CE 486 Urban Transportation Planning

Lec. 4 Modal Split

Dr. Mahmoud Owais

Mode Choice

- In most situations, a traveler has a choice of modes
 - Transit, walk, bike, carpool, motorcycle, drive alone
- Mode choice/mode split determines # of trips between zones made by auto or other mode, usually transit

Modal Split Analysis

- This phase of travel-demand forecasting, we analyze people's decision regarding mode of travel; auto, bus, jeepneys, train, and so on, are analyzed
- Mode usage analysis can be done at various points in the forecasting process
- The most common point is after trip distribution because the information on where trips are going allows the mode usage relationship to compare the alternative transportation services competing for users

- Private
- Taxi
- HOV
- Light Rail
- Heavy rail
- Local bus service
- Express bus service
- Para transit service

Utility and Disutility Functions

- Utility function: measures satisfaction derived from choices
- Disutility function: represents generalized costs of each choice
- Usually expressed as the linear weighted sum of the independent variables of their transformation

$$U = a_0 + a_1 X_1 + a_2 X_2 + + a_r X_r$$

U: utility derived from choice

X_r: attributes

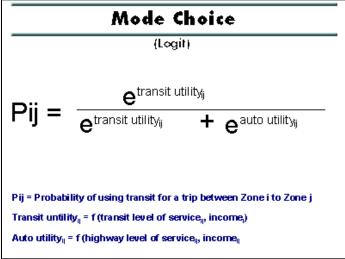
a_r: model parameters

Factors Affecting Mode Split

- Person/household characteristics
 - Auto availability, income, HH size, life cycle
- Trip characteristics
 - Purpose, chaining, time of departure, OD, length
- Land use characteristics
 - Sidewalk/ped facilities, mix of uses at both ends, distance to transit, parking and costs at both ends, density at both ends
- Service characteristics
 - Facility design (HOV, bikes), frequency, congestion, cost (parking, tolls, fares, out-of-pocket costs), stop spacing

Three broad categories of factors that affect the choices that people make are

- 1. The characteristics of the trip makers (e.g. family income, number of autos available, family size, residential density)
- 2. The characteristics of the trip (e.g. trip distance, time of day)
- 3. The characteristics of the transportation system (e.g. riding time, excess time)


Logit Model

- The logit formulation is a share model that divides the persons between the various modes depending on each mode's relative desirability for any given trip.
- Modes are said to be relatively more desirable if they are faster, cheaper, or have other mode favorable features than competitive modes
- The better a mode is, the more utility it has for the potential traveler.

Logit Models

Calculates the probability of selecting a particular mode

$$p(K) = \frac{e^{Uk}}{\sum e^{Uk}}$$

p: probability of selecting mode κ

Logit Model Example

Travel characteristics between two zones

Variable	Auto	Transit	Bike
a_k	-0.46	-0.07	-0.07
t_1	20	30	35
t_2	8	6	0
С	320	100	0

$$U_{\text{auto}} = -0.46 - 0.35(20) - 0.08(8) - 0.005(320) = -9.70$$

$$U_{\text{transit}} = -0.07 - 0.35(30) - 0.08(6) - 0.005(100) = -11.55$$

$$U_{\text{bike}} = -0.07 - 0.35(35) - 0.08(0) - 0.005(0) = -12.32$$

$$U_{auto} = -9.70$$
, $U_{transit} = -11.55$, $U_{bike} = -12.32$

Logit Model:

Notice that auto lost share even though its "utility" stayed the same

$$p(auto) = \underline{e^{Ua}} = \underline{e^{-9.70}} = 0.81$$

$$e^{Ua} + e^{Ut} + e^{Ub} = e^{-9.70} + e^{-11.55} + e^{-12.32}$$

$$p(transit) = \underline{e^{Ut}}_{e^{Ua} + e^{Ub}} = \underline{e^{-11.55}}_{e^{-9.70} + e^{-11.55} + e^{-12.32}} = 0.13$$

$$p(bike) = \underbrace{e^{Ut}}_{e^{Ua} + e^{Ut} + e^{Ub}} = \underbrace{e^{-11.55}}_{e^{-9.70} + e^{-11.55} + e^{-12.32}} = 0.06$$

Example:

The calibrated utility functions for auto and transit travel

Auto:
$$V_a = -0.3 - 0.04 \text{ X} - 0.1 \text{ Y} - 0.03 \text{ C}$$

Transit:
$$V_t = -0.04X - 0.1 Y - 0.03C$$

where:

 V_i = utility function of mode i

X = in-vehicle travel time

Y = out-of-vehicle travel time

C = cost of travel/income

A traffic zone has the following characteristics:

	Auto Travel	Transit Travel
In-vehicle time (min)	15	40
Out-of-vehicle time (min)	5	10
Travel cost (cents)	300	75

What is the probability that a person with an income of \$10,000 will travel by transit?

$$V_a = -0.3 - 0.05(15) - 0.1(5) - 0.03(300/10000) = -1.4$$

 $V_t = -0.04(40) - 0.1(10) - 0.03(75/10000) = -2.6$

Therefore, the probability of the trip maker taking transit is

$$P_{i} = \frac{e^{V_{(i)}}}{\sum_{r=1}^{n} e^{V_{(r)}}} =$$

$$P_t = \frac{e^{-2.6}}{e^{-2.6} + e^{-1.4}} = 0.23$$

$$\underline{\text{or}} P_t = 23\%$$

Example:

A calibrated utility function for travel in a medium-sized city by automobile, bus, and light rail is

$$U = a - 0.002X_1 - 0.05X_2$$

where X_1 is the cost of travel (cents), and X_2 is the travel time (min). Calculate the modal split for the given values.

Mode	a	X_1	X_2
Automobile	- 0.30	130	25
Bus	- 0.35	75	35
Light rail	- 0.40	90	40

If a parking fee of \$1.00 per trip is imposed, what would be the split to the other two modes?

Solution:

Automobile:
$$U_a = -0.30 - 0.002(130) - 0.05(25) = -1.81$$

Bus:
$$U_b = -0.35 - 0.002(75) - 0.05(35) = -2.25$$

Light rail:
$$U_1 = -0.40 - 0.002(90) - 0.05(40) = -2.58$$

$$P_{i} = \frac{e^{V_{(i)}}}{\sum_{r=1}^{n} e^{V_{(r)}}}$$

$$P_a = \frac{e^{-1.81}}{e^{-1.81} + e^{-2.25} + e^{-2.58}} = \frac{0.164}{0.164 + 0.105 + 0.076} = \frac{0.164}{0.345} = 0.475$$

$$P_b = \frac{e^{-2.25}}{0.345} = 0.305$$

$$P_l = \frac{e^{-2.58}}{0.345} = 0.220$$

Summary:

Mode	U	e ^u	P	Percentage
Automobile	- 1.81	0.164	0.475	48
Bus	- 2.25	0.105	0.305	30
Light rail	- 2.58	0.076	0.220	22
Total		0.345	1.000	100

If a parking fee of \$1.00 per trip is imposed, U_a = would be -0.3 - 0.002(230) - 1.25 = - 2.01.

Mode	U	e ^u	P	Percentage
Automobile	- 2.01	0.134	0.425	43
Bus	- 2.25	0.105	0.333	33
Light rail	- 2.58	0.076	0.242	24
Total		0.315	1.000	100

Hence, even a flat parking of \$1.00 makes a 5% difference in automobile ridership.