvarez-Buylla, E.R.; Purugganan, M.D. Molecular evolution of flower development. Trends Ecol. Evol. 2000,

15, 144–149. [CrossRef]
19. Theißen, G.; Saedler, H. Floral quartets. Nature 2001, 409, 469–471. [CrossRef]
20. Yamaguchi, T.; Hirano, H.Y. Function and diversification of MADS-box genes in rice. Sci. World J. 2006, 6, 1923–1932. [CrossRef]
21. Callens, C.; Tucker, M.R.; Zhang, D.; Wilson, Z.A. Dissecting the role of MADS-box genes in monocot floral development and

diversity. J. Exp. Bot. 2018, 69, 2435–2459. [CrossRef]
22. Yoshida, H.; Nagato, Y. Flower development in rice. J. Exp. Bot. 2011, 62, 4719–4730. [CrossRef]
23. Kuijer, H.N.J.; Shirley, N.J.; Khor, S.F.; Shi, J.; Schwerdt, J.; Zhang, D.; Li, G.; Burton, R.A. Transcript Profiling of MIKCc MADS-Box

Genes Reveals Conserved and Novel Roles in Barley Inflorescence Development. Front. Plant Sci. 2021, 12, 1834. [CrossRef]
24. Kirby, E.J.M.; Appleyard, M. Cereal Development Guide, 2nd ed.; NAC Cereal Unit: Stoneleigh, UK, 1987; 85p.
25. Colmsee, C.; Beier, S.; Himmelbach, A.; Schmutzer, T.; Stein, N.; Scholz, U.; Mascher, M. BARLEX—The barley draft genome

explorer. Mol. Plant 2015, 8, 964–966. [CrossRef]
26. Sakuma, S.; Lundqvist, U.; Kakei, Y.; Thirulogachandar, V.; Suzuki, T.; Hori, K.; Wu, J.; Tagiri, A.; Rutten, T.; Koppolu, R.; et al.

Extreme suppression of lateral floret development by a single amino acid change in the VRS1 transcription factor. Plant Physiol.
2017, 175, 1720–1731. [CrossRef]

27. Schwarz-Sommer, Z.; Huijser, P.; Nacken, W.; Saedler, H.; Sommer, H. Genetic control of flower development by homeotic genes
in Antirrhinum majus. Science 1990, 250, 931–936. [CrossRef]

28. Pelucchi, N.; Fornara, F.; Favalli, C.; Masiero, S.; Lago, C.; Pè, E.M.; Colombo, L.; Kater, M.M. Comparative analysis of rice
MADS-box genes expressed during flower development. Sex. Plant Reprod. 2002, 15, 113–122. [CrossRef]

29. Becker, A.; Theißen, G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants.
Mol. Phylogenet. Evol. 2003, 29, 464–489. [CrossRef]

30. Wang, Q.; Sun, G.; Ren, X.; Du, B.; Cheng, Y.; Wang, Y.; Li, C.; Sun, D. Dissecting the genetic basis of grain size and weight in
barley (Hordeum vulgare L.) by QTL and comparative genetic analyses. Front. Plant Sci. 2019, 10, 469. [CrossRef]

31. Youssef, H.M.; Allam, M.; Boussora, F.; Himmelbach, A.; Milner, S.G.; Mascher, M.; Schnurbusch, T. Dissecting the genetic basis
of lateral and central spikelet development and grain traits in intermedium-spike barley (Hordeum vulgare convar. intermedium).
Plants 2020, 9, 1655. [CrossRef]

32. Schilling, S.; Kennedy, A.; Pan, S.; Jermiin, L.S.; Melzer, R. Genome-wide analysis of MIKC-type MADS-box genes in wheat:
Pervasive duplications, functional conservation and putative neofunctionalization. New Phytol. 2020, 225, 511–529. [CrossRef]
[PubMed]

33. Ciaffi, M.; Paolacci, A.R.; Tanzarella, O.A.; Porceddu, E. Molecular aspects of flower development in grasses. Sex. Plant Reprod.
2011, 24, 247–282. [CrossRef] [PubMed]

http://doi.org/10.1534/genetics.115.176628
http://doi.org/10.1007/s10722-017-0504-6
http://doi.org/10.1093/aob/mcm183
http://doi.org/10.1073/pnas.0608580104
http://doi.org/10.1007/BF01093476
http://doi.org/10.1038/ng.3717
http://doi.org/10.1038/s41467-017-00940-7
http://doi.org/10.1104/pp.17.00108
http://doi.org/10.1073/pnas.1221950110
http://doi.org/10.1038/ng.745
http://doi.org/10.1038/ng.3750
http://doi.org/10.1007/s00299-019-02430-0
http://doi.org/10.1111/j.1432-1033.1995.tb20430.x
http://doi.org/10.1016/S0169-5347(99)01816-9
http://doi.org/10.1038/35054172
http://doi.org/10.1100/tsw.2006.320
http://doi.org/10.1093/jxb/ery086
http://doi.org/10.1093/jxb/err272
http://doi.org/10.3389/fpls.2021.705286
http://doi.org/10.1016/j.molp.2015.03.009
http://doi.org/10.1104/pp.17.01149
http://doi.org/10.1126/science.250.4983.931
http://doi.org/10.1007/s00497-002-0151-7
http://doi.org/10.1016/S1055-7903(03)00207-0
http://doi.org/10.3389/fpls.2019.00469
http://doi.org/10.3390/plants9121655
http://doi.org/10.1111/nph.16122
http://www.ncbi.nlm.nih.gov/pubmed/31418861
http://doi.org/10.1007/s00497-011-0175-y
http://www.ncbi.nlm.nih.gov/pubmed/21877128


Plants 2021, 10, 2825 16 of 16

34. Bolot, S.; Abrouk, M.; Masood-Quraishi, U.; Stein, N.; Messing, J.; Feuillet, C.; Salse, J. The ‘inner circle’ of the cereal genomes.
Curr. Opin. Plant Biol. 2009, 12, 119–125. [CrossRef] [PubMed]

35. Mayer, K.F.X.; Martis, M.; Hedley, P.E.; Šimková, H.; Liu, H.; Morris, J.A.; Steuernagel, B.; Taudien, S.; Roessner, S.;
Gundlach, H.; et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 2011, 23, 1249–1263.
[CrossRef]

36. Wicker, T.; Mayer, K.F.X.; Gundlach, H.; Martis, M.; Steuernagel, B.; Scholz, U.; Šimková, H.; Kubaláková, M.; Choulet, F.;
Taudien, S.; et al. Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat,
barley, and their relatives. Plant Cell 2011, 23, 1706–1718. [CrossRef]

37. Kaufmann, K.; Melzer, R.; Theißen, G. MIKC-type MADS-domain proteins: Structural modularity, protein interactions and
network evolution in land plants. Gene 2005, 347, 183–198. [CrossRef]

38. Samach, A.; Onouchi, H.; Gold, S.E.; Ditta, G.S.; Schwarz-Sommer, Z.; Yanofsky, M.F.; Coupland, G. Distinct roles of constans
target genes in reproductive development of Arabidopsis. Science 2000, 288, 1613–1616. [CrossRef]

39. Papaefthimiou, D.; Kapazoglou, A.; Tsaftaris, A.S. Cloning and characterization of SOC1 homologs in barley (Hordeum vulgare)
and their expression during seed development and in response to vernalization. Physiol. Plant. 2012, 146, 71–85. [CrossRef]

40. Lee, H.; Suh, S.S.; Park, E.; Cho, E.; Ahn, J.H.; Kim, S.G.; Lee, J.S.; Kwon, Y.M.; Lee, I. The AGAMOUS-lIKE 20 MADS domain
protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 2000, 14, 2366–2376. [CrossRef]

41. Lee, S.; Kim, J.; Han, J.J.; Han, M.J.; An, G. Functional analyses of the flowering time gene OsMADS50, the putative Suppressor of
Overexpression of CO1/Agamous-Like 20 (SOC1/AGL20) ortholog in rice. Plant J. 2004, 38, 754–764. [CrossRef]

42. Lee, J.; Oh, M.; Park, H.; Lee, I. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J.
2008, 55, 832–843. [CrossRef]

43. Cseke, L.J.; Zheng, J.; Podila, G.K. Characterization of PTM5 in aspen trees: A MADS-box gene expressed during woody vascular
development. Gene 2003, 318, 55–67. [CrossRef]

44. Ferrario, S.; Busscher, J.; Franken, J.; Gerats, T.; Vandenbussche, M.; Angenent, G.C.; Immink, R.G.H. Ectopic expression
of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a
dominant-negative manner. Plant Cell 2004, 16, 1490–1505. [CrossRef]

45. Nakamura, T.; Song, I.J.; Fukuda, T.; Yokoyama, J.; Maki, M.; Ochiai, T.; Kameya, T.; Kanno, A. Characterization of TrcMADS1
gene of Trillium camtschatcense (Trilliaceae) reveals functional evolution of the SOC1/TM3-like gene family. J. Plant Res. 2005, 118,
229–234. [CrossRef]

46. Liu, C.; Zhou, J.; Bracha-Drori, K.; Yalovsky, S.; Ito, T.; Yu, H. Specification of Arabidopsis floral meristem identity by repression
of flowering time genes. Development 2007, 134, 1901–1910. [CrossRef]

47. Liu, C.; Xi, W.; Shen, L.; Tan, C.; Yu, H. Regulation of Floral Patterning by Flowering Time Genes. Dev. Cell 2009, 16, 711–722.
[CrossRef]

48. Melzer, S.; Lens, F.; Gennen, J.; Vanneste, S.; Rohde, A.; Beeckman, T. Flowering-time genes modulate meristem determinacy and
growth form in Arabidopsis thaliana. Nat. Genet. 2008, 40, 1489–1492. [CrossRef]

49. Castelán-Muñoz, N.; Herrera, J.; Cajero-Sánchez, W.; Arrizubieta, M.; Trejo, C.; García-Ponce, B.; Sánchez, M.; Álvarez-Buylla,
E.R.; Garay-Arroyo, A. MADS-Box Genes Are Key Components of Genetic Regulatory Networks Involved in Abiotic Stress and
Plastic Developmental Responses in Plants. Front. Plant Sci. 2019, 10, 853. [CrossRef]

50. Teo, Z.W.N.; Zhou, W.; Shen, L. Dissecting the Function of MADS-Box Transcription Factors in Orchid Reproductive Development.
Front. Plant Sci. 2019, 10, 1474. [CrossRef]

51. Lolas, I.B.; Himanen, K.; Grønlund, J.T.; Lynggaard, C.; Houben, A.; Melzer, M.; Lijsebettens, M.V.; Grasser, K.D. The transcript
elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2.
Plant J. 2010, 61, 686–697. [CrossRef]

52. Matyszczak, I.; Tominska, M.; Zakhrabekova, S.; Dockter, C.; Hansson, M. Analysis of early-flowering genes at barley chromosome
2H expands the repertoire of mutant alleles at the Mat-c locus. Plant Cell Rep. 2020, 39, 47–61. [CrossRef]

53. Mascher, M.; Richmond, T.A.; Gerhardt, D.J.; Himmelbach, A.; Clissold, L.; Sampath, D.; Ayling, S.; Steuernagel, B.; Pfeifer, M.;
D’Ascenzo, M.; et al. Barley whole exome capture: A tool for genomic research in the genus Hordeum and beyond. Plant J. 2013,
76, 494–505. [CrossRef]

54. Mascher, M.; Gundlach, H.; Himmelbach, A.; Beier, S.; Twardziok, S.O.; Wicker, T.; Radchuk, V.; Dockter, C.; Hedley, P.E.;
Russell, J.; et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 2017, 544, 427–433.
[CrossRef]

55. Anand, L.; Rodriguez Lopez, C.M. ChromoMap: An R package for Interactive Visualization and Annotation of Chromosomes.
bioRxiv 2019, 605600. [CrossRef]

56. Wright, E.S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016, 8, 352–359. [CrossRef]
57. Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T.T.Y. ggtree: An r package for visualization and annotation of phylogenetic trees

with their covariates and other associated data. Methods Ecol. Evol. 2017, 8, 28–36. [CrossRef]
58. SAS Institute Inc. The SAS System for Windows, Release 9.0; SAS Institute: Cary, NC, USA, 2002.
59. Padi, F.K. Genotype × environment interaction and yield stability in a cowpea-based cropping system. Euphytica 2007, 158, 11–25.

[CrossRef]

http://doi.org/10.1016/j.pbi.2008.10.011
http://www.ncbi.nlm.nih.gov/pubmed/19095493
http://doi.org/10.1105/tpc.110.082537
http://doi.org/10.1105/tpc.111.086629
http://doi.org/10.1016/j.gene.2004.12.014
http://doi.org/10.1126/science.288.5471.1613
http://doi.org/10.1111/j.1399-3054.2012.01610.x
http://doi.org/10.1101/gad.813600
http://doi.org/10.1111/j.1365-313X.2004.02082.x
http://doi.org/10.1111/j.1365-313X.2008.03552.x
http://doi.org/10.1016/S0378-1119(03)00765-0
http://doi.org/10.1105/tpc.019679
http://doi.org/10.1007/s10265-005-0215-5
http://doi.org/10.1242/dev.003103
http://doi.org/10.1016/j.devcel.2009.03.011
http://doi.org/10.1038/ng.253
http://doi.org/10.3389/fpls.2019.00853
http://doi.org/10.3389/fpls.2019.01474
http://doi.org/10.1111/j.1365-313X.2009.04096.x
http://doi.org/10.1007/s00299-019-02472-4
http://doi.org/10.1111/tpj.12294
http://doi.org/10.1038/nature22043
http://doi.org/10.1101/605600
http://doi.org/10.32614/RJ-2016-025
http://doi.org/10.1111/2041-210X.12628
http://doi.org/10.1007/s10681-007-9420-8

	Introduction 
	Results 
	Phenotypic Status and Scanning Electron Microscopy (SEM) of the Tested Barley Lines 
	HvMADS-box Genes Map 
	Phylogenetic Analysis of HvMADS-box Genes 
	In Silico Analysis of Barley HvMADS-box Genes Expression 
	MADS-box Genes Polymorphism and Lateral Spikelet Development 

	Discussion 
	Conclusions 
	Materials and Methods 
	Plant Materials 
	Growth Conditions and Spike Phenotyping 
	Scanning Electron Microscopy 
	Genomic DNA Isolation, Amplification and Sequencing 
	Sequence Analysis and Sequence Homology Searches 
	Phylogenetic Analysis 
	Expression Data Analysis 
	Statistical Analysis 

	References

