
CE 486
Urban Transportation Planning

Lec. 5

Shortest Path
Dr. Mahmoud Owais

Shortest Path Problems
Dijkstra’s Algorithm

Introduction

• Many problems can be modeled using graphs
with weights assigned to their edges:

– Airline flight times

– Telephone communication costs

– Computer networks response times

Where’s my motivation?

• Fastest way to get to school by car

• Finding the cheapest flight home

Optimal driving time

Home

3

1

4

5

9

25

19

16

5

21
31

36

Tokyo Subway Map

Setup:

 G = weighted graph

 In our version, need POSITIVE weights.

 G is a simple connected graph.
 A simple graph G = (V, E) consists of V, a nonempty set of vertices, and

E, a set of unordered pairs of distinct elements of V called edges.

 A labeling procedure is carried out at each iteration
 A vertex w is labeled with the length of the shortest path from a to w

that contains only the vertices already in the distinguished set.

Outline of Algorithm

• Label a with 0 and all others
with . L0(a) = 0 and
L0(v) = 

• Labels are shortest paths
from a to vertices

• Sk = the distinguished set of
vertices after k iterations. S0

= . The set Sk is formed by
adding a vertex u NOT in Sk-1
with the smallest label.

• Once u is added to Sk we
update the labels of all the
vertices not in Sk

To update labels:

Lk(a, v) = min{Lk-1(a, v),

Lk-1(a, u) + w(u, v)}

Using the previous example, we will find the shortest path from a to
c.

a

i

r

c

b

9

25

19

16

5

21
3

1

36

Label a with 0 and all others with . L0(a) = 0 and L0(v) = 

L0(a) = 0

L0(i) = 

L0(r) = 

L0(c) = 

L0(b) = 

9

25

19

16

5

21
3

1

36

Labels are shortest paths from a to vertices.

S1 = {a, i}

L1(a) = 0

L1(i) = 9

L1(r) = 

L1(c) = 

L1(b) = 

9

25

19

16

5

21
3

1

36

Lk(a, v) = min{Lk-1(a, v), Lk-1(a, u) + w(u, v)}

S2 = {a, i, b}

L2(a) = 0

L2(i) = 9

L2(r) = 

L2(c) = 

L2(b) = 19

9

25

19

16

5

21
3

1

36

S3 = {a, i, b, r}

L3(a) = 0

L3(i) = 9

L3(r) = 24

L3(c) = 

L3(b) = 19

9

25

19

16

5

21
3

1

36

S4 = {a, i, b, r, c}

L4(a) = 0

L4(i) = 9

L4(r) = 24

L4(c) = 45

L4(b) = 19

9

25

19

16

5

21
3

1

36

15

Example2

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 ∞

∞ ∞

∞

Pick vertex in List with minimum distance.

∞ ∞

Distance(source) =

0
Distance (all vertices
but source) = ∞

16

Example: Update neighbors' distance

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

∞ ∞

1

∞ ∞

Distance(B) = 2

Distance(D) = 1

17

Example: Remove vertex with
minimum distance

Pick vertex in List with minimum distance, i.e., D

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

∞ ∞

1

∞ ∞

18

Example: Update neighbors

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

Distance(C) = 1 + 2 = 3

Distance(E) = 1 + 2 = 3

Distance(F) = 1 + 8 = 9

Distance(G) = 1 + 4 = 5

19

Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex in List with minimum distance (B) and update neighbors

9 5

Note : distance(D) not

updated since D is

already known and

distance(E) not updated

since it is larger than

previously computed

20

Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

No updating

Pick vertex List with minimum distance (E) and update neighbors

21

Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

8 5

Pick vertex List with minimum distance (C) and update neighbors

Distance(F) = 3 + 5 = 8

22

Example: Continued...

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

6 5

Distance(F) = min (8, 5+1) = 6

Previous distance

Pick vertex List with minimum distance (G) and update neighbors

23

Example (end)

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

Pick vertex not in S with lowest cost (F) and update neighbors

6 5

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

Another Example

