CE 380 HIGHWAY AND TRAFFIC ENGINEERING

Lec. 6
Vertical alignments

Dr. Mahmoud Owais

Components of Highway Design

Horizontal Alignment

Vertical Alignment

Profile View

Vertical Alignment \& Topography

Vertical alignment

The vertical alignment is composed of a series of straight-line gradients connected by curves, normally parabolic in form. These vertical parabolic curves must therefore be provided at all changes in gradient. The curvature will be determined by the design speed, being sufficient to provide adequate driver comfort with appropriate stopping sight distances provided. .

Example of typical vertical alignment

Vertical Alignment - Overview

Properties of Vertical Curves

Change in grade: $A=G_{2}-G_{1}$
where G is expressed as \% (positive /, negative \backslash)
For a crest curve, A is negative.
For a sag curve, A is positive.

Properties of Vertical Curves

Characterizing the curve:
Rate of change of grade: $r=\left(g_{2}-g_{1}\right) / L \quad$ where,
g is expressed as a ratio (positive /, negative \backslash)
L is expressed in feet or meters

Properties of Vertical Curves

Point elevation (meters or feet):

$$
\begin{aligned}
& y=y_{0}+g_{1} x+1 / 2 r x^{2} \quad \text { where }, \\
& \\
& y_{0}=\text { elevation at the BVC (meters or feet) } \\
& g=\text { grade expressed as a ratio (positive /, negative } \backslash \text {) } \\
& x=\text { horizontal distance from BVC (meters or feet) } \\
& r=\text { rate of change of grade expressed as ratio (+ sag, - crest) }
\end{aligned}
$$

Properties of Vertical Curves

Properties of Vertical Curves

Properties of Vertical Curves

Example:
$G_{1}=-1 \% \quad G_{2}=+2 \%$
Elevation of $\mathrm{PI}=125.00 \mathrm{~m}$
Station of EVC $=25+00$
Station of $\mathrm{PI}=24+00$

Station of low point?
$x=-\left(g_{1} / r\right)$
$x=-([-0.01] /[0.00015 / \mathrm{m}])$
$x=66.67 \mathrm{~m}$

Station $=[23+00]+67.67 \mathrm{~m}$
Station 23+67

Properties of Vertical Curves

Example:
$G_{1}=-1 \% \quad G_{2}=+2 \%$
Elevation of $\mathrm{PI}=125.00 \mathrm{~m}$
Station of EVC $=25+00$
Station of $\mathrm{PI}=24+00$

Elevation at low point?
$y=y_{0}+g_{1} x+1 / 2 r x^{2}$
$y_{0}=$ Elev. BVC
Elev. $\mathrm{BVC}=$ Elev. $\mathrm{PI}-g_{1} \mathrm{~L} / 2$
Elev. $B V C=125 \mathrm{~m}-[-0.01][100 \mathrm{~m}]$
Elev. $B V C=126 \mathrm{~m}$

Properties of Vertical Curves

Example:
$G_{1}=-1 \% \quad G_{2}=+2 \%$
Elevation of $\mathrm{PI}=125.00 \mathrm{~m}$
Station of EVC $=25+00$
Station of $\mathrm{PI}=24+00$

Elevation at low point?

$$
\begin{aligned}
y= & y_{0}+g_{1} x+1 / 2 r x^{2} \\
y= & 126 \mathrm{~m}+[-0.01][66.67 \mathrm{~m}]+ \\
& 1 / 2[0.00015 / \mathrm{m}][66.67 \mathrm{~m}]^{2} \\
y= & 125.67 \mathrm{~m}
\end{aligned}
$$

Properties of Vertical Curves

Example:
Elevation at station 23+50?
$G_{1}=-1 \% \quad G_{2}=+2 \%$
Elevation of $\mathrm{PI}=125.00 \mathrm{~m}$
Station of EVC $=25+00$
Station of $\mathrm{PI}=24+00$

$$
\begin{aligned}
& y=126 \mathrm{~m}+[-0.01][50 \mathrm{~m}]+ \\
& 1 / 2[0.00015 / \mathrm{m}][50 \mathrm{~m}]^{2} \\
& y=125.69 \mathrm{~m}
\end{aligned}
$$

Elevation at station 24+50?

$$
\begin{aligned}
& y=126 m+[-0.01][150 \mathrm{~m}]+ \\
& 1 / 2[0.00015 / \mathrm{m}][150 \mathrm{~m}]^{2} \\
& y=126.19 \mathrm{~m}
\end{aligned}
$$

Design of Vertical Curves

- Determine the minimum length for a given design speed:
- Sufficient sight distance
- Driver comfort
- Appearance

Design of Vertical Curves

Crest Vertical Curve

- If sight distance requirements are satisfied then safety, comfort, and appearance will not be a problem.

Design of Vertical Curves

Crest Vertical Curve

Equation:

From AASHTO:

$$
\begin{aligned}
& h_{1} \approx 3.5 \mathrm{ft} \\
& h_{2} \approx 0.5 \mathrm{ft} \text { (stopping sight distance) } \\
& h_{3} \approx 4.25 \mathrm{ft} \text { (passing sight distance) }
\end{aligned}
$$

Design of Vertical Curves

Sag Vertical Curve

- Stopping sight distance not an issue. What are the criteria?
- Headlight sight distance

$$
\begin{aligned}
& S \leq L \\
& L=\frac{S^{2}\left(g_{2}-g_{1}\right)}{4+3.5 S} \\
& S \geq L \\
& L=2 S-\frac{4+3.5 S}{g_{1}-g_{2}}
\end{aligned}
$$

- Rider comfort
- Height clearance

Dee747 at picasaweb.google.com

