During the last few decades, insulated-gate bipolar transistor (IGBT) power modules have evolved as reliable and useful electronic parts due to the increasing relevance of power inverters in power infrastructure, reliability enhancement, and long-life operation. Excessive temperature stresses caused by excessive power losses frequently cause high-power-density IGBT modules to fail. As a result, module temperature monitoring techniques are critical in designing and selecting IGBT modules for high-power-density applications to guarantee that temperature stresses in the various module components remain within the rated values. In this paper, a module's different losses were estimated, a heating pipe system for the thermal power cycling technique was proposed, and finite element method (FEM) thermal modeling and module temperature measurement were performed using ANSYS Icepak software version 2022 R1 to determine whether the IGBT module's temperature rise was within acceptable bounds. To test the proposed technique, a proposed design structure of the practical railway application with a 3.3 MW traction inverter is introduced using commercialized IGBT modules from Semikron company with maximum temperature of about 150 • C. the FEM analysis results showed that the maximum junction temperature is about 109 • C which is in acceptable ranges, confirming the appropriate selection of the employed IGBT module for the target application.
Research Member
Research Department
Research Date
Research Year
2023
Research Journal
machines
Research Publisher
MDPI
Research Vol
11
Research_Pages
https://www.mdpi.com/2075-1702/11/11/990
Research Website
10.3390/machines11110990
Research Abstract
Research Rank
International Confrences