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Air contamination becomes an urgent problem to be considered as a result of the rapid growth in traffic all over the world.
Traffic emissions differ from vehicle to vehicle depending on the vehicle type, production year, fuel octane number, and periodical
maintenance of the vehicle. The majority of drivers do not revise their harmful vehicles emissions regularly. Therefore, effective
tracking of high-emitting vehicles can be an important solution for reducing traffic air pollution. This study proposes a location
strategy for vehicle remote sensing monitors aided with ID-plate recognizer to capture any violated vehicle emissions. The problem
is formulated into a graph theory problem, and then a novel adapted metaheuristic algorithm is used to solve the problem. The
methodology, using a benchmark problem, has managed to solve the problem to the optimality. Moreover, its robustness is measured

statistically.

1. Introduction

Since the middle of the past century, traffic has grown
tremendously all over the world. This growth led to many pos-
itive consequences for people social and economic aspects.
However, the environment was prone to the major impact.
On-road motor vehicles are one of the largest contributors
to air pollution in urban environments [1]. Vehicle emissions
contain a vast number of pollutants, some with toxicological
substances [2].

Therefore, comprehensive regulations and incentive pro-
grams have been set to reduce vehicle emissions despite
increased economic load on the drivers [3]. In order to
enforce these regulations to mitigate air pollution, the mon-
itoring of on-road vehicle emissions is really an urgent task.
The exhaust from vehicles contains carbon monoxide (CO),
hydrocarbons (HC), nitrogen oxide (NO), particulate matter
(PM), and many other toxic substances. Some vehicles emit
these substances with high levels which exceed the allowable
threshold due to the carelessness of the owners in revising
their vehicles periodically or even using the appropriate type
of fuel (economic aspects) [4]. For example, a case study of
California vehicles noted that high-emitting vehicles would

account for up to 6% of vehicle population and vehicle miles
traveled, yet they are expected to contribute to more than 75%
of exhaust and 66% of evaporative emissions in 2030 [5].

Strict regulations with a real-time ticket for violating
vehicles would force drivers to check their cars’ emissions
regularly. The experienced behavior of drivers towards speed
violation and unfasten seat belts tickets may support this
claim [6]. Therefore, the existence of the flowing surveillance
system on a road section may be beneficial; see Figure 1. The
designed system aims to monitor simultaneously each vehicle
ID and its emissions. This would help to make a record of
each passing vehicle’s emission and consequently detect the
violated emissions [7].

Vehicle emission remote sensing is extensively studied in
the past decades. It proved itself an effective surveillance tool
to identify high CO emitting vehicles [8]. It is also used to
detect CO,, HC, NO, and PM emissions [9]. The accuracy of
such a surveillance system is reasonable after using some sort
of scaling factors [10]. Hence, it could be used to judge the
emissions of vehicles on the deployed road section.

The stated system cost seems to be high to be provided at
each link on a transport network. So, the problem arising here
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FIGURE 1: Sensors system on a road section for vehicle emission remote sensing.

is how to determine the minimum number of sensor locations
to monitor every vehicle on the network once at least. The
problem solution would guarantee the full observation of
traffic emissions through the network. Real-time observation
would accelerate the detection of violated vehicles and thus
ticketing policy or warning messages would force the vehicle
owner to fix the deficiency that is causing this emission
violation.

In this study, a novel strategy is developed to minimize
the required number of emission sensors (i.e., the system
proposed in Figure 1) to be installed on a network to intercept
all the traffic (i.e., every vehicle once at least). The problem
is formulated as a constraint integer programming model.
The complexity of solving the formulated model with exact
methods is shown. Therefore, a proposed strategy is presented
as an alternative effective solution which depends on simple
stochastic iterative rules (metaheuristics). The structure of
the paper is as follows. Section 2 presents the state-of-the-
art. Section 3 provides the problem formulation and basic
input data. Section 4 illustrates the proposed methodology. In
Section 5, areal case study is used to evaluate and validate the
proposed methodology. Section 6 presents the conclusion.

2. State-of-the-Art

The stated problem is relatively new; however, the sensor
location problem (SLP) has been studied extensively for the
last three decades. As a matter of logic, providing sensors
on all network links is not a practical strategy. Consequently,
attempts are made to specify the best number and locations of
sensors to serve the objective of their installation. Therefore,
there is a need to determine the purpose of sensors installing
on the network and the type of sensors before developing a
sensor location strategy.

In the next review, the focus would be directed to
each type of sensors with respect to its application and the
proposed location model. The first used type of sensors is
the traffic counting sensor which is deployed to automatically
count the traffic at a road section [11]. The counting data

of different road sections (links) is analytically analyzed to
predict the Origin/Destination (O/D) matrix [12]. In [13], a
theoretical investigation of the reliability of an estimated O/D
trip matrix from traffic counting on a portion of network
links is made. This work is a pioneer of its research approach
which opened the gate for many later studies to develop
different SLP models in the attempt to target the most
accurate O/D matrix [14]. In [15], four location rules are
stated as a rule of thumb to judge the quality of a number
of counting sensors set if used to estimate the O/D matrix.
To find the optimum sensors number and locations that
achieve these rules, different metaheuristics are used such
as genetic algorithms [16], greedy algorithms [17], distance-
based genetic algorithm [18], compressed sensing [19], and
randomized priority search [20-25].

Passive traffic counting sensors are developed to image
sensors (videos sensors) that can be placed at network
intersections (nodes) to monitor the traffic turning ratios.
This would help in observing the flow on all links if the
sensors are provided at every node. Interestingly, the number
of required sensors to achieve the full flow observability could
be decreased with the aid of conservation flow concept at
nodes (inflow = outflow). In [14, 26], mathematical formu-
lations with both exact and heuristic solution algorithms are
presented for this location problem.

Vehicle identification sensor (plate-ID recognizer) is
another type of sensors which not only counts the vehicles
but also records the vehicle plate-ID. This manages to track
the links visited by each vehicle which helps the proposed
models to reconstruct different paths. In [27, 28], the sensors
are placed to uniquely identify flow paths. In [29], it is proved
that the same problem could be solved by a fewer number
of sensors if the sensors are able to arrange the visited links
chronologically.

Time and speed sensors are the logistic type of sensors
which could provide real-time information about traffic
conditions. In [30], the SLP is optimized for the travel time
estimation on a single road section. It regards the existence
of advanced communication between vehicles and the infras-
tructure in addition to the vehicle to vehicle connection. The



Journal of Advanced Transportation

FIGURE 2: Small example network.

assumptions used within the formulated model enhance the
results dramatically.

Although extensive research has been conducted to ana-
lyze the counting sensors location problem, only a few analyt-
ical studies dealt with emission sensor location problem. To
the best of our knowledge, there is no study oriented to solve
this problem except [31] in which the problem of emission
remote sensing monitors is addressed graphically. Thus, there
is a need to develop new mathematical formulations and
solution algorithms which may provide better performances
in solving the novel topic.

The contribution of this work is concluded in the follow-
ing points:

(i) An integer mathematical formulation is developed
for the stated problem. It depends only on the path
enumeration for network demand node pairs and
does not require any data about the O/D matrix flow
to intercept each vehicle.

(ii) A novel metaheuristic algorithm is developed to make
the model applicable for large scale-networks.

(iii) Besides, the methodology has managed to solve the
case study to the optimality (compared with an exact
method solution), and it gives a good statistical
performance.

3. Problem Formulation

3.1. Input Data. Considering a given directed road network,
G = (V, L), where V is the set of vertices which are connected
by the set of links L = {;,1,,...,1,,...,1,}. Thereisaset W =
{1,2,...,i,...w} containing every demand node pair (i), i.e.,
every pair of vertices with interchangeable flow. Each link is
weighted with its travel time. The network path enumeration
is arequirement for the developed sensor location model. The
k-shortest path is used to generate all possible paths between
each node pair [26]. The algorithm termination criterion is
set to a defined number of (k) paths or to the path with
length more than 1.5 the shortest path time. According to the
vast expertise of transportation planners in network loading
scenarios, routes with more than 1.5 the shortest path time
are considered circuitous for travelers [27]. For each demand
node pair (i) all (hy;) paths are stored in the set H;. At last, a
link-path incidence matrix is generated; see (1).

3
Emission monitoring
system
6
Path-Link incident matrix:
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3.2. Mathematical Formulation. To build up the proposed
model, let us consider a small network made of eight vertices,
two of which are demand node pair (O&D); see Figure 2. The
node pair is connected by a numerous number of paths. It
can be identified with different link combinations to intercept
all these paths. The minimum number of chosen links is two
(4-D and 6-D). Now, the problem clearly could be stated as
finding the minimum number and location of links that no
path can bypass. In other words, try to cover all network paths
by, at least, one link of each path.

Mathematically the considered problem would be repre-
sented as follows:

n
Minimize Z z, 2)

a=1
n

st. Y &pnz.21, VmeH,ieW (3)
a=1

Z,, O € 10,1} (4)
m € [0,k], a € [1,n] (5)

where z, is dummy variable = 1 if the sensor is located on a
link (a) and 0 otherwise; &), ; is dummy variable = 1 if path
(h,,;) contains link (a) and 0 otherwise. H; is the set of all
feasible paths connecting the node pair (i). Equation (2) is
the objective function of minimizing the number of required
remote emission sensing monitors. Constraint (3) stipulates
the coverage rule of chosen locations in order to monitor all
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FIGURE 3: Illustrative Path-Link incident matrix example.

probabilities).

1. Build up the Path_Link incident matrix (P).
2. Set the optimal solution §* = @

3. Set the solution set to be empty S = @

17. return §*
18. End_Algorithm

Input data: all generated paths, network structure, iteration number (It.n), Selection, Mutation and Elitism

4. for iteration = I to It.n do

5 Leta copy P* == P

6. Set R € P* to be the set of uncovered paths: R = k x w

7. While R # @ do

8 update links weights: U, = ¥, ¥, 8¢, k&w € P*

9. sort the links in descending order according their weights.

10. choose the first link with the Selection probability, if not go to the next link until picking one.
11. change the selected link randomly according to the Mutation probability then add it to S

12. update P” by deleting the covered rows by the selected link and the columns with no contributions.
13. end while

14. update S*

15. Choose a percentage of S randomly according to Elitism probability as a part of next iteration.

16.  end for

ALGORITHM 1: Pseudocode.

the traffic paths. The variables’ domains are defined in (4) and
(5).

The presented model in (2)-(5) is an integer constraint
programming model. This formulation proved to be NP-
hard complexity in [32]. Existing exact methods could solve
it to reasonable scale; however, large scale problems still
constitute an obstacle for these methods. Heuristic methods
provide an alternative way for the solving process. In the next
subsections, an effective metaheuristic method is driven to
solve the problem.

3.3. Direct Search. In this section, the optimality of the
direct search method is examined through a small illustrative
example. For a given incident matrix between the network
paths and links, shown in Figure 3, the matrix represents
a network with six links and two node pairs. For each
node pair, three paths are generated. If one could wisely
choose links (columns) that cover paths (rows), the optimal
or near optimal solution would be found. It is apparent
that the wisest decision is to select link (I,) at first for
installing the sensor system (the highest covering link). Three
rows and four columns would be left (I; and I; have no

contribution so they are erased). To cover the remaining
rows, I}, I, and I; should be selected. This procedure has led
to a feasible solution with four links. However, the optimal
solution is three (I}, [,, and ;) which might be obtained with
another arrangement of the selection. In the next section, the
methodology follows the same selection procedure; however,
some operators of perturbation are introduced not to get
trapped in the aforementioned local optimum.

4. Methodology

The proposed methodology depends on heuristics that would
assign a weight to each link according to the number of
covered paths. Then a selection procedure would be guided
with these weights. Three operators of perturbation through
different iterations are used to make the methodology more
diverse with the aim of obtaining the optimal solution.
The three operators are selection, mutation, and elitism
probabilities. The solution methodology steps are as stated in
Algorithm 1.

The solution methodology begins with creating the inci-
dent matrix as in Figure 2. Each link is assigned a weight equal
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TABLE 1: Methodology parameters calibration.

Parameter Minimum level Maximum level Increment step Selected value
Selection % 50 100 10 90
Mutation % 0 25 5 5
Elitism % 0 50 5 20
Number of Max. iterations 10 500 50 100
Number of generated paths between each node pair (i) 10 1 7

TABLE 2: Link set structure for two solutions with different path settings.

Solution I

generated paths =1

Solution IT
generated paths =7

Links:

9,10, 11, 12, 14, 15, 37, 39, 59, 73

Links:
1,2,3,56,78,9,10,11, 12,13, 14, 15, 17, 18, 22, 23, 25, 26, 27, 28, 31,
32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 51, 53, 55, 56, 57,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,73, 74, 75, 76

to the percentage of paths covered from the total network
paths. Step 8 updates the links weights continuously through
different iterations. Step 10 may make the selection bypass
the highly weighted links aiming to enhance the resulting
solutions. If the selection probability is equal to 100%, the
algorithm tends to choose the highest link weight in every
selection time. Lowering this value makes the selection move
in the vicinity of the highest links. In step 11, the high
mutation probability makes the algorithm more random;
however, it may help not to get stuck in local optima. Step
12 reduces the matrix for the next iteration. Step 15 transfers
a part of the current solution to be a part of the next in the
attempt to obtain new start for link selection.

The interesting part of the developed methodology is
that it combines similar operators from two popular meta-
heuristics, namely, simulated annealing (SA) [33] and genetic
algorithms (GA) [34]. The selection probability resembles
the annealing property in permitting the algorithm to direct
towards the not best move aiming to escape the local
optimality if trapped. Mutation probability is exactly found
in the GA. The elitism probability here allows exchanging the
information among the different iterations like the crossover
in the GA. In the next section, these operators are examined
through sensitivity analysis and the overall methodology
statistical robustness is measured by ANOVA test.

5. Experimental Study

To validate the proposed methodology, a real network of
Sioux Falls is adopted. It is first introduced in [15], and
then it is considered a benchmark problem for most of the
SLP literature [29, 35, 36]. The network is made of 182 O/D
pairs, 76 links, and 24 vertices. Figure 4 depicts the Sioux
Falls network. The shaded nodes represent O/D node pairs
(7). Table 1 gives the calibration process for the different
parameters. Solving the network of this size has taken less
than a minute on a workstation with two Intel® Xeon®
Processor E5530, 12 GB RAM and 2.40 GHz.

Figure 5 shows the results of the methodology through
a number of iterations equal to 100. Although there are
variations among the results, the methodology maintained
a small value for the coeflicient of variation (C=0.067). The
methodology managed to separate all the demand node pairs
with a minimum number of sensors equal to 45 whose
distribution structure is shown in Figure 4. The solution
represents nearly 60% of the network links. For the Sioux
Falls, (2)-(5) are solved to the optimality. Interestingly, when
the branch and bound technique presented in [37] is used,
the results of the exact method and the proposed heuristic
are matched which gives more reliability to the methodology.

There are different parameters which are responsible for
the diversity of the search process. Figures 6-8 depict the
impact of each operator on the quality of final results. In
Figure 6, it is obvious that the selection probability equal
to 100% (direct search procedure) does not help in getting
the optimum solution and also very low values. The best
calibration values range from 80% to 100%. Figure 7 shows
that the results are very sensitive to the mutation probability;
however, setting low value may improve the results. Figure 8
states that keeping a reasonable percentage of the solution set
through different iterations is beneficial. The best values for
elitism operator range from 15% to 25%.

The path enumeration is a critical issue when it comes
to the proposed model that depends on path/route enumera-
tion. For even a small network, a large number of paths could
be generated for each demand node pair. This would lead to
a combinatorial problem for the methodology. Fortunately,
it is common for 3 or 4 paths to carry the vast majority
of the traffic, and very rarely more than 6 or 7 routes are
utilized [38, 39]. In Figure 9, the effect of the maximum
number of defined k (for the k-shortest path algorithm) on
the results is drawn. If there is reliable information about the
number of paths for the network under-study, the number of
required sensors may be reduced dramatically. Table 2 shows
the difference in locations results for two path setting values
(k=1 and k=7).
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FIGURE 4: Sioux Falls network.
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FIGURE 6: Selection probability impact on the number of required links to be equipped with sensors.
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FIGURE 7: Mutation probability impact on the number of required links to be equipped with sensors.
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FIGURE 8: Elitism percentage impact on the number of required links to be equipped with sensors.

To check the robustness of the methodology, other nine
different runs were made. Each run contains 100 different
iterations. The number of links to be equipped with the
remote emission sensors per each iteration is depicted in
the box plot in Figure 10. The ANOVA test is performed to
make sure that there is a significant difference in the results.
The F_ca ratio is equal to 1.98 with 9 degrees of freedom
for the numerator and 90 degrees for the denominator at
significance level = 0.05. The obtained F =1.63 (F < F_;cal)
which means that the null hypothesis that the results are
statistically equivalent is accepted; i.e., there are no significant
differences among the different runs.

6. Conclusion

This study presents a novel methodology for solving the
remote emission sensing monitors location problem which

received little attention in the literature. It aims to find the
locations and the minimum number of sensors to capture
every vehicle emission within a network. The heuristics steps
of the methodology are simple to deploy and general for
any network. They only depend on the path enumeration
criteria which are easily defined for transport networks. The
path enumeration based algorithm proved to be valuable if
the transportation planner could identify the actually used
paths for each demand node pair and consequently would
lower the required sensors dramatically. The methodology
consistency and effectiveness are tested by using real medium
size network. Sensitivity analysis is made to clarify each
parameter effect on the results. The results are validated with
exact methods (branch and bound) and also statistically with
ANOVA test. The application of the proposed system would
manage the stipulation of allowable emission standards
within the network which can be a part of the solution to
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FIGURE 10: Box plot of ten different runs results.

the air contamination problem. A further challenge may be
added when it comes to temporal dynamics. The methodol-
ogy assumes intercepting each vehicle once a day; however,
interception may be required within a defined time horizon.
The work could be extended to optimize the locations for
movable sensing systems through the network dynamics to
achieve more reduction in the required number of sensors. A
time-expanded network would be the right approach to adapt
the proposed methodology.
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