CE 486 Urban Transportation Planning

Lec. 5 Shortest Path

Dr. Mahmoud Owais

Shortest Path Problems Dijkstra's Algorithm

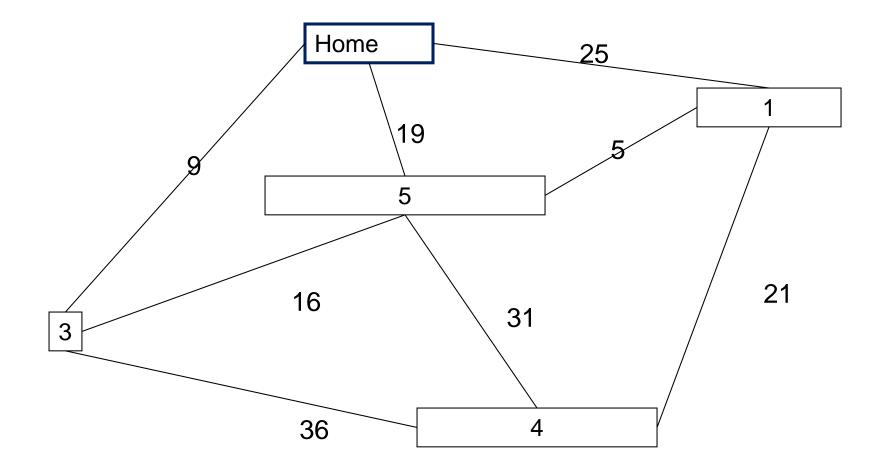
Introduction

- Many problems can be modeled using graphs with weights assigned to their edges:
 - Airline flight times
 - Telephone communication costs
 - Computer networks response times

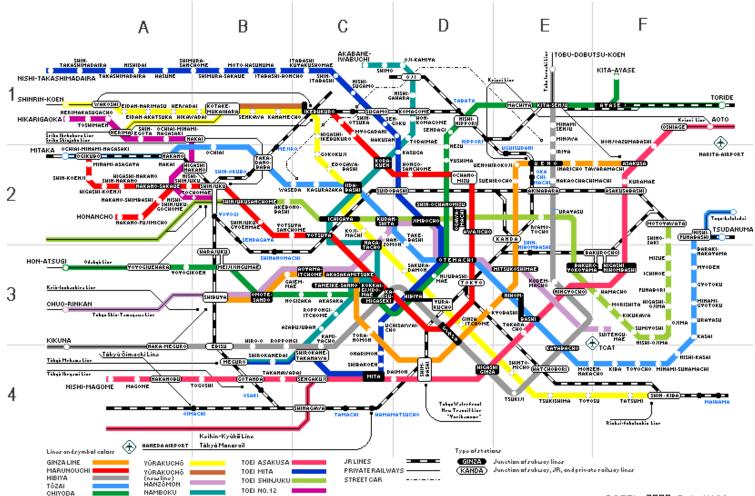
Where's my motivation?

- Fastest way to get to school by car
- Finding the cheapest flight home

Optimal driving time



Tokyo Subway Map



©1996~2000 Pat Willener

Setup:

- G = weighted graph
- In our version, need POSITIVE weights.
- G is a simple connected graph.
 - A <u>simple graph</u> G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges.
- A labeling procedure is carried out at each iteration
 - A vertex w is labeled with the length of the shortest path from a to w that contains only the vertices already in the distinguished set.

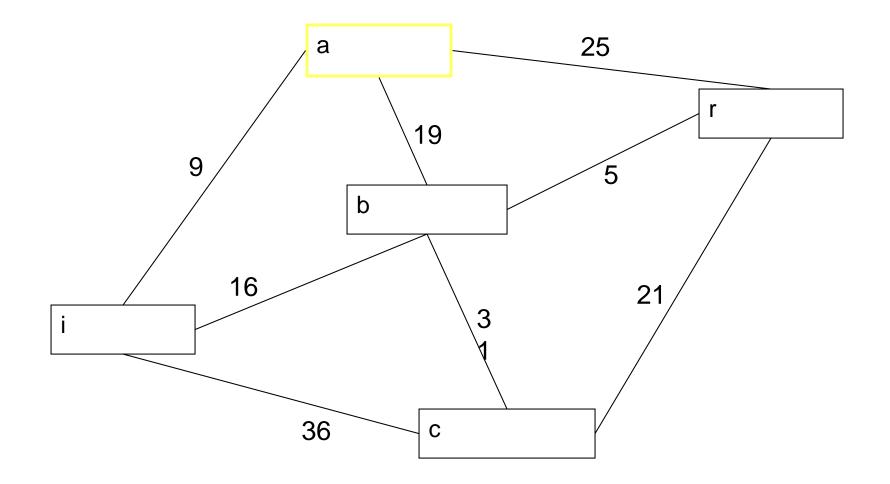
Outline of Algorithm

- Label a with 0 and all others with ∞ . $L_0(a) = 0$ and $L_0(v) = \infty$
- Labels are shortest paths from a to vertices
- S_k = the distinguished set of vertices after k iterations. S₀ = Ø. The set S_k is formed by adding a vertex u NOT in S_{k-1} with the smallest label.
- Once u is added to S_k we update the labels of all the vertices not in S_k

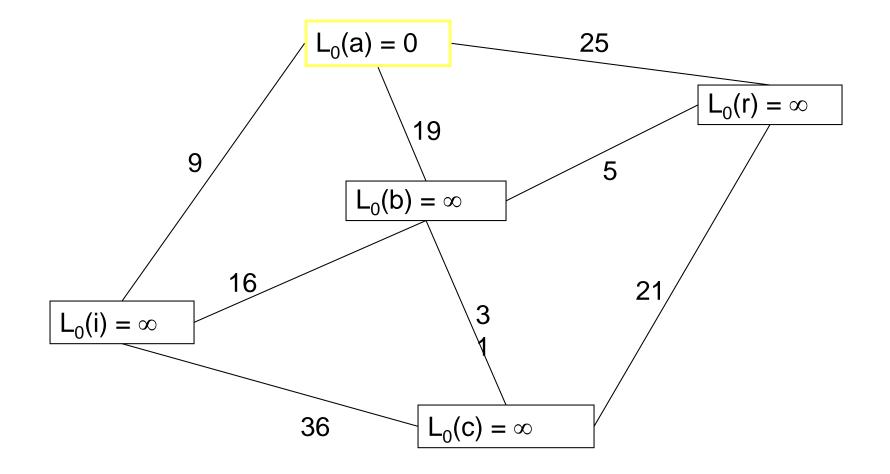
To update labels:

 $L_k(a, v) = min\{L_{k-1}(a, v), L_{k-1}(a, u) + w(u, v)\}$

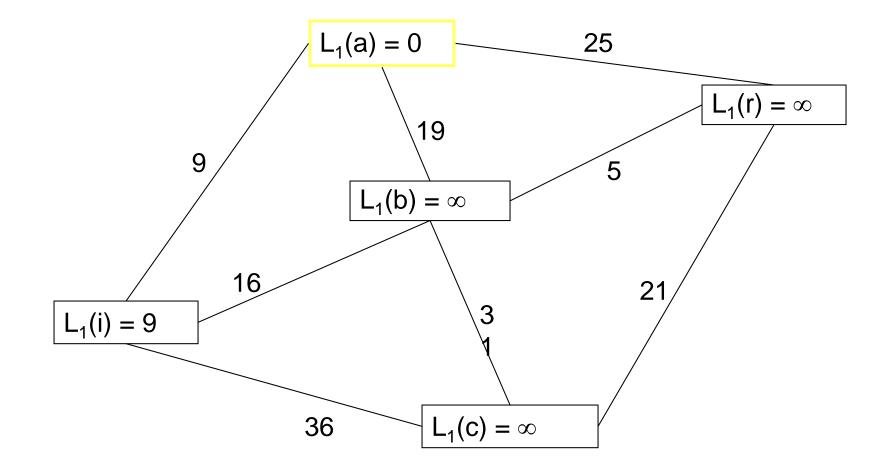
Using the previous example, we will find the shortest path from a to c.



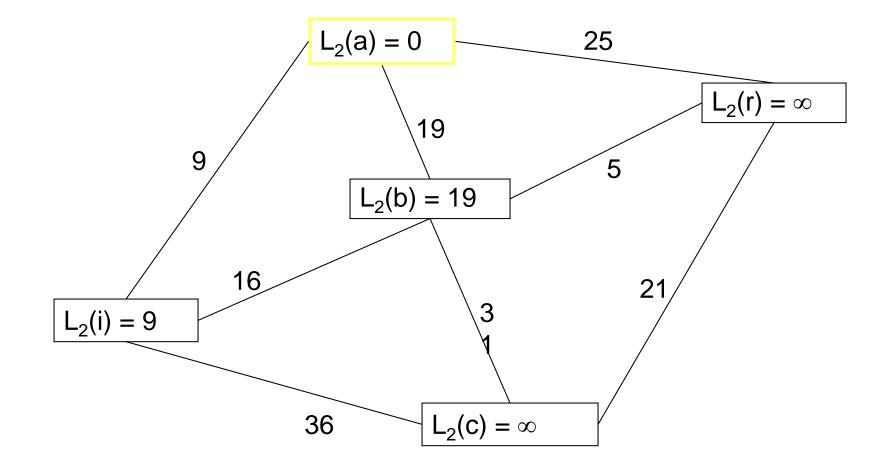
Label a with 0 and all others with ∞ . L₀(a) = 0 and L₀(v) = ∞



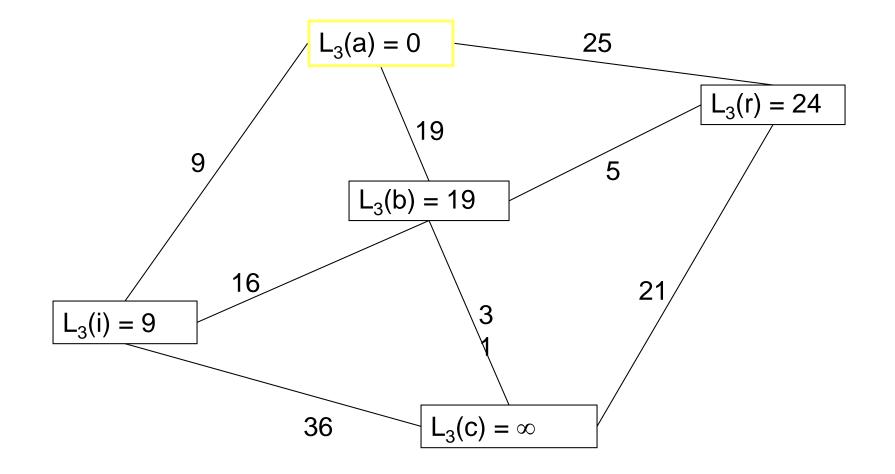
Labels are shortest paths from a to vertices. $S_1 = \{a, i\}$



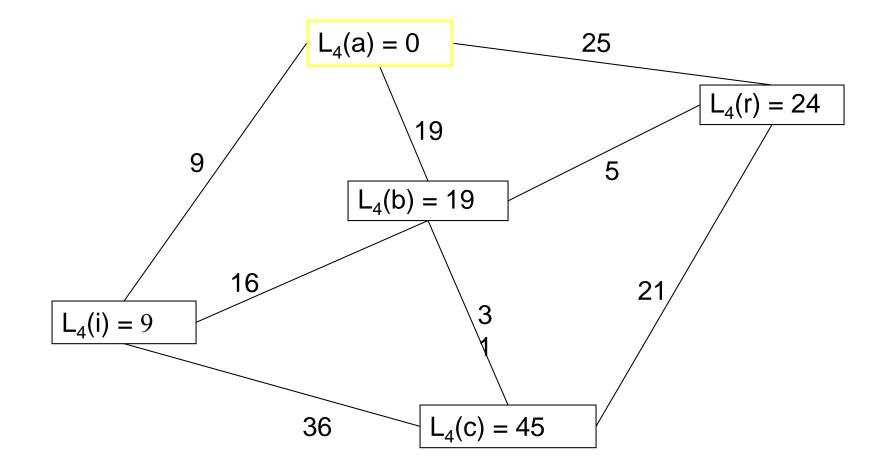
$$\begin{split} L_k(a, v) &= \min\{L_{k-1}(a, v), L_{k-1}(a, u) + w(u, v)\}\\ S_2 &= \{a, i, b\} \end{split}$$



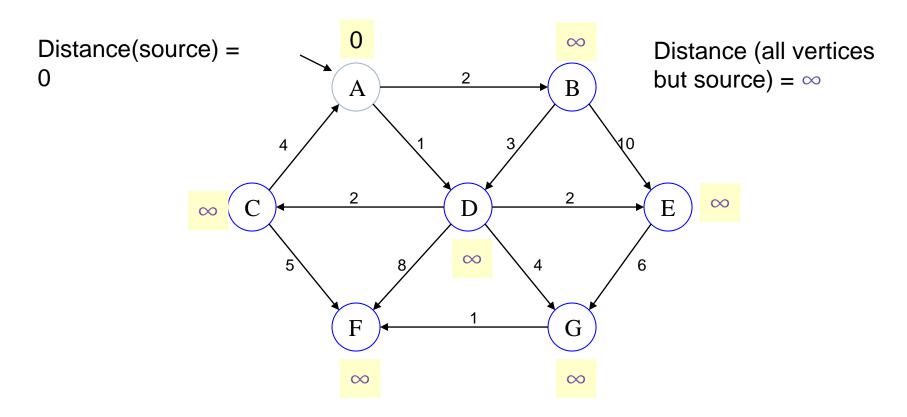
S₃ = {a, i, b, r}



S₄ = {a, i, b, r, c}

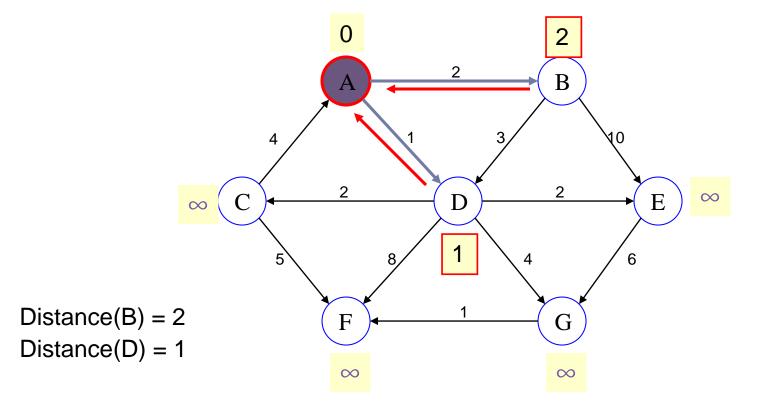


Example2

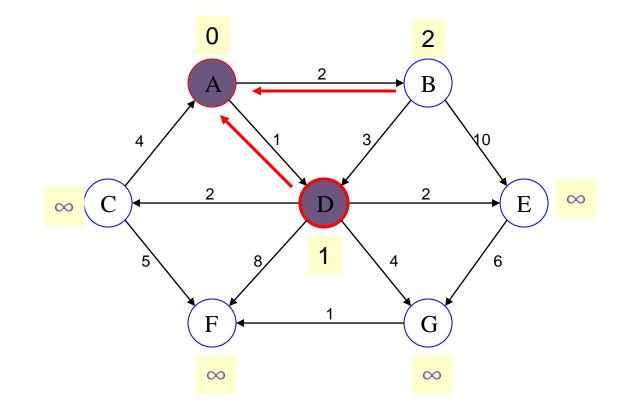


Pick vertex in List with minimum distance.

Example: Update neighbors' distance

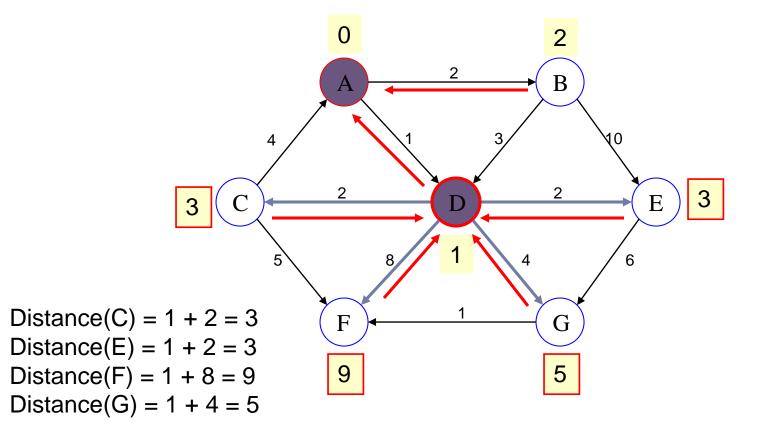


Example: Remove vertex with minimum distance

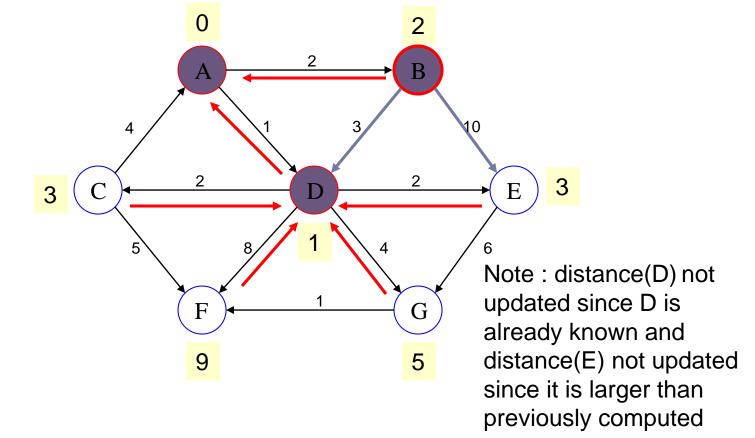


Pick vertex in List with minimum distance, i.e., D

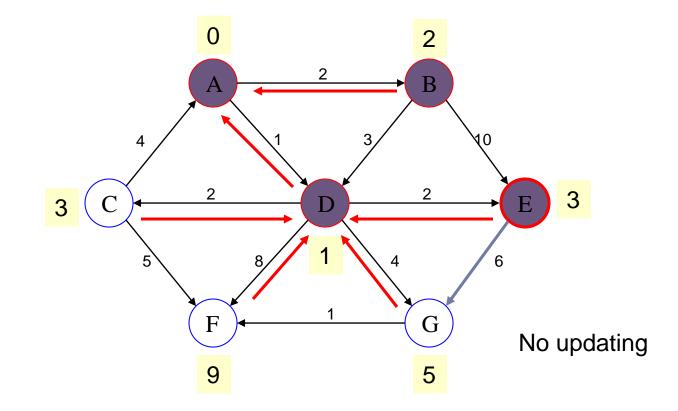
Example: Update neighbors



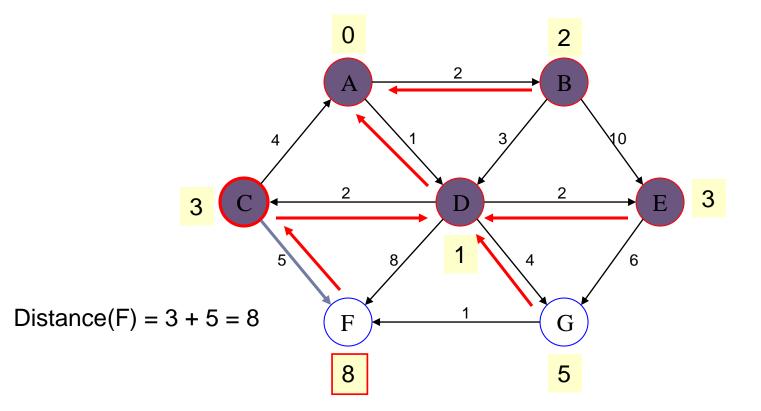
Pick vertex in List with minimum distance (B) and update neighbors



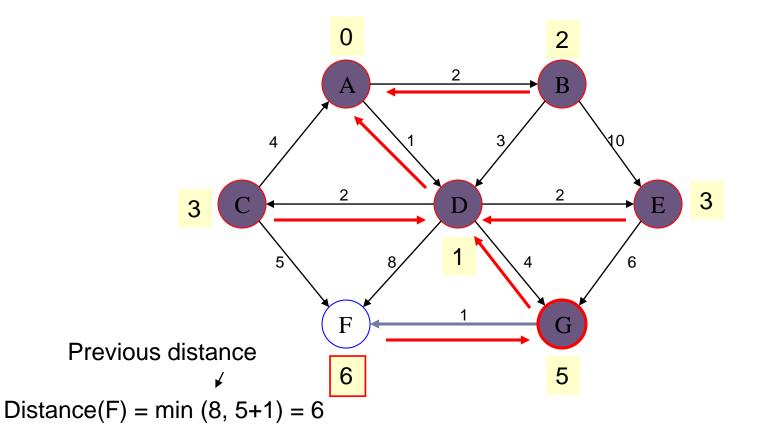
Pick vertex List with minimum distance (E) and update neighbors



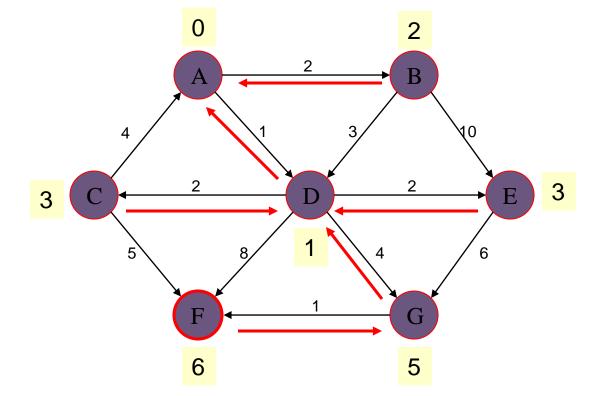
Pick vertex List with minimum distance (C) and update neighbors



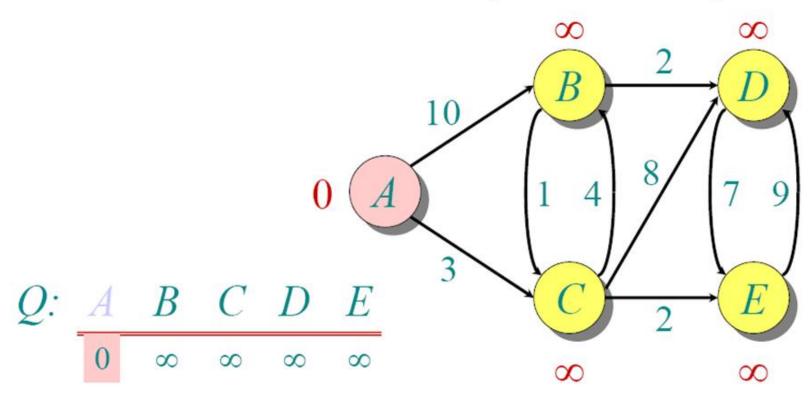
Pick vertex List with minimum distance (G) and update neighbors

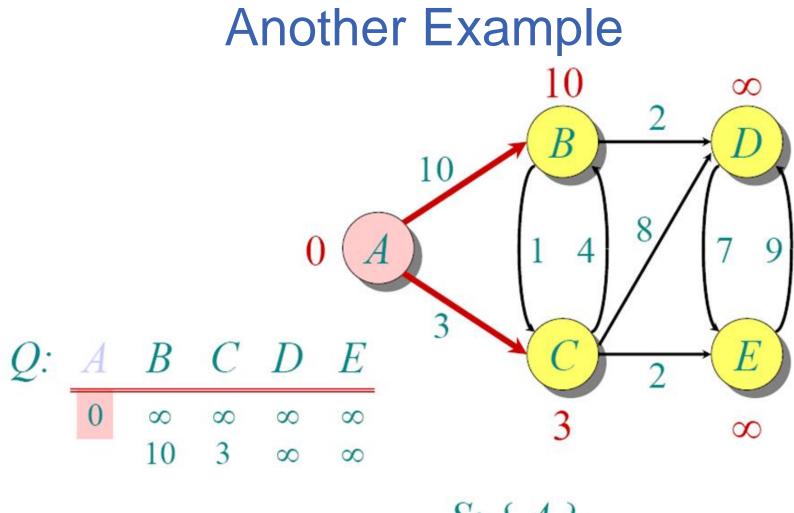


Example (end)



Pick vertex not in S with lowest cost (F) and update neighbors





 $S: \{A\}$

