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Shortest Path Problems
Dijkstra’s Algorithm



Introduction

• Many problems can be modeled using graphs 
with weights assigned to their edges:

– Airline flight times

– Telephone communication costs

– Computer networks response times



Where’s my motivation?

• Fastest way to get to school by car

• Finding the cheapest flight home
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Tokyo Subway Map



Setup:

 G = weighted graph

 In our version, need POSITIVE weights.

 G is a simple connected graph.
 A simple graph G = (V, E) consists of V, a nonempty set of vertices, and 

E, a set of unordered pairs of distinct elements of V called edges. 

 A labeling procedure is carried out at each iteration
 A vertex w is labeled with the length of the shortest path from a to w 

that contains only the vertices already in the distinguished set.



Outline of Algorithm

• Label a with 0 and all others 
with .         L0(a) = 0 and 
L0(v) = 

• Labels are shortest paths 
from a to vertices

• Sk = the distinguished set of 
vertices after k iterations. S0

= . The set Sk is formed by 
adding a vertex u NOT in Sk-1
with the smallest label.

• Once u is added to Sk we 
update the labels of all the 
vertices not in Sk

To update labels:

Lk(a, v) = min{Lk-1(a, v), 

Lk-1(a, u) + w(u, v)} 



Using the previous example, we will find the shortest path from a to 
c.
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Label a with 0 and all others with .  L0(a) = 0 and    L0(v) = 

L0(a) = 0

L0(i) = 

L0(r) = 

L0(c) = 

L0(b) = 

9

25

19

16

5

21
3

1

36



Labels are shortest paths from a to vertices. 

S1 = {a, i}

L1(a) = 0

L1(i) = 9

L1(r) = 

L1(c) = 

L1(b) = 
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Lk(a, v) = min{Lk-1(a, v), Lk-1(a, u) + w(u, v)}

S2 = {a, i, b}

L2(a) = 0

L2(i) = 9

L2(r) = 

L2(c) = 

L2(b) = 19
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S3 = {a, i, b, r}

L3(a) = 0

L3(i) = 9

L3(r) = 24

L3(c) = 

L3(b) = 19
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S4 = {a, i, b, r, c}

L4(a) = 0

L4(i) = 9

L4(r) = 24

L4(c) = 45

L4(b) = 19
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Example2
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Pick vertex in List with minimum distance.

∞ ∞ 

Distance(source) = 

0
Distance (all vertices 
but source) = ∞ 
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Example: Update neighbors' distance
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Example: Remove vertex with 
minimum distance

Pick vertex in List with minimum distance, i.e., D
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Example: Update neighbors
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Distance(C) = 1 + 2 = 3 

Distance(E) = 1 + 2 = 3 

Distance(F) = 1 + 8 = 9 

Distance(G) = 1 + 4 = 5
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Example: Continued...
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Pick vertex in List with minimum distance (B) and update neighbors
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Note : distance(D) not 

updated since D is 

already known and 

distance(E) not updated 

since it is larger than 

previously computed



20

Example: Continued...
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No updating

Pick vertex List with minimum distance (E) and update neighbors
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Example: Continued...
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Pick vertex List with minimum distance (C) and update neighbors

Distance(F) = 3 + 5 = 8
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Example: Continued...
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Distance(F) = min (8, 5+1) = 6

Previous distance

Pick vertex List with minimum distance (G) and update neighbors
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Example (end)
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Another Example
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