CE 380

Highway and Traffic Engineering Lec-10

Pavement Design

Dr. Mahmoud Owais

Design Stages

1. Aggregates Blend Mix

2. Asphalt mix Design

3. Pavement Layers Design

1- Aggregates Blend Mix

Sieve Size		1"	0.5"	No.4	No.10	No.40	No.80	No.200
Р%	C.A.	100	62	20	10	7	3	2
	F.A.	100	100	100	92	55	38	2
	M.F.	100	100	100	100	100	98	89
	S.L.	100	70-85	40-55	30-45	20-30	12-22	5-10

Proportioning the Aggregates

Sieve Size		1"	0.5"	No.4	No.10	No.40	No.80	No.200
Р%	C.A.	100	62	20	10	7	3	2
	F.A.	100	100	100	92	55	38	2
	M.F.	100	100	100	100	100	98	89
	S.L.	100	70-85	40-55	30-45	20-30	12-22	5-10
	_							

- 1. Take the average of standard limits at No. 10
- 2. This average represents the percentage of sand in your mix (P_2) .
- 3. Assume mineral filler 6% (P_3).
- 4. The remaining is the coarse (gravel) percentage (P_1) .
- 5. Calculate the new proportions of your mix:

 $P_{sieve no.} = P_1 \times coarse passing percent + P_2 \times fine passing percent + P_3 \times Mineral passing percent$

Adjust the proportions of aggergates due to Bitumen Mixing

1. Determine the percentage of bitumen by weight $P_{AC.}$

2.
$$P_{1 \text{ new or final}} = P_{1 \text{ old}} \times (1 - P_{AC})$$

3.
$$P_{2 \text{ new or final}} = P_{2 \text{ old}} \times (1 - P_{AC})$$

4.
$$P_{3 \text{ new or final}} = P_{3 \text{ old}} \times (1 - P_{AC})$$

2- Asphalt Mix Design Marshall Mix Design Steps

- 1. Create aggregate blend to meet gradation specifications.
- 2. Establish mixing and compaction temperatures from the viscosity-temperature chart.
- 3. spanning the expected optimum asphalt content.
- 4. Determine the relative density of each specimen and the mix volumetrics (G_m , VTM, VMA, VFA).
- 5. Measure the performance properties of the each specimen $(140^{\circ}F)$.

Marshall Hammer

Stability and Flow Test

Stability and Flow Test

(The Asphalt Institute Procedure)

3- Pavement Layers Design AASHTO 1993

- Based on the results of AASHTO road test conducted on Ottawa, Illinois.
- It is an effort that was carried out with the cooperation of all states and several industry groups.
- Many types of test section were prepared and tested.

AASHTO Design Method/ Design Considerations

- This method Incorporates various design inputs including :
 - 1. Pavement Performance (Loss of serviceability) ΔPSI .
 - 2. Traffic (W_{18})
 - 3. Subgrade soil properties (M_r)
 - 4. Materials of constructed Layers (a_i)
 - 5. Environmental effects
 - 6. Drainage
 - 7. Reliability

Pavement Performance

<u>1. Structural performance</u>: related to the physical condition of the pavement with respect to the factors that have negative impact on the capability of the pavement to carry the traffic load.

Road strength :cracking, faulting, raveling, and so forth.

2. Functional performance: is an indication of how effectively the pavement serves the user.

riding quality.

Pavement Serviceability Index (PSI)

- Pavement ability to serve traffic during its life.
- Initial PSI = F(Pavement type & construction quality) [4.2 for flexible]).
- Terminal PSI = Lowest index that is tolerable for a pavement before it require rehabilitation [2.5 for major highways & 2.0 for other roads].

$\Delta PSI =$

∆PSI

5 "Just constructed"

Traffic

The total load applications due to all mixed traffic within the design period are converted to 18-kip ESAL (W_{18}):

Or given

Subgrade soil properties

• Roadbed Resilient Modulus (M_r):

Resilient modulus is a fundamental Soil property that is similar in concept to the modulus of elasticity.

AASHTO method used the subgrade M_r to define its property.

Given in psi (ib/inch²)

 $M_r = 1500 \times CBR$

Materials of Constructed Layers

- Subbase Construction Materials
 - Quality of the material is determined in terms of the layer coefficient, (a3).
- Base Course Construction Materials
 - Materials should satisfy general requirements for base course.
 - Quality of the material is determined in terms of the layer coefficient, (a2).
- Surface Course Construction Materials
 - Usually HMA with dense-graded aggregate and max size of 1".
 - Quality of the material is determined in terms of the layer coefficient, (a1).

Materials of construction (AC surface), a_1

Reliability (R)

- It provides a predetermined level of assurance (R) that the pavement section will survive the period for which they were designed.
- Reliability Design Factor: Accounts for chance variations in both traffic prediction & performance prediction.

Functional classification	Reliability level (%)			
	Urban	Rural		
Interstate and other freeways	85-99.9	80-99.9		
Principal arterials	80-99	75-95		
Collectors	80-95	75-95		
Local	50-80	50-80		

Overall S_o

 So: Overall standard deviation that accounts for standard deviation (or variation) in materials & construction, chance variation in traffic prediction, and normal variation in pavement performance.

$S_o = 0.45$ for flexible pavement (0.40 - 0.50)

Structural Number (SN)

The objective of the AASHTO method is to determine a flexible pavement structural number (SN) adequate to carry the projected design ESAL.

$SN = a_1 D_1 + a_2 D_2 + a_3 D_3$

- a_i: Coefficient of layer i
- D_i: Thickness of layer i

SN for each layer

• $SN_1 = a_1 D_1$

(M_{r2})

• $SN_2 = a_1 D_1 + a_2 D_2$

(M_{r3})

• $SN_3 = a_1 D_1 + a_2 D_2 + a_3 D_3$

(M_{r subgrade})

General Procedure for Selection Layer Thickness

