CE 486 Urban Transportation Planning

Lec. 2 *Trip Generation*

Dr. Mahmoud Owais

Trip Generation

- Forecast the trips that produced or attracted by each TAZ for a "typical" day
- Attraction
 - Number and types of retail facilities
 - Number of employees
 - Land use
- Production
 - Car ownership
 - Income
 - Population (employment characteristics)

Study Area

Zoning System

Trip Generation

Developing and Using the Model

Trip Generation *Developing and Using the Model*

The trip generation model typically can take the form of

No. of trips/unit time/place = Function (pop, income, auto ownership rates)

The model is developed and calibrated using BASE year data

Trip Generation

Demographics and Trip Making Factors affected by Land Use

The land use pattern may affect

- > Car ownership rates
- Household size and composition
- > Number of daily trips
- Mode of trips
- Length of trips

Trip Generation

What is Predicted?

Trip generation models predict so called TRIP ENDS for each zone

The trip ends maybe classified as either

• ORIGINS and DESTINATIONS (O-D)

or

• PRODUCTIONS and ATTRACTIONS

The two sets of terms sound similar but there is a technical difference

Origins and Destinations

Modeling Productions and Attractions

Trip generation models typically model separately, i) residential trip production, ii) non-residential trip attractions

Regression Analysis

Regression Modeling Steps

- Define problem or question
- Specify model
- Collect data
- Do descriptive data analysis
- Estimate unknown parameters
- Evaluate model
- Use model for prediction

Types of Regression Models

Goal

Develop a statistical model that can predict the values of a *dependent* (response) variable based upon the values of the *independent* (explanatory) variables.

Simple Regression

A statistical model that utilizes <u>one</u> *quantitative independent* variable "X" to predict the *quantitative dependent* variable "Y."

Multiple Regression

A statistical model that utilizes <u>two</u> <u>or more</u> *quantitative* and *qualitative* explanatory variables $(x_1,..., x_p)$ to predict a *quantitative* dependent variable Y.

Linear Model

Relationship between one dependent & two or more independent variables is a linear function

Population

Unknown Relationship O $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ O O OO

Population Linear Regression Model

Sample Linear Regression Model

