CE 380

Highway and Traffic Engineering Lec-11

Traffic Variables

Dr. Mahmoud Owais

Types of Traffic variables

Main Traffic variables:

1. Traffic flow
2. Traffic Speed
3. Traffic Density

Secondary:

- Distance headway (S) or Time headway
- Clearance or gap

TYPES OF FLOW

Traffic flow is usually classified as either
a. Uninterrupted Flow
b. Interrupted Flow

A. UNINTERRUPTED FLOW

 road where vehicles are not required to stop by any cause external to the traffic stream

B. INTERRUPTED FLOW

1. FLOW RATE OR VOLUME

- number of vehicles passing a point during a specified period of time
- may be expressed as:

$$
q=\frac{N}{T}
$$

where $q=$ flow rate in vehicles/min or vehicles/day
=volume in vehicles/hr
$\mathrm{N}=$ no. of vehicles
T=observation period

P.C.E's

- Passengers Car Equivalent units
- Car = 1
- Taxi = 1 or 1.25
- Micro bus or van = 1.5
- Bus = 2 or 2.5
- Truck $=3$

EXAMPLE

Suppose a 15 minute count of vehicles bound for Manila was conducted at a particular location on Quezon Avenue. A summary is shown in the table below.

TYPE	15-MINUTE COUNT	EQUIVALENT P.C.E'S
Car	420	
van	300	
Bus	16	
Truck	28	

The total number of vehicles counted in 15 minutes is Therefore, the flow rate is $q=\ldots \times 4=3056$ P.C.E.'s per hour.

2. SPEED

-rate of motion in distance per unit time

Time Mean Speed

Also known as spot speed, time mean speed is the arithmetic mean of the speeds of vehicles passing a point within a given interval of time and is given by

$$
u_{i}=\frac{3.6 \Delta x}{t_{i}}
$$

where $\quad u_{i}=$ speed of vehicle i, in $k p h \Delta x=$ trap length, in meters
$t_{i}=$ time It takes to traverse trap length, in seconds

$$
u_{t}=\frac{1}{n} \sum_{i=1}^{n} u_{i}
$$

where $\quad u_{t}=$ individual speed of vehicles observed within time, T
$n=n o$. of measured vehicles

EXAMPLE

The speeds of 25 cars were observed. 10 cars were noted to travel at $35 \mathrm{kph}, 8$ cars at $40 \mathrm{kph}, 2$ cars at 50 kph , and 5 cars at 45 kph . Assuming that each car was traveling at constant speed, determine the time mean speed.

Using $\boldsymbol{u}_{t}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{u}_{i}$,

$$
u_{t}=\frac{(10 x 35)+(8 \times 40)+(2 \times 50)+(5 \times 45)}{25}=39.8 \mathrm{kph}
$$

Space Mean Speed

Space mean speed is defined as the harmonic mean of speeds passing a point during a period of time

$$
u_{s}=\left(\frac{n L}{\sum t_{i}}\right) \quad \text { or } \quad u_{s}=\left(\frac{n}{\sum \frac{1}{u_{i}}}\right)
$$

EXAMPLE

The speeds of 25 cars were observed. 10 cars were noted to travel at $35 \mathrm{kph}, 8$ cars at $40 \mathrm{kph}, 2$ cars at 50 kph , and 5 cars at 45 kph . Assuming that each car was traveling at constant speed, determine the space mean speed.

Density

-number of vehicles in a given length of road at an instant point in time

$$
k=\frac{n}{l}
$$

where
$k=$ traffic density in vehicles per unit distance, $n=$ number of vehicles occupying some length of roadway at some specified time, and I= length of roadway.

TIME HEADWAY
Time interval between passage of consecutive vehicles at a specified point on the road

The average time headway and flow rate are related as follows

$$
h_{t}=\frac{1}{q}
$$

DISTANCE HEADWAY SPACING

Distance between two vehicles measured from the front bumper of the
vehicle to that of another and is
computed as the inverse of density

$$
s=\frac{1}{k}
$$

GAP OR CLEARANCE

L

Traffic Variables Relationships RELATIONSHIP OF FLOW, SPEED AND DENSITY

A relationship exists among the three most important traffic variables: flow rate, space mean speed and density.
a. Observed Relations
b. Empirical Relations

A. OBSERVED RELATIONS

Speed-Density Relation

Volume-Density Relation

Speed-Volume Relation

Master Relationship

$$
q=u_{s} k
$$

B. EMPIRICAL RELATIONS

Speed-density relation

Volume-density relation

Volume-speed relation

