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Abstract: In this paper, we introduce two semiparametric single-index models for spatially and
temporally correlated data. Our first model has spatially and temporally correlated random effects
that are additive to the nonparametric function, which we refer to as the “semiparametric spatio-
temporal single-index model (ST-SIM)”. The second model integrates the spatially correlated effects
into the nonparametric function, and the time random effects are additive to the single-index function.
We refer to our second model as the “semiparametric integrated spatio-temporal single-index model
(IST-SIM)”. Two algorithms based on a Markov chain expectation maximization are introduced to
simultaneously estimate the model parameters, spatial effects, and time effects of the two models. We
compare the performance of our models using several simulation studies. The proposed models are
then applied to mortality data from six major cities in South Korea. Our results suggest that IST-SIM
(1) is more flexible than ST-SIM because the former can estimate various nonparametric functions
for different locations, while ST-SIM enforces the mortality functions having the same shape over
locations; (2) provides better estimation and prediction, and (3) does not need restrictions for the
single-index coefficients to fix the identifiability problem.

Keywords: Markov chain expectation maximization; semiparametric regression models; nonparametric
regression models; single-index model; spatio-temporal correlated data
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1. Introduction

Epidemiology has a long history of studying factors that affect the variability of
mortality. These factors include geographical or spatial variations, which play a crucial role
in evaluating healthcare distribution. Spatio-temporal analysis offers additional benefits
over spatial analysis by enabling researchers to simultaneously study patterns over time.
Due to recent advancements in computational methods for analyzing spatio-temporal data,
spatio-temporal data analysis has emerged as a prominent research area.

Numerous studies [1-16] have introduced parametric statistical methods for model-
ing spatio-temporal data, such as the generalized linear mixed model, generalized linear
additive model, and the spatio-temporal auto-regressive model. On the other hand, mixed-
effects models and spatio-temporal models differ in terms of the structure of the variance-
covariance matrix, which defines the type of correlation between time random effects and
spatial dependencies. In spatio-temporal data, the covariance matrix structure of spatial
effects depends on the distance between any two locations (or cities) and follows a para-
metric function form. The estimation of covariance functions and the prediction of spatial
effects have also been studied [9,11,12,15,17]. Both parametric and nonparametric models
have been developed. Parametric models provide convenient and interpretable results;
however, they lack flexibility due to strong parametric assumptions. These assumptions
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are often not satisfied in real data applications. Nonparametric and semiparametric models
relax these assumptions, making them more suitable for analyzing spatio-temporal data.

Hence, in this article, we focus on semiparametric modeling for spatio-temporal data
and introduce two semiparametric models. These two models are built based on the
single-index model (SIM), which incorporates spatial and time effects into the model.

The authors of Ichimura [18] introduced the single-index model, and many articles
have extensively studied the estimation and inference of SIM [19-23]. SIM offers several
advantages over parametric models: (1) it assumes that the function describing the rela-
tionship between the response variable and the explanatory variables is unknown, thereby
avoiding the misleading results of misspecifying the link function [24]; (2) it does not
assume a specific type of error distribution, and (3) it mitigates the curse of dimensionality
problem by reducing the p-dimensional explanatory variables to a single dimension using
the single-index linear combination.

In SIM estimation, the parameters require restrictions to address the identifiability
problem. One possible solution to this problem is to set the norm of the parameters equal
to 1 [25,26], while another solution is to set the coefficient of the first explanatory variable
equal to 1 [2,18]. This article employs the second approach.

In Pang and Xue [27], random effects were considered as additive effects to the single-
index function; however, these random effects were assumed to be independent. In contrast,
in this article, we introduce correlated spatial and temporal effects and incorporate these
random effects into the single-index function. We develop two models: the spatio-temporal
single-index model (ST-SIM), in which correlated spatial and temporal effects are additive
to the single-index function, and the integrated spatio-temporal single-index model (IST-
SIM), in which the spatial effect is integrated into the single-index function, and spatial
effects are added to the unknown function. To the best of our knowledge, the IST-SIM
model is not reported in the statistical literature. This article primarily focuses on IST-SIM.

The organization of this article is as follows: Section 2 presents the proposed models,
ST-SIM and IST-SIM. Section 3 describes the two estimation algorithms. Section 4 contains
the simulation studies we conducted. Section 5 describes the real data application and
presents the results of applying the two models to the motivating data. Conclusions are
provided in Section 6.

2. Semiparametric Models

In this section, we introduce two semiparametric models: ST-SIM and IST-SIM. In ST-
SIM, the spatial effects are additive to the single-index function, while in IST-SIM, the spatial
effects are non-additive to the single-index function.

Let Y; ; be the observed value of the response variable at location s and time point ¢, u;
(s =1,...,r) be a spatial random effect following Gaussian process (GP), w; (t =1,...,n)
be the time effect, and X3 (5 1), X2(5 ), - - -, Xp s, be the p observed values of the explanatory

variables at location s and time point ¢.

2.1. Semiparametric Spatio-Temporal Single-Index Model
The additive ST-SIM model is defined as follows:

Y il pst ~ Py(pst|us, wi),
ps t|us, wr = §(Xs 1B) + us + wy,
us ~ GP(0,02%(s,s")), s # s

wi ~ P4(0,020)),

)

where g(+) is a smoothed unknown function, B are the single-index coefficient parameters,
%.(s,s’) is the (s, s)th component of the covariance function ¥. of the spatial effects, () is the
covariance function of a probability distribution (P;) of the time effects, and 02 and 72, are
the variances of the spatial and time effects, respectively. Given the effects u; and wy, Ys ¢
follows a probability distribution (P;) with mean ps .
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This model assumes that the effects us; and w; are additive to the single-index function
g(+). The single-index coefficient parameters (B), spatial and time effects (u;, w;), and the
unknown function (g(-)) must be estimated simultaneously. A restriction on g is needed
to resolve the identifiability problem. Two possible approaches include setting one of
the parameters of B equal to 1 [2,18] or to use ||B|| = 1 [25,26,28]. The first approach is
employed in this article.

2.2. Semiparametric Integrated Spatio-Temporal Single-Index Model
The IST-SIM is defined as follows:

Yo t|pst ~ Pa(pstus, wi),
ps s, w = g(us + Xs 1) + wi,
us ~ GP(0,02%(s,s')), s # s

w ~ P4(0, UZ,Q),

@

where g(-) is a smoothed unknown function, B represents the single-index coefficient
parameters, X.(s,s’) is the (s,s’)th component of the covariance function ¥ of the spatial
effects, () is the covariance function of a probability function (P;) of the time effect, and o2
and (73, are the variances of the spatial and time effects, respectively. Given us and wy, Ys s
follows some probability distribution (P;) with a mean of p .

One of the advantages of this model is that it does not have an identifiability problem,
unlike the additive model (1). Consequently, all of the parameters can be estimated. This
is because the spatial effect us has a coefficient equal to 1, allowing all of the single-index
coefficient parameters to be estimated without requiring additional assumptions for the
unknown function. This model assumes that the spatial effect u; is integrated into the
single-index function, while the time effect w; is additive to the mean of the unknown
function g(-). Additionally, B, us, w, and g(-) must be estimated simultaneously.

2.3. Covariance Functions of Spatial and Temporal Effects

The spatial covariance function that describes the spatial correlation between any two
locations, us and uy, can be described as

u ~ MN(0,02%,),

2y (o 3)
Cov(us, ug) = 03X (s,s),
where MN represents a multivariate normal distribution, O'Lzl is the variance of the spatial
effects, X, (s,s’) is the (s,s’)th component of the spatial covariance matrix ¥,, which is
assumed to have a known parametric covariance function to guarantee positive definite,
and p is the dependence range that can be estimated by the semivariogram. The depen-
dence range, p, represents the distance between two locations such that the spatial effects
within that range are correlated and, outside of that range, the correlation is assumed to
be negligible.
In time series, it is common to use the autoregressive moving average, autoregressive
integrated moving average, or a random walk to model the time effects. In random walk,
the relationship between two consecutive time points, say w;, and w;_1, takes the form:

Wt = W1+ €, 4)

where € is the random noise term accounting for the difference between two consecutive
time points within the location s. When w; follows a normal distribution [29], where n
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locations exist, the vector of the temporal effects w = (w1, wo, . .., wn)T takes the following
joint probability distribution:

f(w|c72,) mexp(—(;g’wTQ_lw), (5)

where Q1 is the inverse of the temporal covariance matrix. For example, when we have
four-time points, the covariance matrix, (), based on the description above, takes the form

This precision matrix is singular, so the covariance matrix 2!, cannot be obtained. Hence,
we propose a modified version to overcome this problem

In this form, all of the diagonal elements are equal to 2, which means w; and w;y are also
random values and the other time points follow the first-order random walk. Other possible
functions can be used, such as the Gaussian function with p = 2 [30], which means the
time effect w; depends only on the following and previous time effects, w;y; and w;_;.
The Gaussian process of the temporal effects, in this case, can be described as

w ~ MN(0,02Q,_5),

Cov(wy, wy) = 050 (t,t'),

(6)

where w; and wy are two temporal effects at two different time points, t and ', at location s.

3. Model Estimation

In this section, two estimation algorithms are introduced to estimate the ST-SIM and
IST-SIM. The Monte Carlo expectation maximization (MCEM) algorithms are implemented.

3.1. Estimating Spatial and Time Effects

The expectation maximization (EM) algorithm consists of two steps: expectation (the E-
step) and maximization (the M-step). Estimates are obtained by iteratively performing these
until convergence is achieved. This algorithm is commonly used for estimating generalized
linear mixed models [31-35]. However, for our proposed models, there is no closed form
that is available for the expectation part. Therefore, we incorporated Markov chain Monte
Carlo (MCMC) to generate random samples from the full conditional distributions of u
and w. In the E-step, we employed the Metropolis-Hastings (M-H) algorithm. As a result,
we developed an MCEM algorithm for estimating the proposed models.

The Metropolis-Hastings (M-H) algorithm employs the conditional multivariate nor-
mal distribution to generate random samples from the spatial effects u and time effects w,
as dictated by the following complete-data log-likelihood function:

log f(Y, u, w|p, 3%, 05,Q)& = & 108 fy| o[ Y|, u, @] +10g fulu|oyE] +log fu[w|od,Q, )

where Y ~ Pois[p|u, w], plu,w = g(XB) + Z1u + Zrw for the additive model and p|u, w =
¢(Z1u+ XPB) + Zyw for the integrated spatial effects model; u ~ GP(0,02%), w ~ GP(0,023Q)),
020 = Cov(wr, wyiys) = o2exp(||6]|?/pw = 2) forall t,é € R; and 02X = Cov(us, s g) =
o2exp(||d||?/pu) for all s, d € R2.
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The single-component Metropolis—Hastings algorithm is employed, where, at each
iteration, only a single component of the spatial or time effects is updated. The proposed
conditional distribution of the time effect w; and its parameters can be derived as follows:

Let w = (wy,wy,...,wy) = [uﬁ @2 ]T have a multivariate normal distribution with
mean 0 and a variance-covariance matrix 0'30, where

M1 p }
O = .
{ O O

Then, the proposal distribution of w; conditioned on w, = a is a normal (wq|wy = a) ~
N (ﬁwl,agﬂ), where (Tg is the proposed variance of the time effects, fi,, = leﬁgzla,
and the covariance matrix Q) = Q1 — 0120521 Or1.

With this proposed conditional distribution, and given a vector of spatial effects u,
and assuming that the spatial and time effects are independent, the acceptance probability
rule takes the form

. {f(“l‘ru/w?)fw(wﬂﬁw;‘/ o Q) fu(uloix) }
min = Lo, 8)

FY |, u, @) fo (Wt fiew,, 02,Q) fu(u|ogE)

where f,, (wt|fiw,, 05Q) is the conditional distribution of w; given the other time effects,
w1,W, ..., Wi_1,Wit1, ..., wy. Similarly, one can drive the proposed conditional distribu-
tion of the spatial effect u; given the other spatial effects as (u1|us = a) ~ N(fiy,, 03%),
where 07 is the proposed variance of the spatial effects, /iy, = 17X, a, and the covariance
matrix £ = Xqq — 2122521221. With this proposed conditional distribution and a given
vector of time effects w, the acceptance probability rule takes the form

PO, @) o (0l 00 fu 0 g 03
F (It s, @) (]300 o ts i 035) [

The following steps make up a subroutine for simulating random samples from the spatial
and time effects. This subroutine is used within the algorithms to estimate the model
parameters of the proposed models.

Step 0: Initialize u(® and w(o), and, given the estimates of (75, (72,, and Mgy sets = 1,t=1,
and m = 1.

Step1: Let w = mean(w!%("~1)]), generate a value from the spatial effect proposal distri-
bution at location s, u}, and generate a value from uniform(0,1), U.

f(Y|n, “?xw)fw(whfiﬂ)fu(u:|ﬁu§/05_2)
FY |, us, w) fuo (w02 Q) fu (us|fru,, 072)

IfU<min{ ,1},setu(m):(u;‘,uz,...,us);

otherwise, u(™) = u. Set s = s + 1 and repeat this step until all locations are visited.
Step2: Given u= mean(ul%("=1)), generate a value from the proposal time effects distri-

bution of time ¢, w}, and generate a value from uniform (0,1), U.

fYJp,w, @0f) foo(@f | oy 05 2) fu (w0 E)
fY I w, @) foo (@i, 029) fu(ulo7E)

IfU<mjn{ ,1},setw(m) = (W}, wy,...,wy);

otherwise, ul)) = u. Set t = t + 1 and repeat this step until all time points are visited.

Step 3: Repeat Steps 1-2, a large number of times, M-, and, based on Geyer [36], discard a
percentage of burn-in between 1% and 2% of the total number of iterations, M, and
use the rest, Ny, to estimate the spatial and time effects.
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3.2. ST-SIM Estimation Algorithm

The following steps comprised the proposed algorithm for estimating the additive
ST-SIM’s parameters and the spatial and time effects:

I-step Initialize parameters:

20) ,2(0))

(a) Obtain initial values for u, w, (75, and (TZ, (u(o), w0, o, 00

(b) Calculate Y* = Y- 73 ul® — Zzw(o), obtain the single-index coefficient esti-
mate ,B(O), and estimate the unknown function using a smoothing method to
obtain g(-)(©.

E-step Given the initial values from the I-step, simulate random samples for each spatial
effect ug, (ug, u%, el ug\]), and for each time effect wy, (wtl, wtz, cer, wf\f), from (Y, u, w|py,
02%,02Q), where u = ¢(Xs:B) + Z1u + Zow via the subroutine described in Sec-
tion 3.1.

M-step Maximize Y log f(u¥|c2%) and ¥ log f(w¥|02Q)),

(a) Obtain 0'3(1) and (73,(1), and calculate u!) = NLO 211(\1201 uf, w® = NLO 211\1:01 wk
and Y* =Y — Zjul®) — ZywW,

(b) Using the Ichimura method, estimate 8 ﬁ(l) , and smooth the unknown function
g(+) to obtain g(-)™).

Do iteration of the E-step and M-step until convergence is achieved. The stopping rule for

. . | LogLikelihood'") —LogLikelihood(!~1) i () ;
the EM algorithm is | FogLikelhood ™1 | < 0.001, where LogLikelihood'") is

the log of the likelihood function at the iterated step t, and LogLikeliood=1) is the log
of the likelihood function at the iterated step ¢ — 1.

3.3. IST-SIM Estimation Algorithm

The algorithm described in Section 3.2 does not work for the IST-SIM due to two main
issues: (1) the long computation time resulting from the intensive calculations (specifically,
when using the Metropolis—Hastings algorithm with only 1000 iterations, the single-index
function needs to be estimated 36,000 times to run the MCEM algorithm just once); and
(2) the inability to separate the impact of spatial random effects on the acceptance ratio
from the effect of the single-index coefficient parameters when comparing the current
and previous spatial effect values. In the following, we provide a detailed explanation of
these issues.

The acceptance ratio takes the form

- { fYu, @, = &' [XB" + Ziw'] + Z5w) fu(u” |03E) fuo (] 0B, Q) 1}.
fYI0, @, = GIXB" + Zyu] + Zow) fu(u]oFE) fu (w|e2 Q)

If this ratio is greater than 1, it is unclear whether this is because u* is better than u, §* is
superior to §, or B" is more accurate than . In such cases, determining which of the two
proposed spatial random effects represents a generated value from the true spatial effect
distribution becomes challenging. One possible solution to this problem is to employ a
Taylor series approximation for the unknown function at a specific value (X ﬁ(o) + Zu?)
to isolate the spatial effect from the model-parameter effect on the ratio, as follows:

u=g(XB+Z1u) + Zyw = §(-) + §' () (XB + Z1u — XBY — Z;u") + Z,w.

Here, §(+) represents the unknown function, estimated using a smoothing method, like
p-spline [37] or kernel smoothing [38], and §'(+) is the estimate of the first derivative of this
unknown function. In this paper, we employ the local linear kernel method to estimate
both the unknown function and its derivative.
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The following steps comprise the proposed algorithm for estimating the IST-SIM’s
parameters and the spatial and time effects:

I-step Initialize the parameters:

0) ,2(0) 2(0));

(a) Obtain initial values for u, w, (75, and (TZ, (u(O), w0, o, 00

(b)  Calculate Y* = Y — Zyw!?), obtain the single-index coefficient estimates ﬁ(o)
and estimate the unknown function using a smoothing method to obtain g(-)(®)
and its derivative g'(-)(©).

E-step Given the initials from the I-step and the Taylor approximation of the unknown
function, simulate random samples for each spatial effect us, (ul,42,...,ul), and for
each time effect w;, (a)tl,a)‘tz,. ) .,wf\]), from f(Y,u, w|p, 02%,02Q), where p ~ ¢+
§(XB+Zju— Xﬁ(o) — Z1u)) 4 Z,w, via the subroutine described in Section 3.1

M-step Maximize Y log f(u¥|c2%) and ¥} log f(w¥|02Q)),

(a) Obtain 05(1) and (Tw( ), and calculate uV) = 1 Z u w® = Z;k 1 wk
and Y* =Y — ZywW.
(b)  Using the Ichimura method, estimate ,8(1) , and smooth the unknown function
g(-) to obtain g(-)*).
Do iteration of the E-step and M-step until convergence is achieved. The stopping rule for

. . 1 LogLikelihood") — LogLikelihood(*~1) i ) ;
the EM algorithm is | LogLikelihood ™1 | < 0.001, where LogLikelihood\!) is

the log of the likelihood function at iteration step t, and LogLikelihood!~1) is the log of
the likelihood function at iteration step t — 1.

4. Simulation

In this section, we evaluate the performance of the two proposed model algorithms in
terms of estimating the model parameters, fitting the data, and predicting under correct and
misspecified model specifications. The performance of the IST-SIM estimation algorithm is
assessed through the simulation of 100 data sets based on the following integrated model:

Yis|Ms, s, wr ~ pa(ys|ps, us),
pslus, wi = g(B1x1is + Paxois + Us) + wy,
us ~ GP(0,02%(s,s")) and w; ~ GP(0,02Q(t, 1)),

wheret =1,2,...,nands =1,2,...,r, with six locations (r = 6) and 12 time points at each
location (n = 12). In addition, x; is generated from uniform (5, 20), and x; is generated
from a standard normal distribution. The true model parameters are (81, B2,02,02) =
(1,1,0.5,0.5), and two cases of the dependence range are considered (o, = 1 and p, = 3)
in the domain [0,3]x[0, 3]. In addition, the performance of the ST-SIM algorithm was
studied by simulating 100 data sets from the same setting, with model mean equal to
Hs|us, wy = g(B1x1is + Paxais) + us + wy. The IST-SIM and ST-SIM algorithms are used for
estimating the model parameters. For the spatial effects and temporal effects, the initial
values are generated from N(0, 1), and to generate strictly positive starting points for o2
and c?w, an inverse-gamma distribution was used, IG(1,1). Table 1 shows that the two
proposed algorithms worked fine in estimating the model parameters, with the mean
of the 100 estimates being close to the true parameter values and small standard error
values. The mean square error (MSE) of the IST-SIM was greater than that of the ST-SIM
model. A possible reason is because of the Taylor approximation used for the unknown
function. These findings were the same under both dependence ranges (0, = 1 and p, = 3).
In addition, all parameters or the single-index coefficients can be estimated for the IST-SIM,
but for the ST-SIM, one of the parameters is set to 1 to address the identifiability problem,
g1 =1

We conducted another simulation study to assess the performance of the proposed
models in fitting and predicting data under both correct and misspecified model settings.
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For each model, we used the mean square error (MSE) to evaluate the fitting quality and the
predicted residual sum of squares (PRESS) to assess the prediction accuracy. We evaluated
each model’s performance in two scenarios: when the data were generated from the true
model and when the data were not generated from the true model.

Table 1. Results of 100 simulated data sets: mean =+ standard error (SE), median, and interquartile
range (IQR) of the 100 model parameters estimates and MSE of the two proposed models (IST-SIM
and ST-SIM) at different values of the dependence range (o = 1 and p = 3).

Model True Mean £ SE = MSE Median IOR

p=1 ST-SIM B2 1 0.993 4+ 0.007  0.006 0.998 0.071
o2 0.5 0.451 +0.005 0.006 0.439 0.066

o? 0.5 0.455+0.001  0.006 0.541 0.017

R? - 0.989 +£0.000 - 0.989 0.003

IST-SIM B1 1 1.0024+0.043  0.119 0.923 0.286

B2 1 1.015+0.044 0.123 0.937 0.325

o2 0.5 0.486 +0.077 0.127 0.310 0.370

o? 0.5 0.457 £0.007  0.006 0.452 0.047

R? - 0.989 £0.000 - 0.989 0.003

p=3 ST-SIM Ba 1 0.989 +0.006  0.004 0.988 0.088
o2 0.5 0.437 +0.004  0.006 0.428 0.061

o? 0.5 0.457 £0.001  0.002 0.452 0.021

R? - 0.9888 +0.000 - 0.988 0.003

IST-SIM B1 1 0.9944+0.069  0.089 0.866 0.233

B2 1 0.989 £0.066 0.101 0.856 0.252

o2 0.5 0.407 £0.042  0.088 0.298 0.027

o? 0.5 0.476 +0.005  0.004 0.461 0.029

R? - 0.989 +£0.000 - 0.989 0.004

For instance, in the context of the IST-SIM described earlier, we generated 100 data
sets from the model and calculated the MSE and PRESS for both models. We followed
the same approach for the ST-SIM. The results in Table 2 demonstrate that when the true
model was IST-SIM (i.e., when the data were simulated from the IST-SIM), the IST-SIM
significantly outperformed the ST-SIM in terms of the mean MSE (123.8 vs. 266.4) and
the mean PRESS (371.8 vs. 587.8), with smaller standard errors compared to the ST-SIM.
Conversely, when the true model was the ST-SIM (i.e., when the data were simulated from
the ST-SIM), the IST-SIM still performed better in terms of the mean MSE (124.5 vs. 135.7)
and exhibited smaller standard errors, with their mean PRESS values being comparable
(388.6 vs. 372.78). The code used for generating the simulation results can be provided
upon receiving a reasonable request.

Table 2. The mean square error (MSE) and the predicted residual sum of squares (PRESS) results of
the proposed models of 100 simulated data sets from each true model.

True Model
ST-SIM IST-SIM
Criterion Fitted Model = Mean + SE Median Mean =+ SE Median
MSE ST-SIM 135.7 £ 5.11 135.0 266.4 + 16.6 236.2
IST-SIM 124.5 + 4.69 125.5 123.8 £ 6.17 130.1
PRESS ST-SIM 372.7 +36.2 275.8 587.8 459 446.8
IST-SIM 388.64 40.7 267.4 371.8 £ 25.0 312.9

5. Application

These two models are applied to real data from South Korea, covering the period from
2000 to 2007. The data set includes multiple daily recorded variables, such as mortality,
temperature, humidity, pressure, and time, for six major cities in South Korea (Busan, Seoul,
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Daejeon, Incheon, Gwangju, and Daegu). Figure 1 shows the locations of these six cities in
South Korea.

Figure 1. The 6 major cities locations in South Korea: Seoul, Busan, Daegu, Incheon, Gwangju,
and Daejeon.

5.1. Data and Models

The non-accidental mortality (the number of deaths excluding deaths due to accidents),
mean temperature, mean humidity, mean pressure, and time were recorded daily for
six major cities in South Korea: Busan, Seoul, Daejeon, Incheon, Gwangju, and Daegu.
However, we utilized monthly data by calculating the means of the weather variables per
month. We opted for monthly data instead of daily data to avoid the "big-N" problem [39],
which could have significantly increased the computing time due to the rank of the variance-
covariance matrix. Additionally, using monthly data allowed us to study the patterns of
the mortality functions throughout each year.

The time component (consisting of 12 time points) and the city locations (six in total)
represent the temporal and spatial effects, respectively. It is important to note that the
population sizes of the six cities differ, potentially influencing the relative mortality rates
among them. To account for this, we calculated the number of deaths per one hundred
thousand people for each city.

In this paper, we applied the two spatio-temporal models to the South Korea data set
to determine which model was more suitable for describing the data, based on the model
selection criteria. For each model, we needed to simultaneously estimate the single-index
function, model parameters, and spatial and time effects. The dependence range was
estimated using the variograms of the models. In both models, the response variable was
mortality (Y), and the explanatory variables included the temperature (x1), pressure (x7),
and mean humidity (x3).

Figure 2a—c depict the relationships between mortality and temperature (negative),
humidity (negative), and pressure (positive). Figure 2d reveals that mortality was highest at
the beginning and end of the year, with a minimum in the middle of each year. The highest
mortality was observed in Busan, while Seoul, Daejeon, and Gwangju had the lowest
mortality rates.
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Figure 2. The relationship between temperature and mortality (a), the relationship between humidity
and mortality (b), the relationship between pressure and mortality (c), and the relationship between
month and mortality (d) for the six cities in South Korea.

In addition to applying the two models to the mortality data, we evaluated which
model was most appropriate for the data based on fitting and prediction criteria. The fol-
lowing are the two proposed models for our motivating data:

e IST-SIM
y|p ~ Pois(p|u, w),
p=g(Ziu+x1B1 +x2B2 +x3B3) + Zow,
u~ MN(0,02%), and w ~ MN(0,020Q).
s ST-SIM

ylp ~ Pois(u|u, w),
u=g(x1B1 +x2B2 +x3B3) + Z1u + Zrw,
u ~ MN(0,02%), and w ~ MN(0,030).

5.2. Models Estimation

The proposed algorithms were employed to estimate the parameters and spatial
and temporal effects of both the ST-SIM and IST-SIM models. The Metropolis—Hastings
(M-H) algorithm was utilized to obtain 10,000 samples from the spatial and temporal
effects, with the first 2% of the MCMC samples discarded. The Markov chain Monte
Carlo expectation maximization (MCEM) algorithm was executed until convergence was
achieved. Using the variogram, the dependence range was estimated and found to be equal
to 1.8, as illustrated in Figure 3.
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Figure 3. Smoothed mortality functions from the ST-SIM (left) and smoothed mortality functions
from the IST-SIM along with 95% confidence intervals (right) of the six major cities in South Korea.

Table 3 presents the two model parameters along with their 95% confidence intervals
and fitting criteria values, including the MSE, R2, and log-likelihood. The IST-SIM outper-
formed the ST-SIM in several aspects. Specifically, the IST-SIM exhibited a smaller MSE
(131.7 versus 131.7) compared to the ST-SIM, a higher R? (0.87 versus 0.41), and a superior
log-likelihood value (—297.3 versus —363.2). In the ST-SIM, the coefficient parameter of
the pressure variable, x;, was set to 1 to address the identifiability problem. In contrast,
the IST-SIM did not encounter this issue and successfully estimated all the parameters.
Table 4 highlights that both models identified Busan as having the highest mortality rate
and Seoul as having the lowest mortality rate.

Table 3. The ST-SIM = g(Z1u + XB) + Zrw and IST-SIM = g(XB) + Z1u + Zyw parameter estimates
along with the 95% confidence intervals, R? values, and the log-likelihood values.

ST-SIM IST-SIM

Estimate 95% CI Estimate 95% CI
x1 —-0.05 (—0.049, —0.052) 0.66 (0.60, 0.72)
X2 0.06 (0.055, 0.066) - -
X3 0.02 (0.011, 0.032) —0.49 (—0.41, —0.52)
a2 213 0.97
a2, 0.47 0.52
log Likelihood —297.3 —363.2
R? 0.87 0.41
MSE 637.1 131.7

Table 4. Spatial random effects estimates of the two introduced models [ST-SIM = g(Z1u + XB) + Zrw

and IST-SIM = ¢(XB) + Z1u + Zyw].

ST-SIM IST-SIM
Busan 1.254 2.377
Daegu 0.715 1.092
Gwangju —0.422 —0.637
Daejeon —0.697 —1.258
Incheon —0.876 —1.479
Seoul —0.905 —1.577

Figure 3 shows that the mortality functions of the six cities had the same form when
using the ST-SIM but not with the IST-SIM. This highlights one of the advantages of the
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IST-SIM over the ST-SIM: the former is more flexible, allowing mortality functions to vary
by location.

5.3. Model Selection

Multiple criteria were employed to evaluate the fitting and prediction performance of
both ST-SIM and IST-SIM. These included the MSE, R?, and log-likelihood to assess the
models’ suitability for describing the data. Additionally, the means and medians of the
predicted mean square error (PMSE) and predicted log-likelihood were utilized. These
evaluation criteria were calculated using the following steps:

1. Select n observations randomly from each city, consider the selected observations as
the evaluation data, and consider the remaining observations as the training data.

2. For the training data, fit the model and compute the R2%, MSE, and log-likelihood
fits. For the evaluation data, calculate the log-likelihood prediction and PMSE
= Y% (y; — y:)>/6n, where y; and y; are the actual and predicted response values,
respectively.

3.  Repeat Steps 1-2 for a large number of times; compute the mean and median of
the estimated PMSE values and calculate the means of the R%, MSE, log-likelihood
predictions, and log-likelihood fits.

These steps were repeated for different values of n (n = 2,4, and 6) for the two pro-
posed models. Table 5 demonstrates that the IST-SIM outperformed the ST-SIM consistently,
exhibiting higher R?, lower MSE, and higher log-likelihood at all values of 7. For example,
at n = 2, the IST-SIM had an R? of 0.88 compared to 0.45 for the ST-SIM, an MSE of 120.8
versus 600.3, and a log-likelihood of —248.6 versus —300.2.

Table 5. Predicted mean square error (PMSE), mean square error (MSE), log likelihood prediction and
fits, and R? of ST-SIM = ¢(Z1u + XB) + Zpw and IST-SIM = ¢(XB) + Z1u + Zrw summary results of
500 estimates of the fitting and prediction criteria for ST-SIM and IST-SIM at different sizes of the
evaluating data sets (n = 2,4,6).

PMSE Log Likelihood
Model Mean Median  Prediction Fits MSE R?
n=2 ST-SIM 922.9 884.0 —75.6 —300.2 600.3 0.45
IST-SIM 274.2 210.5 —63.3 —248.6 120.8 0.88
n=4 ST-SIM 967.0 930.1 —235.3 —235.3 531.0 0.51
IST-SIM 352.3 219.3 —134.3 —201.6 122.59 0.88
n==6 ST-SIM 1094.8 985.7 —212.6 —174.7 467.3 0.56
IST-SIM 633.4 250.2 —192.7 —153.8 117.9 0.89

In terms of prediction, once again, the IST-SIM outperformed the ST-SIM consistently,
with smaller mean and median values for the PMSE and higher values for the log-likelihood
prediction. For example, at n = 2, the mean PMSE was 274.2 versus 922.9, the median
PMSE was 210.5 versus 884.0, and the log-likelihood prediction was —63.3 versus —75.6.

Figure 4 displays boxplots representing 500 estimates of the PMSE from each model at
different data set sizes (n = 2,4, 6). The boxplots indicate that the variability (interquartile
range) of the PMSE estimates for the IST-SIM is lower than that of the ST-SIM at n = 2 and
n = 4. However, when n = 6, with half of the data used for training and the other half for
evaluation, the PMSE estimates for the IST-SIM exhibit greater variability than those for the
ST-SIM. Nevertheless, the median PMSE for the IST-SIM is lower than that for the ST-SIM.
Overall, the IST-SIM outperforms the ST-SIM in terms of describing the mortality data and
making predictions from the South Korean mortality data. Upon receiving a reasonable
request, we are able to furnish the code utilized to analyze the real data application.
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Figure 4. Boxplots of the prediction mean square error (PMSE) of the proposed two models (ST-SIM
and IST-SIM) at different evaluation data set sizes (n = 2,4, 6).

6. Conclusions

This article introduces two semiparametric models for modeling correlated spatio-
temporal data. In the ST-SIM, the spatial effect is treated as an additive component to the
single-index model, while in the IST-SIM, the spatial effect is integrated into the single-
index function. For each model, we proposed an algorithm to simultaneously estimate
the unknown function, single-index coefficient parameters, variance of the spatial effects,
spatial effects, and time effects, using an MCEM algorithm that we developed. To the best
of our knowledge, the IST-SIM has not yet been documented in the statistical literature.

We conducted several simulation studies and found that the IST-SIM outperformed
the ST-SIM based on various criteria. Both models were also applied to South Korean
mortality data for comparison. The IST-SIM demonstrated superior performance in fitting
and prediction for the motivating data. The analysis revealed that Busan had the highest
nonaccidental mortality among the six major cities, while Seoul had the lowest mortality,
with the other cities falling in between.

The IST-SIM offers several advantages over the ST-SIM: (1) it does not necessitate
restrictions on the coefficient parameters like the ST-SIM, allowing estimation of all pa-
rameters, and (2) it does not require mortality functions to have the same form across
each location, a requirement of the ST-SIM. There exist several avenues for enhancing the
IST-SIM model in future research. For instance, potential improvements may encompass:
(1) incorporating temporal effects into the unknown nonparametric function, (2) explor-
ing alternative estimation methods for the nonparametric function beyond the Ichimura
method, and (3) exploring the utilization of the Bayesian approach for the model estimation,
which has the potential to streamline parameter estimation and expedite the process in
comparison to the EM algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

SIM Single-index model

ST-SIM  Spatio-temporal single-index model

IST-SIM  Integrated spatio-temporal single-index model
MCEM  Monte Carlo expectation maximization

EM Expectation maximization
MCMC  Markov chain Monte Carlo

M-H Metropolis-Hastings

MSE Mean square error

PRESS Predicted residual sum of squares
SE Standard error

PMSE Predicted mean square error
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