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Abstract
The insurance industry plays a critical role in managing risks and providing fi-
nancial security globally. However, the industry faces challenges, particularly with 
the increasing complexity of fraudulent activities. To address these challenges, this 
work seeks to construct suitable decision models by integrating methods such as 
feature discretization, feature selection, data resampling, and binary classification, 
in order to create a prediction system for identifying insurance fraud. The research 
investigates various scenarios, including different combinations of classifiers, fea-
ture selection methods, feature discretization techniques, and data resampling strat-
egies, and the performance of the predictive system is evaluated using established 
metrics. The experimental results revealed that integrating multiple methodologies 
during data preprocessing significantly enhances the performance of classification 
models. The model that utilizes the KBD + RFE + Over + RF scenario achieves the 
highest AUC and F1-score, indicating exceptional performance in detecting insur-
ance fraud. Our research demonstrates that the proposed models’ ability to predict 
insurance fraud has been significantly enhanced by utilizing resampling methods 
and highlights the importance of these techniques in improving the efficiency of 
the utilized integrated artificial intelligence techniques. In addition, the article con-
cludes that the insurance industry can greatly benefit from modern predictive meth-
ods to make sound decisions.
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1  Introduction 

The insurance industry is an essential element of the worldwide financial environ-
ment, serving as a crucial player in the management of risks and the provision of 
financial security. The insurance industry operates on the fundamental principle of 
mitigating the likelihood of financial loss or risk. The insurance sector is composed 
of several important players, including insurance firms, insureds, brokers, and regula-
tory authorities (Khalil et al., 2022a).

Insurance companies face significant challenges in a complex environment shaped 
by dynamic economic, technological, and regulatory factors. One of the most criti-
cal challenges is the rise in fraudulent activities, driven by advanced technology and 
global communication networks, leading to annual financial losses totaling billions 
of dollars worldwide (Akhtar et al., 2023). These fraudulent activities not only impact 
the profitability of insurance companies but also affect their pricing strategies and the 
overall socio-economic benefits they provide (Wang & Xu, 2018).

To address these challenges, insurance companies must implement strong mea-
sures for fraud detection and prevention, as insurance fraud represents a significant 
portion of their operational costs. In addition to fraud-related challenges, insurance 
firms also encounter operational difficulties due to the growing complexity of internal 
procedures and systems, which can hinder efficiency improvements and obstruct the 
integration of data analytics and artificial intelligence (AI) into risk evaluation and 
claims handling (Hassan & Abraham, 2013; Singh & Chivukula, 2020). Therefore, 
adopting a proactive and flexible approach is crucial for ensuring resilience, financial 
stability, and fostering innovation in the face of uncertainty and change (Khalil et 
al., 2024b). The Oxford English Dictionary (Pearsall, 1999) defines fraud as “the act 
of intentionally deceiving others to obtain financial or personal benefits,“. Policy-
holder fraud is one of the four distinct categories of insurance fraud which will be the 
focus of this article due to the limited available data on other types of fraud.

Data mining is extensively employed in the insurance industry for various reasons 
such as fraud detection, analysis of claims, processing of underwriting, assessment 
of risks, and sales prediction. since it is frequently utilized to extract and reveal con-
cealed insights from vast amounts of data (Turban, 2011). Data mining involves the 
discovery of statistically reliable, previously unknown, and actionable insights from 
data. The data must possess the qualities of accessibility, pertinence, sufficiency, and 
integrity. Utilizing integrated algorithms in claim analysis assists insurers in enhanc-
ing their comprehension of claims filing and identifying instances of fraud (Prasasti 
et al., 2020).

Ensemble learning approaches are widely recognized as a prominent field of 
research that is adaptable and applicable to a range of machine learning (ML) applica-
tions, such as classification, regression, and even unsupervised learning (Alsuwailem 
et al., 2023). Their remarkable performance stems from their capacity to boost model 
generalization, mitigate overfitting, and improve performance in situations where 
individual models may struggle. Ensemble learning approaches can greatly enhance 
predicted accuracy, but they also present difficulties in terms of computing complex-
ity and model interpretability (Khalil et al., 2022b; Piovezan et al., 2023). Ensemble 
learning is a fundamental technique that aims to improve the performance of ML 
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models. It provides a strong and adaptable method to solving complicated issues in 
various fields (Das et al., 2021).

Prediction systems, which are typically supported by different Data mining 
approaches such as resampling the data, feature discretization, and feature selection 
play a crucial role in identifying risks. By selecting a relevant subset of features, 
the computational cost is decreased, and the efficiency and comprehensibility of the 
model are greatly enhanced (Gupta et al., 2022). Additionally, the precision of predic-
tion algorithms can be influenced by dataset imbalance, which refers to an uneven 
distribution of positive and negative cases. In such cases, the overall performance of 
the models can be enhanced through data resampling (Baesens et al., 2021; Subudhi 
& Panigrahi, 2018). Reviewing the literature on insurance fraud reveals a dearth of 
research that constructs classification models by integrating the aforementioned data 
mining strategies with AI classifiers such as (Ensemble and Classic ML approaches) 
into a unified processing procedure to develop a classification model for insurance 
fraud.

This research aims to develop a resilient predictive system by creating diverse 
detection scenarios using a combination of approaches such as resampling the data, 
feature discretization, and feature selection, as well as different classifiers. The focus 
of this predictive system is the identification of insurance fraud, with validation 
conducted on a genuine dataset obtained from insurance companies. The research 
assesses predictive accuracy through the utilization of two distinct datasets: the insur-
ance fraud dataset and the insurance claims dataset. There is a significant gap in the 
insurance area that has not been filled by current research, according to a critical 
review of the literature.

Consequently, the principal contributions of this study are delineated as follows: 
First, this study presents primary advancements characterized by the introduction of 
distinct scenarios utilizing different Classifiers, specifically employing two different 
Methods for feature selection, feature discretization, and three diverse data resam-
pling strategies. The overarching objective is the development of a predictive sys-
tem characterized by precision and robustness in insurance fraud detection. Second, 
Investigated the impact of applying the discretization followed by feature selection 
on binary classification results. Third, Assessing the impact of resampling techniques 
on binary classification results. Fourth, the practical implementation of the proposed 
prediction systems on two disparate datasets to affirm their validity, with the pro-
vided code made openly accessible. Finally, a thorough evaluation and comparison 
of performance differences among various detection scenarios is carried out, using 
four well-recognized metrics: Accuracy, sensitivity (Recall), F1 score, precision, and 
AUC. Statistical analysis is used alongside these evaluation measures to determine 
the most favourable situation for the proposed datasets.

The remainder of this work is outlined as follows: A brief introduction to prior 
studies is given in Sect.  2. Section  3 provides a detailed account of the research 
methodology, including the research design, data collection methods, describing the 
specific techniques and approaches that are employed to detect insurance fraud in 
the study, and evaluation metrics. The findings are presented and analyzed in Sect. 4. 
Finally, we present the conclusion in Sect.5.
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2  Literature Review

Throughout time, insurance companies have found strong reasons to adopt a proac-
tive and flexible approach into their operations to achieve both their long and short-
term objectives and effectively navigate the complex challenges that face such risk 
prediction, fraud detection, claims analysis, and pricing strategies to maintain finan-
cial stability and succeed in an ever-changing environment (Barry & Charpentier, 
2020). Turban (2011) defines data mining as a method of extracting valuable insights 
from large databases by applying mathematical, statistical, artificial intelligence, and 
ML techniques.

Insurance fraud remains a pervasive challenge, costing the industry billions annu-
ally and necessitating robust regulatory frameworks, cross-market collaboration, and 
advanced analytical tools. Scholarly and industry research highlights the National 
Association of Insurance Commissioners (NAIC) as a pivotal body in standardizing 
anti-fraud measures through model laws, such as its Special Investigative Unit (SIU) 
Guidelines, which mandate insurer compliance and data-sharing protocols (NAIC, 
2022; Saylor, 2023). For instance, Hoyt et al. (2006) analyzed auto insurance fraud 
data, finding antifraud laws had mixed results. Mandatory SIUs and felony classifica-
tion reduced fraud, but mandatory reporting to law enforcement increased it, suggest-
ing inefficiency when replacing private efforts. The $85 billion/year fraud problem 
was also significantly influenced by market-specific factors beyond legislation. Find-
ings highlight the need for targeted anti-fraud measures.

Moreover, Saylor (2023) seminar paper examines opportunistic auto insurance 
fraud, emphasizing its prevalence, economic impact, and detection challenges. The 
study highlights that opportunistic fraud accounts for a significant portion of insur-
ance fraud but is often overlooked in favor of high-profile “hard” fraud cases. Using 
Neutralization Theory, Saylor analyzes how perpetrators justify fraud (e.g., deny-
ing responsibility or victimhood) and proposes deterrence strategies, including pub-
lic awareness campaigns, enhanced claims-handling procedures, and inter-agency 
cooperation. Key recommendations focus on activating internal ethical controls and 
improving industry tools like ISO databases. (Aivaz et al., 2024) analyze economic 
fraud research trends through bibliometrics, identifying the U.S. and China as top 
contributors. Key findings highlight growing focus on digital detection tools (AI, 
blockchain) and socioeconomic impacts. The study reveals increasing publications 
but declining citation impact, suggesting need for more impactful research.

Insurance companies and data mining researchers encounter various obstacles in 
insurance’s data including issues of data availability, data quality, and missing val-
ues. In addition, they also struggle with imbalanced datasets, and the interpretabil-
ity of model choices (Cappiello, 2020). Consequently, numerous research have been 
conducted in the field of insurance utilizing diverse methodologies. For instance, 
Bhowmik (2011) presents a strategy for detecting fraud in auto insurance utilizing 
algorithms based on decision trees (DT) and naïve Bayesian classification and uses 
procedures such as Rule-Based Classification, decision tree visualization, and Bayes-
ian naïve visualization to analyse predictions. The results show how well these meth-
ods work in identifying car insurance fraud. Dhieb et al. (2019, 2020) utilized ML 
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techniques to autonomously detect and categorize motor insurance fraudulent claims 
and also include alert mechanisms for identifying suspicious claims.

Further, Kowshalya and Nandhini (2018) used data mining techniques to predict 
insurance premiums and fraudulent claims, reducing time spent on claims analysis. 
They generated a synthetic dataset based on automobile insurance fraud research to 
develop classification algorithms for detecting false claims. Itri et al. (2019) devel-
oped a novel method to improve the accuracy of fraud prediction by testing (10) ML 
algorithms to determine which were most effective and reliable. Using automobile 
insurance claims data, the study revealed that Random Forest outperformed all other 
algorithms in predicting fraud. Subudhi and Panigrahi (2020) introduced a GA-based 
Fuzzy C-Means (FCM) clustering with supervised classifiers to detect fraud in auto 
insurance claims, proving its efficiency on real data. Nordin et al. (2024) compared 
traditional and ML models for predicting automobile insurance fraud, finding that 
the tree-augmented naïve Bayes (TAN) model outperformed others in accuracy and 
sensitivity. The study emphasizes the effectiveness of ML in detecting fraud and rec-
ommends improving data preparation and model settings for better results.

On the other side, researchers work to improve fraud prediction in different fields 
by addressing data quality issues like imbalanced data and missing values, as well 
as optimizing machine learning model parameters for better performance. Various 
methodologies have been suggested and utilized in the literature to address imbal-
anced and missing values classification challenges when it comes to acquiring high-
quality data for insurance fraud detection modelling. For instance, Sundarkumar et 
al. (2015) employed the Random under-sampler resampling approach together with 
Probabilistic Neural Network (PNN), DT, SVM, Logistic Regression (LR), and Group 
approach of Data Handling (GMDH) models. The study’s findings demonstrated that 
the DT model had the highest efficacy in fraud detection. In a similar manner Has-
san and Abraham (2016b) employed a Random under-sampler in conjunction with 
DT, NN, and SVM models. Their findings indicated that the DT model exhibited the 
highest performance. Wang and Chen (2020) presents a three-way ensemble method 
for addressing missing data by grouping objects without missing values and filling 
gaps with average attributes from each group. Though experiments from the UCI ML 
repository demonstrate its effectiveness, the approach lacks a comprehensive strategy 
for managing missing values.

Hanafy and Ming (2021) studied nine SMOTE family methods to address imbal-
anced data in predicting insurance premium defaults. They evaluated these techniques 
using 13 machine learning classifiers, and the results showed a notable improvement 
in classifier performance with the application of SMOTE techniques. Jovanovic et 
al. (2022) improve credit card fraud detection with ML and the group search fire-
fly algorithm. A real-world, unbalanced dataset of European credit card transactions 
is used to tune SVMs with extreme gradient boosting. The study found that tuned 
models outperform other leading approaches in accuracy, recall, precision, and area 
under the curve after synthetic minority over-sampling expanded the dataset. Tayebi 
and Kafhali (2024) optimize hyperparameters in ML models for credit card fraud 
detection using metaheuristic algorithms such genetic algorithms, particle swarm 
optimization, and artificial bee colonies. These methods improve detection accuracy, 
recall, and computing economy over grid search, especially for imbalanced datasets. 
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Future research involves using deep learning models and advanced data balancing 
approaches to boost fraud detection accuracy.

Based on a comprehensive analysis of available research, this research aims to 
fill a gap in existing literature by doing a thorough analysis a unified framework for 
processing datasets and developing a classification model for detecting insurance 
fraud. Given this study gap, it’s unclear if integrating recommended methodologies 
and techniques during dataset processing could improve classification models. The 
research also prioritizes positive outcomes and develops methods to explain specific 
predictions to improve model interpretability.

3  Proposed Computational Methodology

In this section, we present the proposed computational methodology for building a 
robust detecting system for insurance fraud. Our approach aims to present differ-
ent systems for detecting fraud by integrating different AI classifiers with data min-
ing techniques such as feature discretization, Feature selection, and resampling for 
addressing challenges such as Feature importance, and imbalance data. By outlining 
the specific steps and techniques to be employed, we aim to achieve robust and repro-
ducible results that contribute to the advancement of insurance field.

The proposed methodology is structured to ensure systematic and efficient han-
dling of the computational tasks involved. We begin with preprocessing stages, such 
as data collection or preprocessing. Subsequently, we detail feature discretization, 
SelectKbest (Kbset) and Recursive feature elimination (RFE) techniques for feature 
selection, three diverse data resampling strategies, and different Classifiers. Then, we 
evaluate the performance of proposed systems by using four well-recognized evalu-
ation metrics, namely, Accuracy, sensitivity (Recall), F1 score, precision, and AUC. 
Each of these phases is deemed essential to the overall effectiveness of the proposed 
systems.

Furthermore, we emphasize the adaptability of our methodology, which allows 
for scalability and applicability to a range of datasets or scenarios within the scope 
of insurance field. This flexibility enables us to effectively address variations in data 
characteristics and research requirements, thereby enhancing the generalizability 
of our findings. A visual representation of the procedures involved in the system is 
depicted in Fig. 1, which serves as a framework for the detection of insurance fraud 
within the context of this study.

3.1  Data Collection

In this analysis, two different datasets are used to assess the accuracy of proposed sys-
tems. The datasets for this study were obtained from Kaggle.com. The target variable 
in the datasets is different. In the first dataset1, we implement the proposed system 
to detect the insurance fraud for Automobile insurance sector, so the target feature is 

1  ​h​t​t​p​s​:​​/​/​w​w​w​​.​k​a​g​g​l​​e​.​c​o​​m​/​c​o​d​​e​/​j​w​i​​l​d​a​3​/​c​​l​a​s​s​​i​f​y​i​n​​g​-​f​r​a​​u​d​-​b​y​-​​d​e​c​i​​s​i​o​n​-​t​r​e​e​s.
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“fraud report” column. In the second dataset2, we implement the proposed system for 
claim analysis for Automobile insurance sector, so the target feature is “claim flag” 
column which Indicates whether a claim was filed or not. Figure 2 shows the target 
variable in both datasets is categorical. Hence, classification systems are used to do 
the analyses. Figure 3 shows the distribution of the target variables in datasets. In 
fraud dataset, the ratio between the non-fraud and fraud claims is 94–6%. In the claim 

2  ​h​t​t​p​s​:​​/​/​w​w​w​​.​k​a​g​g​l​​e​.​c​o​​m​/​d​a​t​​a​s​e​t​s​​/​x​i​a​o​m​​e​n​g​s​​u​n​/​c​a​​r​-​i​n​s​​u​r​a​n​c​e​​-​c​l​a​​i​m​-​d​a​t​a​/​d​a​t​a.

Fig. 2  Category of the target feature in the dataset

 

Fig. 1  The block diagram of the proposed system
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dataset, the ratio between the non-filled and filled claims is 73.3–26.7%. This refers 
to the datasets suffering from imbalanced data problems.

The dataset on fraudulent car insurance claims has 15,419 instances, with 923 
cases classified as fraudulent, showing a notable class imbalance in the data dis-
tribution. Each claim in this dataset is defined by 32 distinct attributes, as listed in 
Table  1. The insurance claims dataset contains 10,302 car insurance claims, with 
2,746 classed as claim filled, highlighting a significant class imbalance. Each claim 
in this dataset is characterized by 26 unique attributes, as outlined in Table 2.

The two datasets used in this study differ notably in size, label distribution, and the 
extent of missing data. The first dataset, which focuses on fraudulent claims in the 
automobile insurance sector is larger with 15,419 entries and exhibits a high imbal-
ance where only 6% of claims are labeled as fraudulent, leaving 94% non-fraudulent. 
In contrast, the second dataset which analyzes whether a claim was filed contains 
10,302 entries and a less severe imbalance with 26.7% of claims marked as filed and 
73.3% non-filed. In addition, missing data varies significantly between the two data-
sets. In the first dataset, the highest percentage of missing values in a single feature 
reaches 45.7% (Number of Supplements) with a minimum of 0.35% (Days Policy 
Accident). Conversely, the second dataset has a lower range of missing data with a 
maximum of 6.45% in the Occupation feature and a minimum of 0.07% in the Age 
feature. These differences highlight the need for tailored data handling approaches 
to address the unique class distribution and data completeness issues in each dataset.

3.2  Data Preprocessing

One of the most important steps in the application of classification approaches is data 
preprocessing, which is also illustrated in the initial phase of Fig. 1. Data must be 
processed before any future operations because the data may include multiple errors. 
Thus, this phase involves essential data processing tasks, such as imputing missing 
values, scoring data, encoding features, discretization data, and dividing the data into 
training and testing datasets.

Fig. 3  The distribution of the binary target variable
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3.2.1  Data Cleaning and Encoding

To improve the efficiency and quality of datasets, data cleaning is used to find and 
fix errors, corruption, and missing information. This makes analysis and Classifi-
cation models more effective (Cerda & Varoquaux, 2022; Li et al., 2021). Firstly, 
features with missing values are either completely removed or their missing values 
are altered, depending on the data set. In our study, we removed two features (X21, 
X27) from the first dataset because they have a high percentage of missing values as 
shown in Table 3. For the remaining features across the two datasets, to fill in missing 
values in binary and category variables, the mode of the column values is utilized. In 
contrast, the mean of the column values is used to fill in missing values in all continu-
ous variables.

For the target variable, to find Features with high multicollinearity in the data with 
it the correlation matrix and Variance Inflation Factor (VIF) analysis were examined. 

No. Features
X1 Unique identifier for each insured (not use)
X2 The month which the accident occurred
X3 The week in the month the accident occurred
X4 The days of the week the accident occurred on
X5 The vehicle manufacturer brand
X6 The area of the accident occurred
X7 The day of the week the claim was filled
X8 The month of the year the claim was filled
X9 The week of the month the claim was filled
X10 The insured’s gender
X11 The insured’s marital status
X12 The age of the insured
X13 The person responsible for the accident
X14 Type of vehicle insurance policy
X15 The categorization of the vehicle
X16 The price category for vehicles
X17 The deductible amount of the insured.
X18 The driver rating
X19 The days between policy purchase and accident
X20 The days between policy purchase and claim filed
X21 The previous number of claims filed by policy holder
X22 The age of vehicles at time of the accident
X23 The intervals of insured age
X24 If there is a police report or not
X25 If there is a witness or not
X26 The agent who is handling the claim
X27 The number of supplements
X28 If the address of insured change or not
X29 The number of vehicles involved in the accident
X30 The year of accident occurred
X31 The type of insurance coverage
X32 Fraud class (The target feature)

Table 1  The fraud dataset 
description
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Dataset Feature name Feature 
number

Dataset 
size

Num-
ber of 
missing 
values

%

Dataset
(1)

Days Policy 
Accident

X19 15,419 55 0.35%

Age X12 316 2.06%
Past Number of 
Claims

X21 4351 28.2%

Number of 
Supplements

X27 7046 45.7%

Dataset
(2)

Age X3 10,302 7 0.07%

Years of Job X7 548 5.32%
Home Value X11 575 5.58%
Income X12 570 5.53%
Car Age X24 639 6.20%
Occupation X6 665 6.45%

Table 3  The missing values in 
the datasets
 

No. Features
X1 Unique identifier for each customer (not use)
X2 The date of birth of the insured (not use)
X3 The age of the insured
X4 The insured’s gender
X5 The insured’s education level.
X6 The insured’s work.
X7 The employment years of the insured
X8 The daily travel time to work.
X9 The insured’s marital status
X10 The insured’s single parent status (Y/N)
X11 The home value of the insured
X12 The income of the insured
X13 Number of insured’s kids
X14 The car usage purpose
X15 The value of the insured’s car
X16 The time in force (Years).
X17 The vehicle manufacturer brand
X18 If the customer has a red car or not
X19 The total amount of previous claims
X20 The number of claims report during past 5 years
X21 If the insured’s driver license was revoked or not
X22 The number of motor vehicle record points
X23 The Possible future claims
X24 The car age
X25 The urbanicity type
X26 The claim filled (The target variable)

Table 2  The claims dataset 
description
 

1 3



Enhancing Insurance Fraud Detection Accuracy with Integrated…

This strategy reduced multicollinearity. In dataset (2), X23 feature was excluded 
due to its significant correlation with the target variable. However, this strategy was 
important to improve the model’s predictive accuracy and guarantee that the remain-
ing variables provided clear and interpretable insights into their relationship with 
target variable.

Data encoding is an important part of preprocessing, which is taking raw data 
and transforming it into a numerical representation that can be used by algorithms, 
and statistics models. As an example, we converted category feature to a numerical 
format, such as assigning the insured’s gender to the integers “1” for “male” and “0” 
for “female”.

3.2.2  Discretization Method

Discretization algorithms are fundamental to data preprocessing in machine learning, 
data mining, and statistical analysis. Converting continuous variables to discrete ones 
simplifies analysis and algorithm application. Several reasons necessitate discretiza-
tion. First, discrete inputs are needed for many machine learning methods, therefore 
continuous data must be transformed. By grouping comparable values, discretization 
simplifies interpretation. Different discretization methods for continuous variables 
have pros and cons. Unsupervised and supervised methods are used. Unsupervised 
approaches like equal width and frequency binning separate data by distribution. 
However, supervised approaches like decision tree-based discretization and entropy-
based binning use class labels or target variables to guide discretization.

In this study, we employed KBinsDiscretizer (KBD) method. KBD method uses 
binning techniques to convert continuous variables into discrete bins, enabling the use 
of continuous data in models that need categorical inputs. This method can improve 
clarity, decrease computational intricacy, and potentially enhance the efficiency of 
machine learning algorithms, especially those influenced by the characteristics of the 
input data.

3.3  Feature selection techniques

Feature selection (FS), also known as attribute selection or variable subset selection, 
is a widely used technique for reducing the dimensionality of feature space while 
maintaining the performance of a given methodology. Feature selection presents a 
complex challenge due to the need for complementary features to address interac-
tions and redundancies. The objective of FS is to identify and eliminate irrelevant 
or redundant features that do not contribute significantly to the learning process. 
The primary goal of FS is to improve learning performance by enhancing the accu-
racy and comprehensibility of the methodology being used (A. Singh & Jain, 2019). 
Therefore, A more efficient global search technique is necessary to tackle feature 
selection effectively. In this study, we employed two different techniques for Feature 
Selection.
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3.3.1  Select K Best

SelectKBest with ANOVA F-value is a univariate selection method. In this method, 
features are ranked to eliminate irrelevant ones in this method. The ranking is deter-
mined by statistical scores calculated from the association between features and the 
target variable (Visalakshi & Radha, 2014). It selects the K best features by comput-
ing the ANOVA F-value between each feature and the target variable. Features with 
higher F-values are considered more relevant to the target variable. This method is 
particularly useful when dealing with many features and is computationally efficient. 
However, it does not consider interactions between features, and the choice of K 
needs to be carefully determined to balance model performance and dimensionality 
reduction. K is the number of top features to be used for feature selection (Srivatsan 
& Santhanam, 2021).

3.3.2  Recursive Feature Elimination (RFE) with Random Forest Classifier

Recursive Feature Elimination (RFE) is a method of selecting features that involves 
iteratively removing features from the dataset while repeatedly fitting the model. RFE 
is utilized with a Random Forest Classifier as the estimator in this scenario. The tech-
nique initially trains the model using all features and then assesses the significance of 
each feature (Lakshmanarao et al., 2022; Visalakshi & Radha, 2014). The algorithm 
eliminates the least significant feature and iterates this procedure until the desired 
number of features is achieved. Utilizing Random Forest Classifier with Recursive 
Feature Elimination (RFE) is efficient for pinpointing the most significant features 
through the importance scores generated by the random forest model. The classifier 
used can influence the selected features, and the quantity of features to choose must 
be carefully adjusted to enhance model performance (Visalakshi & Radha, 2014).

3.4  Resampling Methods

The problem of imbalanced data is pervasive in many datasets, leading to biased clas-
sifier models that cannot make accurate predictions for minority classes (Kotsiantis 
et al., 2006). Consequently, addressing the issue of imbalanced data is imperative. 
Various methods have been developed to resolve this issue, with one of the most suc-
cessful approaches involving the use of sampling-based techniques, such as random 
oversampling and random undersampling (Basit et al., 2022; Zhang et al., 2024). 
Table 4 displays the fundamental properties of each resampling approach.

3.5  Classifier models

In the proposed work, we employed different classical ML and ensemble learning 
classifier models, namely, Decision Tree (DT), Random Forest (RF), AdaBoost, Gra-
dient Boosting (GB), and Bagging, Boosting. Recognizing that the performance of 
any ML model is contingent upon the specific values assigned to its parameters.
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3.5.1  Decision Tree (DT)

DT is a flexible and interpretable classification technique that recursively divides data 
by selecting the feature that best separates it into homogeneous subsets, maximiz-
ing class label purity until a stopping criterion is reached, that forming a model for 
new predictions (Bansal et al., 2022). Its strength lies in its ability to capture com-

Method Description Advantage Disadvantage
Random 
Overs-
ampling 
(Xiaolong 
et al., 
2019)

Random oversam-
pling increases the 
weight of the minor-
ity class. Bootstrap-
ping creates artificial 
instances based 
on the conditional 
density estimations 
of the two groups. 
Creating duplicates 
of samples increases 
the size of the 
dataset. This method 
maintains the variety 
of samples for both 
categorical and 
continuous data.

• Helps to 
balance 
imbalanced 
classes 
effectively.
• Does not 
introduce 
new samples, 
preserv-
ing sample 
variability.

• May result 
in overfitting 
by duplicat-
ing current 
samples.
• Raises 
computational 
burden by 
expanding the 
dataset.

SMOTE 
(Amirrud-
din et al., 
2022)

SMOTE gener-
ates new minor-
ity samples by 
synthesizing data 
from two minority 
samples and their K 
nearest neighbours. 
It creates addi-
tional instances of 
the minority class 
by using existing 
instances and their 
closest neighbours to 
increase the sample 
size. New instances 
do not duplicate 
minority samples.

• Enhances 
minority class 
representa-
tion without 
duplicat-
ing current 
samples.
• Utilizes 
attributes 
of current 
examples 
and their 
neighbour-
ing examples 
to gener-
ate novel 
examples.

• May intro-
duce synthetic 
samples that 
do not ac-
curately rep-
resent the true 
distribution of 
the minority 
class.
• Requires 
careful tuning 
of param-
eters, such as 
the number 
of nearest 
neighbours 
(K), which can 
impact results.

Random
undersam-
pling  
( Liu et al., 
2020 )

Random undersam-
pling aims to balance 
imbalanced data by 
randomly removing 
examples from the 
majority class in the 
training dataset. It 
reduces the dataset 
size by discarding 
examples from the 
majority class.

• Simple and 
straight-
forward 
method to 
address class 
imbalance.
• Reduces 
computation-
al overhead 
by decreasing 
dataset size.

• Discarding 
important 
information 
from the ma-
jority class can 
reduce predic-
tive power.
• Removing 
too many 
samples can 
worsen class 
imbalance.

Table 4  Resampling method 
descriptive
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plex, non-linear relationships and handle various data types that make it useful across 
many analytical scenarios. However, decision trees are prone to overfitting, as they 
can memorize training data, which leads to poor generalization of new data without 
regularization. They are also sensitive to slight changes in the training set, which can 
affect their predictions, so careful parameter tuning, and ensemble approaches are 
essential for optimal performance (Bansal et al., 2022).

3.5.2  Random Forest (RF)

RF is an ensemble learning technique that trains multiple decision trees and combines 
their predictions to improve accuracy and generalization in machine learning tasks. 
For regression tasks, it takes the average prediction of the individual trees, while for 
classification tasks, it uses the mode of class predictions (Roy & George, 2017). RF is 
highly accurate and robust, often avoiding overfitting and performing well even with 
missing data, which makes it reliable across a range of applications. However, RF 
requires considerable processing power for large datasets and lacks the interpretabil-
ity of single decision trees, though its high performance across diverse tasks makes it 
a valuable tool in machine learning (Roy & George, 2017).

3.5.3  Adaptive Boosting (AdaBoost)

AdaBoost builds a strong classifier by combining multiple weak learners and adjust-
ing weights on misclassified instances in each iteration, which focusing more on 
difficult cases and allowing later learners to correct previous errors resulting in an 
accurate model (Hassan & Abraham, 2016a). AdaBoost’s strength lies in its abil-
ity to improve upon weak learners by integrating base classifiers, making it flexible 
and adaptable across various data types and problem domains. However, AdaBoost’s 
performance can suffer with noisy data, as it may overfit if the base classifiers are 
overly complex or unstable which can impact its generalization. Thus, its effective-
ness depends on data quality and the simplicity of the classifiers used (Ben Jabeur et 
al., 2023).

3.5.4  Gradient Boosting (GB)

GB is an ensemble learning technique that builds a powerful predictive model by 
sequentially adding weak learners, and usually decision trees build to reduce errors 
from previous models. This process optimizes a loss function through gradient 
descent and creating a highly accurate model (Dhieb et al., 2019). GB models are 
known for their strong performance, robustness to outliers, and ability to handle both 
numerical and categorical data, which make them highly versatile across various 
classification and regression tasks. However, despite these strengths, GB can overfit 
particularly if regularization is inadequate or the learning rate is too high, and its 
iterative, and complex model-building process can be computationally intensive on 
large datasets (Liu et al., 2019).
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3.5.5  Bagging

Bagging is an ensemble learning method that improves model performance by reduc-
ing variance through training multiple models independently on random subsets of 
the training data. By capturing data variability across models and combining their 
predictions through averaging (for regression) or voting (for classification), Bagging 
enhances both accuracy and generalization and effectively minimizing overfitting 
and increasing model stability (Park & Kwon, 2024). Its strengths lie in its ability to 
leverage diverse model predictions, which making it especially useful for complex 
models and large datasets by optimizing performance and scalability. However, Bag-
ging may not improve results for stable models with low variance and could introduce 
bias if the base models or the dataset itself is biased. Thus, assessing model stability 
and dataset characteristics is essential to achieve optimal results with Bagging.

3.6  Classification accuracy evaluation metrics

A key component of finding and comparing the best model is evaluation metrics, 
which assess the efficiency of classifiers. A popular indicator that shows the per-
centage of correct predictions is accuracy. A greater accuracy value shows that the 
classifier is performing better overall. While accuracy is important, it might not be 
enough to solve classification difficulties, particularly when working with data that 
is imbalanced (Hossin & Sulaiman, 2015; Khalil et al., 2024a). In response to this 
challenge, Various classification evaluation criteria are used to assess the classifier’s 
performance.

	
Accuarcy (AC) = TP + TN

TP + FP + TN + FN
,� (1)

	
Recall (RC) = TP

TP + FN
,� (2)

	
Precision (PR) = TP

TP + FP
,� (3)

	
F1 − Score F = 2 × TP

2 × TP + FP + FN
,� (4)

where TP represents true positives, TN indicates true negatives, FP is the false posi-
tives, and FN is the false negatives.

4  Predictive Analysis and Model Interpretability

In this section, we present the experiments, and results conducted to address the 
research questions outlined in the preceding sections which if integrating recom-
mended methodologies and techniques during dataset processing could improve clas-
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sification models. Our study aims to build a robust classification model to detect 
insurance fraud. To achieve this goal, we designed and implemented a series of exper-
iments by creating diverse detection scenarios using a combination of approaches 
such as feature discretization, feature selection and resampling the data, as well as 
different classifiers.

4.1  Experimental Setup

Experiments were run on a machine with a 2.60 GHz Intel(R) Core (TM) i7- 12,700 F 
CPU and 32 GB RAM. We use 64-bit Windows 11. Python is used to implement the 
Framework. The Pandas data frame loads the dataset. The Scikit Learn (Pedregosa 
et al., 2011) library implements ML and ensemble models. To ensure reproducibil-
ity of experimental models, parameter configurations, and reported results, we made 
the proposed work’s source code, visualizations, and data openly available on the 
author’s GitHub website3.

4.2  Experimental Design

In our study, we aim to explore how combining various technologies in a unified 
framework might improve the building of predictive models, leading to the devel-
opment of a reliable system for detecting insurance fraud accurately. We want to 
determine the effectiveness of this integrated strategy in enhancing prediction models 
and enhancing the accuracy and dependability of fraud detection mechanisms in the 
insurance sector through thorough study and experimentation.

Thus, our study comprised six experiments and each of the experiments employed 
specific combinations of approaches with different scenarios as shown in Fig. 4. We 

3 ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​A​​h​m​e​d​K​​h​a​l​i​l​​​9​1​/​c​l​​a​s​s​i​​f​i​c​a​t​i​​o​n​-​m​o​​d​e​l​.​g​i​t.

Fig. 4  The experimental design for the study
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analyzed various conditions within each experiment to understand their individual 
effects. The foundation of the six experiments can be summarized as follows:

(a)	 In the first experiment, the data is used directly without processing discretization, 
feature selection or imbalance issues to fed directly into classification models, 
and then the performance of the models is evaluated using metrics like accu-
racy, F1-score, and AUC-ROC. This baseline evaluation serves as a reference 
point to compare the impact of various preprocessing techniques in subsequent 
experiments.

(b)	 The second experiment examines the effect of applying KBD discretization 
method on continuous features in the dataset, and then the modified data fed 
directly into classification models, and then the performance of the models is 
evaluated to determine how the discretization impacts model learning especially 
in handling continuous data more effectively compared to the baseline.

(c)	 The third experiment explores the use of feature selection (Kbest and RFE) tech-
niques to reduce the feature space and potentially improve model performance. 
After applying the feature selection, the data is fed directly into classification 
models, and then the models’ performance is evaluated using standard metrics 
to understand whether focusing on relevant features can enhance accuracy and 
reduce overfitting.

(d)	 The fourth experiment assesses the combined effect of KBD discretization fol-
lowed by feature selection using KBest and RFE on classification performance. 
The data after applying the discretization and feature selection is fed directly into 
classification models, and then the performance of the models is evaluated. This 
experiment investigates the potential synergy between discretization and feature 
selection in enhancing predictive accuracy and model robustness

(e)	 In the fifth experiment, the impact of resampling (Under, Over, and SMOTE) 
techniques is analyzed to handle class imbalance in the dataset. Each resam-
pling method is applied separately to balance the training set, and the models 
are trained using the resampled data and then the performance of the models is 
evaluated with a focus on identifying which resampling method best improves 
results in cases of class imbalance.

(f)	 The final experiment involves a comprehensive preprocessing approach that 
applies KBD discretization, followed by feature selection, and resampling 
(under-sampling, over-sampling, and SMOTE) to address class imbalance. The 
processed data is then used to train classification models, and their performance 
is evaluated with metrics. This experiment aims to demonstrate the cumulative 
benefits of integrating multiple preprocessing techniques and their overall impact 
on classification performance.

4.3  Experimental Results and Discussion

In this section, we provide a comprehensive examination of experimental results 
which emphasizes the critical impact of various data preprocessing techniques on 
classifier performance. The experiments followed a systematic approach, beginning 
with dataset preprocessing, splitting it into training and testing sets in an 80 − 20 ratio, 
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and then testing classifiers across different preprocessing scenarios. Performance 
metrics including accuracy, F1 score, recall, precision, and AUC, were recorded and 
are detailed in Table  5. Notably, for imbalanced datasets, the AUC and F1 score 
were prioritized over accuracy, as these metrics better address class distribution, and 
reduce bias when one class is overrepresented.

Experiment 1  In the baseline scenario without data transformations, each classifier 
was tested for raw predictive capacity. Results showed that the Decision Tree (DT) 
classifier excelled with an AUC of 68.15%, followed by the RF model with AUC 
score 52.14% in the first dataset, while Gradient Boosting (GB) performed better in 
the second dataset, achieving an AUC of 68.08%. These scores reflect each model’s 
basic efficacy without enhancements from data transformation.

Experiment 2  The study next investigated the effects of data discretization on classi-
fication performance by applying the KBD technique. The combination of KBD + DT 
demonstrated notable improvement on the first dataset with an AUC of 69.89%, 
while KBD + GB led on the second dataset with an AUC of 68.43%. This increase in 
AUC indicates that data discretization can sharpen the classifier’s ability to handle 
class distinctions.

Experiment 3  To assess the impact of feature selection, we applied two methods, 
KBest and RFE. This experiment evaluated the classifiers with reduced feature sets 
into two scenarios. In the first dataset, the combination KBest + DT attained the high-
est AUC of 75.35%, surpassing the baseline, while KBest + GB performed best on the 
second dataset with an AUC of 67.57%. These results highlight that targeted feature 
selection can improve classification accuracy by reducing noise and focusing on the 
most informative attributes.

Experiment 4  This experiment integrated both discretization and feature selection, 
showing enhanced results across both datasets. Specifically, the (KBD + KBest + DT) 
combination achieved the highest AUC of 77.34% in the first dataset, while 
(KBD + KBest + GB) scored 67.89% in the second dataset. These findings suggest 
that the combination of discretization and feature selection strengthens the model by 
simultaneously reducing dimensionality and emphasizing essential features.

Experiment 5  We examined the effects of three resampling techniques (Undersam-
pling, Oversampling, and SMOTE) on classifier performance in this experiment 
with three scenarios, which aimed to address class imbalance. The results show the 
(Oversampler + RF) combination demonstrated the highest performance among clas-
sifiers with AUC of 95.5% in the first dataset and 88.17% in the second dataset. These 
outcomes confirm that resampling methods, especially Oversampling, can dramati-
cally improve model performance by balancing class distribution and enabling the 
model to learn from minority classes more effectively.

Experiment 6  This final experiment assessed the combined influence of discreti-
zation, feature selection, and resampling on classifier efficacy. Six scenarios were 
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tested, revealing that (KBD + RFE + Over + RF) combination achieved the highest 
AUC scores of 99.26% on the first dataset and 89.29% on the second. This result 
marks a substantial improvement over other scenarios suggesting that integrating 
all three preprocessing techniques is a powerful strategy for maximizing classifier 
accuracy and reliability in distinguishing between classes.

To provide a clear and concise overview, Tables 6 and 7 summarize this compari-
son, focusing on AUC score and F1 score as the primary metrics for selecting the 
top-performing scenario in each experiment. This metric quantifies the model’s abil-
ity to differentiate between classes, enabling efficient identification of the models 
that demonstrate superior discriminatory power within the specific context of each 
experiment. Figures 5 and 6 show the ROC plot for the best scenario within each 
experiment in both datasets, as follows: (A) Experiment 1, (B) Experiment 2, (C) 
Experiment 3, (D) Experiment 4, (E) Experiment 5, (F) Experiment 6.

The results show how each preprocessing step affects the model’s ability to clas-
sify data effectively, with specific techniques leading to significant improvements in 
performance metrics for both datasets. Resampling techniques, particularly Overs-
ampling and SMOTE tend to show a notable increase in model performance and 
highlight their effectiveness in addressing class imbalance issues.

The detailed analysis of Table 5 reveals those specific combinations of prepro-
cessing techniques consistently improved model accuracy across experiments. For 
instance, decision trees showed optimal performance when paired with KBD dis-
cretization, RFE feature selection, and SMOTE resampling, a synergy that provided 
superior accuracy and generalization.

The pattern holds across models. For Random Forest, combining KBD discretiza-
tion, RFE feature selection, and Oversampling consistently yielded the highest scores 
across datasets, affirming that these preprocessing strategies enhance performance, 
particularly for tree-based models. For ensemble methods like AdaBoost and Gradi-
ent Boosting, the best results were also obtained by pairing KBD discretization, RFE 
or KBest feature selection, and SMOTE resampling, suggesting that these techniques 
offer considerable benefits for ensemble models in maintaining accuracy and pre-
venting overfitting. Similarly, the Bagging classifier performed best with KBD dis-
cretization, RFE feature selection, and Oversampling, showing a preference for this 
resampling technique over SMOTE in managing class imbalance effectively.

4.4  Statistical test analysis

Different scenarios arise from various resampling and feature selection procedures, 
and these variations directly influence the performance of classifiers. Identifying the 
best strategy becomes challenging when different datasets possess unique charac-
teristics, and varying data preprocessing options can impact classifier accuracy and 
robustness. Due to this complexity, determining the optimal combination of methods 
for evaluating and comparing classifiers across different data preprocessing situations 
necessitates a systematic approach.

Statistical significance tests including the ANOVA, and the Friedman test are help-
ful for comparing performance outcomes objectively and carefully evaluating these 
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differences. As indicated in Table 8, we used both tests to look at how well classi-
fiers did when given different combinations of resampling and feature selection. We 
were especially interested in the AUC values for each approach within each dataset. 
We were able to reject the null hypothesis because the p-value was less than the 
0.05 threshold, which indicates that there are statistically significant differences. The 
results confirm the alternative hypothesis, which states that different scenarios within 
each dataset perform significantly differently. Insights like these are crucial for guid-

Fig. 5  The ROC plots for all the best scenarios in Dataset (1)

 

Experiment The best scenario Evaluation Metrics
AUC F1 score

Experiment (1) GB 0.6808 0.5369
Experiment (2) KBD + GB 0.6843 0.5435
Experiment (3) Kbest + GB 0.6757 0.5274
Experiment (4) KBD + Kbest + GB 0.6789 0.5339
Experiment (5) Over + RF 0.8817 0.8874
Experiment (6) KBD + RFE + Over + RF 0.8921 0.8986

Table 7  The comparison of the 
best scenario’s performance on 
the experiments for dataset (2)

 

Experiment The best scenario Evaluation Metrics
AUC F1 score

Experiment (1) DT 0.6815 0.2592
Experiment (2) KBD + DT 0.6989 0.2634
Experiment (3) Kbest + DT 0.7538 0.2384
Experiment (4) KBD + Kbest + DT 0.7734 0.2427
Experiment (5) Over + RF 0.9550 0.9550
Experiment (6) KBD + RFE + Over + RF 0.9926 0.9926

Table 6  The comparison of the 
best scenario’s performance on 
the experiments for dataset (1)
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ing feature selection and resampling strategies that maximize classifier efficacy for 
any specific dataset setup.

After confirming that the different approaches perform significantly differently 
within each dataset using ANOVA and the Friedman Test, further analysis is needed 
to identify the best scenario for each dataset. Tables 9 and 10 offer a comprehensive 
evaluation of various predictive models and preprocessing strategies, systematically 
analyzed across multiple experimental scenarios to identify the most effective combi-
nations based on Median performance values, sum of ranks, and Friedman test rank-
ings. The median metric reflects the central tendency of model performance, while 
the sum of ranks and rank columns provide insights into the relative performance of 
each scenario based on the Friedman test.

As shown in Table 9, the top-performing scenario for Dataset (1) is KBD + RFE + Over 
+ ML, which achieves the highest rank (Rank 1) with a median AUC of 0.9584 and a 
sum of ranks of 75. This is closely followed by KBD + RFE + SMOTE + ML, which 
obtains the second rank (Rank 2) with a median AUC of 0.9456, and Under + ML, 
which achieves the third rank (Rank 3) with a median AUC of 0.8936. Notably, sce-
narios incorporating Recursive Feature Elimination (RFE) and oversampling tech-
niques consistently outperform other approaches, indicating that the combination of 
feature selection and data balancing significantly improves model performance. In 

Test
Dataset

ANOVA Friedman
F P-value Chi-Square P-value

Dataset (1) 22.997 5.54e-19*** 61.9118 5.40e-08
Dataset (2) 18.18 1.49e-16*** 61.0468 7.68e-08

Table 8  Statistical analysis of 
classifier performance: ANOVA 
and Friedman test results

 

Fig. 6  The ROC plots for all the best scenarios in Dataset (2)
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contrast, simpler methods such as Raw data + ML and KBD + ML rank considerably 
lower (Ranks 13 and 14, respectively), underscoring the critical role of advanced 
preprocessing techniques. These findings highlight the substantial impact of prepro-
cessing choices on model performance with the best results achieved through the 
integration of feature selection, and data balancing.

The results presented in Table 10 for Dataset (2) reveal that the KBD + RFE + Over 
+ ML scenario delivers the highest performance attaining the top rank (Rank 1) with 
a median value of 0.8510 and a sum of ranks of 69. This is closely followed by 
KBD + Kbest + SMOTE + ML, which secures the second rank (Rank 2) with a median 
AUC of 0.8299, and KBD + RFE + ML which achieves the third rank (Rank 3) with 
a median AUC of 0.8530. In contrast, simpler approaches such as Raw data + ML 
(Rank 12, median = 0.6287) and SMOTE + ML (Rank 15, median = 0.6172) perform 
poorly underscoring the importance of advanced preprocessing strategies.

In summary, this analysis demonstrates that combining various preprocessing 
techniques can significantly improve classification model performance. The optimal 
combination, particularly for distinguishing tasks such as insurance fraud detection is 
found in Experiment 6 with the (KBD + RFE + Over + RF) scenario which showed the 
highest AUC score across both datasets. This combination effectively balances preci-
sion, and recall highlights the value of using integrated preprocessing approaches to 
optimize classifier accuracy and robustness. These findings provide valuable insights 
into the critical role of data preprocessing in optimizing classifier performance and 
can guide future research in selecting appropriate preprocessing strategies for spe-
cific model families.

Experiment Scenario Median Sum 
of 
rank

Rank

Experiment 
(1)

Raw data + ML 0.5180 19 13

Experiment 
(2)

KBD + ML 0.5126 16 14

Experiment 
(3)

Kbest + ML 0.5099 21 10.5

RFE + ML 0.5089 7 15
Experiment 
(4)

KBD + Kbest + ML 0.7527 35 9

KBD + RFE + ML 0.9032 58 4
Experiment 
(5)

Under + ML 0.8936 63 3

Over + ML 0.5092 21 10.5
SMOTE + ML 0.5087 20 12

Experiment 
(6)

KBD + Kbest + Under + ML 0.7609 44 7

KBD + Kbest + Over + ML 0.7864 50 6
KBD + Kbest + SMOTE + ML 0.8199 57 5
KBD + RFE + Under + ML 0.7409 37 8
KBD + RFE + Over + ML 0.9584 75 1
KBD + RFE + SMOTE + ML 0.9456 71 2

Table 9  Comparison of predic-
tive models across scenarios for 
dataset (1)
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4.5  Explaining Predictive Models Using SHAP Analysis

Interpreting the results of predictive models is a critical step in understanding their 
behavior and ensuring their reliability in real-world applications (de Souza et al., 
2024). As a state-of-the-art interpretability framework, SHAP (SHapley Additive 
exPlanations) analysis measures the contribution of each feature to the model’s pre-
dictions, which helps us understand the variables underlying this higher performance. 
Through the examination of SHAP values, we can identify the crucial features 
impacting the model’s findings, verify the significance of chosen features, and derive 
practical insights into the dataset’s underlying patterns (Lundberg & Lee, 2017). This 
interpretability step not only enhances trust in the model but also provides valuable 
guidance for refining preprocessing strategies and improving future predictive per-
formance. As shown in Table 6 for dataset (1), the best-performing scenario as identi-
fied through comprehensive evaluation is KBD + RFE + Over + RF.

The SHAP analysis results are illustrated via SHAP values in Fig. 7, which deter-
mine the influence of features on the model’s final results. SHAP values range approx-
imately − 0.4 to 0.4, indicating the strength and direction of each feature’s impact on 
the model. Positive values (to the right) boost the model’s output, whereas negative 
values (to the left) decrease it. This clarifies the significance of various features and 
their effects on the outcomes. Figure 7 illustrates the vertical ranking of features with 
the most significant positioned at the top and the least significant at the bottom. The 
primary features such as X31, X13, and X16 have the greatest SHAP values which 
indicate their substantial influence on the model’s predictions.

Experiment Scenario Median Sum 
of 
rank

Rank

Experiment 
(1)

Raw data + ML 0.6287 18 12

Experiment 
(2)

KBD + ML 0.6375 28 10

Experiment 
(3)

Kbest + ML 0.6480 17 13.5

RFE + ML 0.6304 17 13.5
Experiment 
(4)

KBD + Kbest + ML 0.7023 32 9

KBD + RFE + ML 0.8530 63 3
Experiment 
(5)

Under + ML 0.8031 54 6

Over + ML 0.6507 26 11
SMOTE + ML 0.6172 6 15

Experiment 
(6)

KBD + Kbest + Under + ML 0.7064 39 8

KBD + Kbest + Over + ML 0.8623 62 4.5
KBD + Kbest + SMOTE + ML 0.8299 65 2
KBD + RFE + Under + ML 0.7027 41 7
KBD + RFE + Over + ML 0.8510 69 1
KBD + RFE + SMOTE + ML 0.8306 62 4.5

Table 10  Comparison of predic-
tive models across scenarios for 
dataset (2)
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According to the results, the variables X31, which represent the insurance cov-
erage type, X13, which show the person responsible for the accident, and X16, 
which indicates the car pricing category, had the most significant impact with SHAP 
values ranging from 0.2 to 0.4. These features are likely the primary drivers of the 
model’s performance and align with the success of the best-performing scenario 
(KBD + RFE + Over + RF), which combines feature selection and domain-specific 
knowledge. On the other hand, features like X12, X22, and X7 that have lower SHAP 
values make a small contribution which indicates that they are either unnecessary or 
of little relevance.

4.6  The Limitation of Study

While this study has developed a robust predictive system for insurance fraud detec-
tion through the integration of statistical and machine learning methods, several 
important limitations should be acknowledged. Most notably, our current analysis 
is constrained by the absence of detailed economic variables in the publicly avail-
able dataset, which precludes comprehensive economic impact assessments such as 
cost-benefit matrices, ROI analysis, or quantitative modeling of insurance-specific 
phenomena like moral hazard and adverse selection. These analyses would require 
access to proprietary financial metrics (e.g., claim-specific cost structures, policy-
holder premium histories, and loss ratios) that were beyond the scope of our data. 
We have therefore prioritized the development and validation of the core detection 
algorithm within the constraints of available data.

However, we recognize these economic dimensions as critical for demonstrating 
real-world implementation value, and propose that future research should: (1) estab-
lish industry partnerships to access sensitive financial data for comprehensive eco-
nomic modeling; (2) develop integrated frameworks that combine fraud prediction 
with cost-impact analysis; and (3) investigate the behavioral economics aspects of 

Fig. 7  SHAP Analysis: Feature importance and average impact on model output for insurance fraud 
dataset
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insurance fraud through richer policyholder datasets. These extensions would signifi-
cantly enhance the practical utility of fraud detection systems while addressing the 
important intersections between technical prediction capabilities and business value 
demonstration that this study has identified.

The cross-sectional nature of our dataset prevents comprehensive temporal valida-
tion, as we lack longitudinal records of claim timestamps, historical fraud patterns, 
and scheme evolution documentation. This limitation restricts our ability to examine 
crucial dynamic aspects including seasonal fraud trends, behavioral adaptation pat-
terns among fraudsters, and temporal model performance degradation - all of which 
are essential for maintaining detection accuracy in production environments. We 
emphasize that addressing these temporal dimensions through industry partnerships 
for longitudinal data collection represents a critical future research direction to bridge 
the gap between experimental validation and operational deployment.

Another limitation of our study is the lack of sensitive demographic data (e.g., 
race, gender) due to privacy constraints, preventing fairness assessments using met-
rics like demographic parity. While this protects claimant privacy, it limits our ability 
to evaluate potential biases—a critical concern given the insurance sector’s vulner-
ability to discriminatory outcomes. Future work with appropriate data should rigor-
ously audit predictions across demographic groups and implement fairness-aware 
modeling techniques to ensure equitable fraud detection systems.

5  Conclusion

In conclusion, this study provides an in-depth examination of fraud detection within 
the insurance industry through utilizing a multi-faceted approach that integrates 
diverse data preprocessing techniques and classification algorithms. The analysis 
investigates how various classifiers, feature selection methods, data discretization 
techniques, and resampling strategies impact the performance of fraud detection 
models. The empirical results reveal the significant advantages of combining these 
methods, with the Experiment 6 combination (KBD + RFE + Oversampling + Ran-
dom Forest) demonstrating the highest efficacy in detecting fraudulent claims, as 
evidenced by superior metrics like AUC and F1-score. This approach highlights the 
importance of an integrated strategy in fraud detection, which shows that a well-
rounded application of data mining and machine learning techniques can greatly 
enhance fraud detection accuracy and help insurers minimize financial losses.

The implications of this framework are substantial for both industry practitioners 
and policymakers. By adopting such a structured and data-driven approach, insur-
ance companies can bolster their fraud detection systems which strengthen overall 
financial integrity and operational resilience. In addition, this framework not only 
serves as a guide for selecting optimal predictive models but also as a foundation for 
establishing more robust industry practices in fraud prevention.

While our study provides an effective framework for fraud detection, its cross-
sectional design limits temporal validation due to the absence of longitudinal data 
(e.g., claim timestamps, fraud pattern evolution) and the lack of detailed economic 
variables (e.g., cost structures, policyholder financial histories) restricts cost-benefit 
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analyses, ROI quantification, and modeling of insurance-specific phenomena like 
moral hazard and adverse selection. Future research should extend this work by: 
(1) incorporating temporal analyses to assess seasonal trends, fraudster adaptation, 
and model decay; (2) developing ensemble/hybrid classifiers with advanced fea-
ture discretization and resampling strategies to improve robustness; (3) establishing 
industry partnerships to enable real-world validation with longitudinal datasets: and 
(4) Future economic modeling requires insurer collaboration to access financial data 
(claim costs, payment histories) for cost-benefit analysis, ROI quantification, and 
moral hazard/adverse selection studies. Additionally, testing novel feature selection 
techniques and adaptive learning methods will be critical to address evolving fraud 
tactics. These advancements would bridge the gap between experimental research 
and operational deployment, ultimately enhancing the insurance sector’s resilience 
and sustainability. Our findings lay a foundation for these efforts, equipping practi-
tioners with scalable tools while paving the way for a more secure and trustworthy 
fraud detection ecosystem.
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