Flat-slab building structures exhibit significant higher flexibility compared with traditional frame structures, and shear walls (SWs) are vital to limit deformation demands under earthquake excitations. The objective of this study is to identify an appropriate finite element (FE) model of SW dominant flat-plate reinforced concrete (R/C) buildings, which can be used to study its dynamic behavior. Three-dimensional models are generated and analyzed to check the adequacy of different empirical formulas to estimate structural period of vibration via analyzing the dynamic response of low- and medium-height R/C buildings with different cross-sectional plans and different SW positions and thicknesses. The numerical results clarify that modeling of R/C buildings using block (solid) elements for columns, SWs, and slab provides the most appropriate representation of R/C buildings since it gives accurate results of fundamental periods and consequently reliable seismic forces. Also, modeling of R/C buildings by FE programs using shell elements for both columns and SWs provides acceptable results of fundamental periods (the error does not exceed 10%). However, modeling of R/C buildings using frame elements for columns and/or SWs overestimates the fundamental periods of R/C buildings. Empirical formulas often overestimate or underestimate fundamental periods of R/C buildings. Some equations provide misleading values of fundamental period for both intact and cracked R/C buildings. However, others can be used to estimate approximately the fundamental periods of flat-plate R/C buildings. The effect of different SW positions is also discussed.
المشارك في البحث
قسم البحث
سنة البحث
2012
مجلة البحث
Journal of Advanced Structural Engineering
تصنيف البحث
1
ملخص البحث