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Abstract 

Recycled aggregate concrete (RAC) has attracted more interesting in the past several years because it is an economical 
and eco-friendly building material. But generally, the mechanical properties of RAC are poor compared to natural ag-
gregate concrete (NAC). So, the mechanical properties of RAC need robust predictive models to be evaluated before its 
application. Traditional (empirical based) models, e.g., linear, and non-linear regression methods, have been extensively 
proposed. But these models lack flexibility in updating (i.e., limited to a finite number of variables) and can give inac-
curate results. Consequently, to handle such shortcomings, several Artificial Intelligence (AI) models have been sug-
gested as an alternative strategy for predicting the mechanical properties of RAC. In this study, state-of-the-art AI mod-
els were reviewed to predict the mechanical properties of RAC. The application of each predictive model and its train-
ing, testing, and performance are critically examined and analysed, consequently identifying present knowledge gaps, 
practical recommendations, and required future investigation. 
 

 
1. Introduction 

Concrete is the most widely used material in buildings, 
sidewalks, bridges, dams, and structural engineering. 
These wide applications of concrete, along with its ver-
satility worldwide, have led to the high consumption of 
its components such as aggregate, sand, cement etc. 
Especially, natural aggregate (NA) as is a significant 
component in a concrete mixture. The NA's global con-
sumption is estimated to be between 8 to 12 billion ton-
nes per year (Naderpour et al. 2018). This is considered 
a significant warning due to this shortage of NA re-
sources (Duan et al. 2013a, 2013b; Gholampour et al. 
2017). Moreover, extracting one tonne of NA results in 
4600 tonnes of carbon gas emissions into the environ-
ment (Naderpour et al. 2018; Naderpour and Mirrashid 
2010). Besides, the consumption of landfills due to dis-
posal of construction and demolition waste (CDW) is 
another important problem around the world, especially 
in densely populated big cities. Consequently, these 
global concerns about economic and environmental is-
sues of concrete production have forced stricter re-
quirements for construction and urban development 
(Ranjbar et al. 2021). 

To conserve natural resources, much attention has 
been given to the use of waste materials in concrete 
mixtures (Golafshani and Behnood 2018b; Behnood and 
Golafshani 2010). The usage of recycled aggregate con-
crete (RAC) provides a workable solution to overcome 
these disadvantages associated with conventional con-
crete production because RAC can alleviate the regional 
lack of NA, stop massive amounts of CDW from being 
landfilled, and decrease carbon gas emissions from con-
crete production. Generally, 75% of CDW can be reused 
as RA in concrete production (Duan et al. 2013a; 
González-Fonteboa and Martínez-Abella 2008). Never-
theless, generally, the mechanical properties and worka-
bility of RAC are worse compared to natural aggregate 
concrete (NAC) (Arora et al. 2019; Aslani et al. 2018; 
Pliya et al. 2021). The usage of RA in the concrete mix-
ture has been proved to decrease its mechanical strength 
(Topçu and Saridemir 2008; Xu et al. 2019b). Con-
crete's compressive strength (CS) decreases by 30% to 
40% if the natural aggregate is substituted with 100% 
RCA (Behera et al. 2014) due to its higher porosity and 
water absorption and lower density and strength. Com-
prehensive reviews of the properties of RAC and its 
applications are available in previous works, for exam-
ple, Safiuddin et al. (2013), Tam et al. (2018) and Wang 
et al. (2021). It is essential to consider the effects and 
relationships between the RAC mechanical properties 
and its mixture proportions before the building stage. 
Consequently, predicting the mechanical characteristics 
of RAC is an essential research work that could ade-
quately meet the desires of different standard codes and 
other designs. 

Numerous predictive models have been suggested in 
published literature (Andreu and Miren 2014; 
Corinaldesi 2010; Huda and Alam 2014; Limbachiya et 

al. 2012; Xiao et al. 2006), to predict the mechanical 
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characteristics of RAC, based on conventional regres-
sion algorithms, including CS, tensile strength (TS), 
elastic modulus (EM), splitting tensile strength (STS) 
and shear strength (SS) These conventional methods for 
determining the RAC mechanical characteristics consist 
principally of empirical models generated from statisti-
cal processing for experimental datasets (Arisha et al. 
2016; Chan et al. 2019; Choi and Yun 2012; Folino and 
Xargay 2014; Huang et al. 2012; Nour and Güneyisi 
2019; Silva et al. 2015). For details on empirical and 
code-based models for forecasting the mechanical char-
acteristics of RAC, see Gholampour et al. (2017) and 
Xu et al. (2019b), for example. Although these models 
have been used successfully and proven effective in 
some challenges and lead to cost and time savings for 
future work, their update and development are not easy 
and associated with many disadvantages. Their major 
limitations are the time-consuming and costly experi-
mental batches to generate empirical models. Also, the 
conventional regression models' performance is poor in 
handling complex materials such as RAC, making them 
unreliable for forecasting the mechanical characteristics 
of such concrete, where these methods consider only a 
limited and small number of input parameters (Fazel 
Zarandi et al. 2008). Besides, the data set used to evalu-
ate the models is almost tiny and can give inaccurate 
results (Zhang et al. 2020a). 

These drawbacks of the conventional techniques and 
the intricate relationships of RAC's mechanical behav-
iour have led to an application of robust nonlinear mod-
elling techniques. Recently, Artificial Intelligence (AI) 
technologies have been gained significant attention due 
to their impressive strengths in solving several intricate 
problems and successfully applied as a robust competi-
tor for predicting RAC mechanical properties. For ex-
ample, in some broader applications of AI for concrete-
related problems, AI models have been used for a long 
time not only for CS prediction, e.g., Yeh (1998), but 
also for creep, e.g., Liang et al. (2022) and shrinkage, 
e.g., Hilloulin and Tran (2012) more recently. AI can 
accurately map relationships between inputs and outputs 
to foresee the RAC mechanical characteristics. Adopt-
ing such prediction mechanisms can save the time and 
cost of experimental effort wasted to accomplish a pre-
dictive RAC strength model (Delgado et al. 2020; Pham 
et al. 2020; Yaseen et al. 2018). 

Even though these AI algorithms have been suggested 
to solve the same problem (i.e., estimate of RAC me-
chanical characteristics), the data processing and model 
structure can differ markedly from one algorithm to 
another. Generally, the quantity and quality of the data-
sets as well as the character of input and output features, 
can highly affect the choice of the most proper algo-
rithm. Moreover, the model behaviour is assessed 
through different statistical indexes corresponding to the 
actual and predicted dataset. The most popular AI meth-
ods applied for the prediction of RAC mechanical prop-
erties can generally be categorised into four main types 

namely 1) Artificial Neural Networks (ANN), 2) Sup-
port Vector Machines (SVMs), 3) Decision Trees (DT), 
and 4) Evolutionary Algorithms (EA) as shown in Fig. 1. 
Notably, these algorithms are used in regression and 
classification problems. 

This review paper aims to focus on the applications 
of AI models in predicting RAC mechanical properties, 
excluding the normal concrete mixtures, because the 
relation between the mechanical properties and mixture 
design of conventional concrete is somewhat simple, 
while that for RAC is highly nonlinear and complex. 
For details on the use of AI/ML in concrete in general, 
see, for example, ACI (2021), Behnood and Golafshani 
(2011) and Hu et al. (2021). Also, this study offers a 
comprehensive overview of the information about AI 
algorithms  needed to model the mechanical properties 
strength of RAC. Moreover, systematic analysis and 
comparison of the most common AI algorithms used for 
predicting RAC mechanical characteristics materials 
and structures, besides their hyperparameters, are con-
ducted. Eventually, the gaps and limitations of AI algo-
rithms are identified, and recommendations about future 
work are also offered. 

 
2. The basis of artificial intelligence (AI) 

AI is simply a section of modern computer discipline 
that concentrates on developing computational algo-
rithms that can interact or think logically to perform 
tasks requiring human intelligence, such as speech rec-
ognition, visual perception, reasoning, and problem-
solving (Somogyi 2011). AI is the chief target, and Ma-
chine Learning (ML) and Deep Learning (DL) are some 
of the several techniques to reach AI. ML, which is a 
leading subset of AI, wherein denotes the ability of al-
gorithms that can learn from huge data sets, also called 
the “Big Data”, and deliver accurate related forecasts, 
decisions, recommendations, and several other intelli-
gence tasks, without requiring any explicitly extended 
guidance/commands (Murphy 2012). The ML approach 
includes a wide difference of algorithms that can gener-
ally be categorized to three major forms: 1) Supervised 

Artificial Intelligence 

Fig. 1 AI models for predicting mechanical properties of 

RAC.
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Learning (SL), 2) Unsupervised Learning (USL), and 3) 
Reinforcement Learning (RL) (Zolanvari et al. 2019). 
The former refers to the algorithms that endeavour at 
predicting either a discrete (classification) or continuous 
(regression) output (Murphy 2012). In the supervised 
type, the algorithm is trained practicing dataset exam-
ples by known outputs. This type is usually chosen for 
predicting the RAC mechanical characteristics as well 
as other types of concrete (Berry et al. 2020; Salehi and 
Burgueno 2018; Singh et al. 2016; Vu et al. 2021). 
Unlike, the goal of unsupervised type is to define the 
relationship within the datasets without pre-defined la-
bels for the objective of predictive (Murphy 2012). Un-
supervised type is also called nonparametric models 
(Murphy 2012). While reinforcement learning, this less 
popular type of ML, is a type of ''trial and error'' training 
that bonds the gap between unsupervised and supervised 
learning because it identifies similarities in datasets that 
provide correct answers (Elgendi 2019). DL is a subset 
of the ML technique that treats “big data” to build many 
layers of thinking that construct a functional mapping of 
the attributes/features to the purposes. The DL algo-
rithms can handle more complex intelligence tasks 
compared to ML (e.g., self-drive cars). 
 
3. Prediction of the mechanical character-
istics of RAC 

Recently, AI algorithms have been widely used as a 
powerful tool for predicting the mechanical characteris-
tics of RAC. These algorithms are typically used for a 
large dataset, which can be divided into a training data-
set (TD), validation dataset (VD), and test dataset (TSD) 
(Ben Chaabene et al. 2020). The TD is utilized for AI 
algorithm training. The VD gives an unbiased assess-
ment of the appropriate algorithm of the TD and blocks 
overfitting via ending the data training process if the 

misfit errors increased. The algorithm is at last used by 
TD to evaluate its predictive performances. Figure 2 
shows general steps of AI model workflow for predict-
ing the mechanical characteristics of RAC. The most 
popular AI algorithms, as mentioned earlier, can be 
categorized into four main forms, namely ANN, SVMs, 
DT, and EA. The evaluation of these algorithms and 
their application and process are discussed below. Data-
sets used to predict the mechanical properties of RAC 
by AI models have been mentioned in many published 
papers, e.g., Gholampour et al. (2017), Golafshani and 
Behnood (2018a) and Khan et al. (2022). 
 
4. Selection of AI model inputs 

Choosing the most relevant parameters or features 
needed to train and test different AI algorithms is key to 
building these algorithms successfully and enhancing 
their performance. In addition, the experience and intel-
ligence of developers are needed to choose the most 
appropriate features to reduce the computational loads 
of AI algorithms. So, this points to a careful choice of 
data inputs that have a noticeable influence on RAC 
mechanical characteristics and avoidance of low-
influence features, which can reduce calculation load 
and time. Numerous investigations have used common 
parameters to predict the strength of RAC. Table 1 
shows the most popular input and output variables of 
AI-based RAC models considered in the previous litera-
ture in general. 
 
5. Performance validation and assessment 
methods of AI models 

Performance evaluation of the AI algorithms was per-
formed using various statistical approaches describing 
model fit. Table 2 lists the most popular statistical in-

 
Fig. 2 General steps of AI model workflow. 
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dexes used to evaluate AI models. These indexes indi-
cate how fit the predicted data matches the actual data-
set. Besides, the indexes can be used in the analysis of 
models sensitivity by showing the rate of individual 
input variables (Azimipour et al. 2020; Dao et al. 2019a, 
2019b; Douma et al. 2016; Saha et al. 2019; Siddique et 

al. 2011; Sonebi et al. 2016; Uysal and Tanyildizi 2012; 
Xu et al. 2019b). In addition, the statistical indexes can 
evaluate the performance of AI techniques and be util-
ized as a reference for judging the efficiency of different 
AI models (Ben Chaabene et al. 2020). 

6. Artificial neural network (ANN) 

ANN is one of nonlinear algorithms that simulates the 
basic structure of human brains (Abiodun et al. 2019; 
Aghbashlo et al. 2015; Marugán et al. 2018; Mohandes 
et al. 2019; Shrivastava et al. 2012). In the ANN algo-
rithms, data generation occurs by links that collect data 
from one treating neuron (element) to pass on toward 
subsequent neurons. Each element of data is assigned a 
weight that reflects the importance of the data input 
features to the outputs (Rumelhart et al. 1994). When a 

Table 1 Most popular input and output variables of AI-based RAC models in general. 

Variables Description\ Abbreviation Unit 

Water, cement, sand W/C/S % 
Water-cement ratio WCR % 
Ratio of dry mortar RDM % 

Content of total dry aggregate CDA % 
Natural fine aggregate NFA % 

Natural coarse aggregate NCA % 
Substitution ratio for recycled fine aggregate PFA % 

Substitution ratio for recycled coarse aggregate PCA % 
Chemical admixture rate CDR % 

Superplasticizer SP % 
Silica fume SF % 

Conversion coefficient for different concrete specimen FDS % 
Sand to aggregate ratio SAR % 

Input Mix design parameters 

Water to total materials ratio WMR % 
Replacement ratio of RA to NA RAN % 

Aggregate/cement ratio ACR % 
Fly ash replacement ratio FAR % 

Coarse aggregate/cement ratio CAC % 
Fine aggregate to total aggregate ratio FTA % 

Size of coarse aggregate SCA mm 
Ratio of RA max. particle size to NA max. particle size SRN % 

Type and preparation methods of CA TCA - 
Volume fraction of RA in RAC VRA % 

Coarse rubber aggregate CRA % 
Fine rubber aggregate FRA % 

Moisture content of FA MFA % 
Particle size of FA SFA % 

Proportion of rubber POR % 
Rubber replacement percentage RRP % 

Particle size of rubber PSR mm 
Particle size of coarse natural aggregates SCA mm 

Re-treatment method of rubber PMR - 
Proportion of slag POS % 

Supplementary cementitious materials SCM % 
Specimen size SZ mm 
Cement type CT - 

Ratio of recycled mortar RRM % 

Mix design parameters 

Ratio of recycled red ceramic RRR % 
Fineness modulus of sand FMS mm 

Fineness modulus for natural fine aggregate FNF mm 
Fineness modulus for natural coarse aggregate FNC mm 

Maximum aggregate size for natural fine aggregate SNF mm 
Maximum aggregate size for natural coarse aggregate SNC mm 

Maximum size of natural aggregates SNA mm 
Water absorption rate of RCA ARC % 

Saturated surface-dried specific gravity of RCA SSD kg/m3 
Bulk density of recycled concrete aggregate DRC kg/m3 

Crush index of recycled coarse aggregate CIC % 

Physical characteristics 

Stacked porosity of recycled coarse aggregate SPC % 

Input 

Time Age of the samples AGE Days 
Compressive strength CS MPa 

Tensile strength TS MPa Output 
Elastic modulus EM MPa 
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neuron in the net gets information, it fuses them with 
other neurons by a compound function. Then the linked 
information is conveyed to the subsequent nodes. After 
that, linked information is conveyed to subsequent neu-
rons. This manner is repeated iteratively till the ANN 
model fits the datasets exactly, as symbolized via con-
vergence indicators of misfit error rates, or while the 
maximum target of iterations is reached (Ahmad et al. 
2018; Bourdeau et al. 2019; Li et al. 2020b). The 
framework of ANN generally consists of three classes of 
layers (Fadaei et al. 2018; Jani et al. 2017), as shown in 
Fig. 3. The input layer, the first one, sends the input 

variables to train and test the ANN model. The hidden 
layer(s), the second one, class manages the combining 
between output and input layers. The last one is the out-
put layer that provides the product of the model. Activa-
tion functions are needed to generate the output product 
and guarantee datasets transfer through the other layers 
(Ghorbanzadeh et al. 2020; Kang et al. 2019; Khademi 
et al. 2016; Kiraz et al. 2018; Maleki et al. 2020; 
Naderpour et al. 2019; Pourtahmasb et al. 2015; Shariati 
et al. 2020). Moreover, ANN is trained via a learning 
model that enables the algorithm to realize the current 
task. Therefore, the general framework of the ANN 

Table 2 Statistical indexes. 

Index Equation 
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Fig. 3 Schematic layout of the BNN architecture of multilayers. 



A. H. A. Ahmed, W. Jin and M. A. H. Ali / Journal of Advanced Concrete Technology Vol. 20, 404-429, 2022 409 

 

model is modified depending on the nature of the learn-
ing model. The different ANN approaches used for pre-
dicting RCA strength are shown in Table 2, which are 
discussed next sections. 
 
6.1 Backpropagation neural network (BNN) 
In Table 3, it can be seen that the BNN has been exten-
sively applied in the literature for training ANN models 
(Liu and Zhang 2010; Xu et al. 2019a). The BNN is one 
of the local search systems which it is used for learning 
AI models, such as the gradient descent method (GDM) 
and Levenberg-Marquardt method (LMM), to renew the 
ANN biases and weights. This strategy is used for 
minimizing the loss function (or cost function), which 
generally denotes the misfit errors among predicted and 
real values of RAC strength. For example, the BNN was 
applied to predict the CS of RAC (Duan et al. 2013a, 
2013b; Naderpour et al. 2018; Topçu and Saridemir 
2008; Ababneh et al. 2020; Atici 2011; Chen et al. 
2020a; Deshpande et al. 2014; Khademi et al. 2016; 

Paul et al. 2018; Xu et al. 2019a). For instance, Topçu 
and Saridemir (2008) proposed the BNN according to a 
GDM model plus to fuzzy logic (FL) algorithm to de-
termine the CS of the RAC. These techniques gave a 
great performance, but the BNN somewhat outpaced FL 
on the one hand RMSE, R2, and MAPE. Also, 
Naderpour et al. (2018) assessed the BNN performance 
and investigated impact of each variable input in the CS 
of RAC model by showing the sensitivity analysis test. 
Their proposed approach covered 6-input parameters 
with 18-hidden nodes. Outcomes revealed that BNN 
precisely predicted the CS of RAC and that RA water-
absorption, besides the water-to-total-materials ratio, 
gave the highest effect on the strength of RAC. The per-
formance of the BNN model and radial-based neural 
network (RNN) was compared by Golafshani and 
Behnood (2018a) to foresee the EM of RAC. Their re-
sults revealed that the BNN model has a better predic-
tive ability than the RNN model. Liu et al. (2021) stud-
ied three types of soft computing techniques, including 

Table 3 Outline of applied ANN-based RAC models. 

Method 
Size of 
datasets 

TD, % VD, % TSD, % Input parameters* 
Output of 

model 
Statistical index* Reference 

BNN 1178 77.8 N/A 22.2 

WCR, CEM, RDM, CDA, 
PFA, PCA, CDR, RRM, 

RRC, RRR, FNF, FNC, SNF, 
SNC, WAR, AGE 

CS ,R   Dantas et al. (2013) 

BNN 210 67 N/A 33 
AGE, W/C/S, CDA, SP, SF, 

RA 
CS , ,MSER  R  Topçu and Saridemir (2008) 

BNN 168 N/A N/A N/A 
W/C/S, WCR, NCA, RFA, 
RCA, FMS, WAR, SSD, 

SNA, PCA, FDS 
CS , ,MSER  R  Duan et al. (2013a) 

BNN, 
ANFIS 

257 70 15 15 

W/C/S, NFA, NCA (10, 20 
mm), RFA, RCA (10, 20 
mm), WCR, PCA, WMR, 

RAN, ACR 

CS , ,MSER  R    Khademi et al. (2016) 

BNN 139 N/A N/A N/A 
WAR, WCR, NFA, NCA, 

RCA, WMR 
CS ,R    Naderpour  et al. (2018) 

BNN, 
CNN 

74 68 N/A 32 WCR, PCA, PFA, FAR CS MSER  Deng et al. (2018) 

BNN 257 70 15 15 

CEM, RFA, W/C/S, NFA, 
NCA (10, 20 mm), RFA, 
RCA (10, 20 mm), WCR, 
PCA, WMR, RAN, ACR 

CS , ,MSER  R    Deshpande et al. (2014) 

BNN 421 N/A N/A N/A RAN, WCR, ACR, SRN EM , , ,MSEσ  R    Xu et al. (2019b) 
BNN, 

RBFNN 
400 80 N/A 20 

WCR, RAN, CAC, FTA, CS, 
WAR 

EM ,MSER   ,  Golafshani and Behnood 
(2018a) 

BNN 324 70 15 15 
WCR, ACR, PFA, PCA, 

RAN, SCA, TCA, CT, SZ
EM , ,MSER  R    Duan et al. (2013b) 

BNN 346 N/A N/A N/A RAN, WCR, ACR, SRN TS , , ,MSEσ  R    Xu et al. (2019b) 

BNN 210 67 N/A 33 
AGE, C/W/S, NA, RA, SP, 

SF 
TS , ,MSER  R    Topçu and Saridemir (2008) 

BNN 353 70 15 15 
RRP, PSR, FRA, MFA, SFA, 

POR, PMR, C, CT, SCA, 
WCR, W, PCA, SF, FAR 

CS, EM, 
FS, STS

2 , ,MSER  R  Huang  et al. (2012) 

BNN 88 70 N/A 30 
C, W, S, NCA, RCA, WCR, 

PCA, PFA 
CS 2 , ,MSER  R    Bui et al. (2018) 

BNN 121 70 15 15 
WCR, NFA, NCA, PFA, 

PCA, ARC 
CS 2 , MSER  R  

Catherina Vasanthalin and 
Chella Kavitha (2021) 

ICA-
ANN 

209 80 N/A 20 
RFA, RCA, WCR, WMR, 

ARC, NCA 
CS , , ,MSEσR  R    Duan et al. (2020) 

ICA-
ANFIS 

209 80 N/A 20 
RFA, RCA, WCR, WMR, 

ARC, NCA 
CS , , ,MSEσR  R    Duan et al. (2020) 

*The definition of the abbreviations is illustrated in Tables 1 and 2. 
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ANN, Gaussian process regression (GPR), and multi-
variate adaptive regression spline (MARS) which were 
applied to frost durability model of RAC mixture de-
pending on the value of durability factors. Their find-
ings showed that the suggested methods could foresee 
durability factor rates in good harmony compared to 
experimental outcomes. Compared with the MARS 
technique and the GPR technique, the ANN technique 
revealed the best prediction accuracy. Also, Catherina 
Vasanthalin and Chella Kavitha (2021) proposed the 
ANN and cuckoo search method (CSM) to foresee the 
CS of RAC. Their findings showed that both methods 
are a valuable tool to predict the CS of RAC, and also 
that the ANN model was better compared to the CSM 
model with a higher coefficient of regression. 
 
6.2 Hybrid ANN-based models 
Hybrid procedures aim to combine multiple AI models 
to significantly improve model processes and perform-
ance compared to a single algorithm. Due to their capa-
bility to merge the benefits of those combined algo-
rithms, hybrid procedures have attracted grand interest 
from researchers nowadays. For example, the perform-
ance and workflow of algorithms, such as the “Adap-
tive-Neuro-Fuzzy-Inference-System” (ANFIS) were 
extensively studied (Khademi et al. 2016b; 
Pourtahmasb et al. 2015; Shariati et al. 2020; Yuan et al. 
2014; Zhou et al. 2017). ANFIS algorithms are global 
optimizations that link FL and ANN. This algorithm 
utilizes ANN to extend the association abilities to re-
duce the rate of errors in the model outputs, whilst FL 
rules can give expert information (Dehghani et al. 2019; 
Roy et al. 2020). These rules of FL are utilized inside 
the model as a fuzzy system ''if-then'' to perform the 
defined input-outputs groups, as shown in Fig. 4. For 
example, ANFIS has been used to predict the CS of 
RCA (Khademi et al. 2016). The results showed a good 
accuracy compared to the multiple linear regression 
(MLR) method. Duan et al. (2020) implemented the 
Imperialist Competitive Algorithms (ICA) approach to 
improve the thresholds and weights of ANN and ANFIS. 
The ICA is one of  the metaheuristic algorithms derived 
from the human social evolution proposed by Atashpaz-
Gargari and Lucas (2007). Its ability to get a global op-

timum solution based on social policies and imperialist 
competition creates it a likely candidate to optimize 
ANN and ANFIS. Their hybrid ICA-ANN and ICA-
ANFIS were used to compute the CS of RAC. The Ge-
netic Algorithm (GA) was used to improve the BNN 
model by Yuan et al. (2014) to predict the CS of con-
crete containing fly ash and slag waste. GA is the most 
popular metaheuristic algorithm inspired by natural evo-
lution that has the potential for global optimization 
(Kramer 2017; Kumar et al. 2020). Their comparative 
investigation between the hybrid GA-ANN and BNN 
model showed that the GA-ANN model provided the 
best performance. Also, Rezaiee-Pajand et al. (2021) 
applied the ICA method to predict RCA's TS, CT and 
FS. Then, the suitable number of features for evaluating 
each parameter is chosen by the Multi-Layer Perceptron 
(MLP) network. Their results revealed that the mean 
absolute error of the proposed techniques in predicting 
the TS, CT, and FS are approximately 0.48, 0.54, and 
0.36, respectively. 
 
7. Support vector machines (SVMs) 

SVMs are a set of supervised ML algorithms that can be 
used for classification tasks, regression, pattern recogni-
tion, and outlier detection problems. Developed in 1995 
by Cortes and Vapnik (1995), SVMs are a powerful 
class of heuristic algorithms based on the statistical the-
ory for learning (Vapnik 1999). 
 
7.1 Support vector machine classification (SVMC) 
SVMC is an ML grouping algorithm that seeks to get an 
ideal hyperplane (HP) separating two distinct classes 
(Suykens et al. 2002). The purpose of this system, 
shown in Fig. 5, is to maximize the gap from HP to the 
most adjacent point of each class, called the margin, to 
achieve better categorization efficiency of the test data-
sets (Noble 2006; Wang and Pardalos 2014). Once the 
ideal HP is obtained, the points lying at its edge are 
named "Support-Vectors" (SV), and the answer mainly 
suggested by this model is built only on these points. 
Nevertheless, some groups cannot be easily split up 
through a linear HP, as shown in Fig. 6. In cases like 
these, the data input must be handled to a higher-

 
Fig. 4 The ANFIS model and its IF-THEN rules (Duan et al. 2020). 
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dimensional feature data to allow linear split of groups 
(Goyal et al. 2020; Kannan et al. 2018; Yu et al. 2020). 
The nonlinear mapping process is generally conducted 
by a nonlinear function. After that the outputs of the 
model are acquired from the nonlinear space by another 
function called kernel (Chang and Lin 2011; Cuentas et 

al. 2017; Guo and Wang 2017; Raghavendra and Deka 
2014; Sheykhmousa et al. 2020). The kernel functions 
can be categorised into five categories: 1) linear, 2) 
polynomial, 3) radial basis, 4) sigmoid, and 5) exponen-
tial radial basis (Chen et al. 2017; Feizizadeh et al. 
2017; Tharwat 2019). The functions can help in defining 
a nonlinear decision border without the necessary to 
compute the ideal HP factors in the data or feature space. 
So, the result can be represented as a mixture of 
weighted values for the kernel features at the SV (Megri 
and El Naqa 2016; Sharafi et al. 2016). 
 
7.2 Support vector machine regression (SVMR) 
SVMR is mainly used for regression analysis (Chou et 

al. 2011; Li et al. 2020b; Omran et al. 2016). It treats 
regression challenges as a series of linear equation sys-
tems, resulting in a quicker training procedure and 
greater performance (Balabin and Lomakina 2011; Quan 
et al. 2020; Wauters and Vanhoucke 2014). Numerous 
investigations have investigated the foretelling strength 
of SVMR. Table 4 describes the various SVMs-based 

methods that have been applied to estimate RAC char-
acteristics. It can be seen SVMs models have been used 
as stand-alone algorithms in some investigations and 
improved with meta-heuristic models in others. 
 
7.3 Standalone SVMs models 
The application of single SVMs techniques to foretell 
the mechanical properties of RAC has been widely stud-
ied. For example, Deng et al. (2018) utilized SVMs to 
calculate the CS of RAC. The model accuracy evalua-
tion proved that their work achieved satisfactory predic-
tion accuracy. The EM of the RACs was also anticipated 
using SVMs (Golafshani and Behnood 2018a) and ac-
ceptable findings were displayed. Least-squares SVMR 
(LS-SVMR) is a new modification of SVMs in which 
the LS method is applied to make a global optimization 
and produce better accuracy (Debruyne et al. 2009; 
Giorgi et al. 2014; Mountrakis et al. 2011; Xu et al. 
2013). Many investigations assessed the performance 
and accuracy of this technique in forecasting the me-
chanical properties of RAC. For example, Gholampour 
et al. (2017) applied LS-SVMR to predict the CS, EM, 
flexural strength (FS), and splitting tensile strength 
(STS) of RAC, and these models revealed better results 
than those of conventional non-linear regression analy-
sis. Also, Kaloop et al. (2019) introduced LS-SVMR to 
predict the resilient modulus of RAC and the model 
achieved good performance. 
 
7.4 Hybrid SVM-based models 
The usage of SVMs within hybrid methodologies en-
deavours to improve the procedure of the standalone 
SVMs algorithms (Ben Chaabene et al. 2020). For ex-
ample, numerous investigations (Li et al. 2021; Pham et 

al. 2016; Sun et al. 2019; Yu et al. 2018a, 2018b; Zhang 
et al. 2020a, 2020b; Zhang and Wang 2020) have ap-
plied different optimization algorithms [e.g., firefly al-
gorithm (FA), beetle antennae search (BAS) algorithm, 
cat swarm optimization (CSO), and response surface 
method (RSM)] to predict the mechanical properties of 
a plain and high-performance concrete. These secondary 
optimization algorithms were mainly used to estimate 
the hyperparameters of LS-SVMs.  The results revealed 
the strong ability of hybrid SVMs-based algorithms in 
forecasting the mechanical strength of RAC than stand-
alone SVMs models, which was reflected in different 

 

 

  kernel 
function 

 
Fig. 6 Nonlinear mapping using SVMC. 

 
Fig. 5 SVMC-hyperplane classification. 
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statistical indexes. However, to the authors' knowledge, 
the use of hybrid SVMs-based models in RAC has not 
been reported in literature. 
 
8. Decision tree analysis (DTA) 

Decision tree analysis (DTA) is a set of supervised ML 
techniques that involves creating a tree-shaped descrip-
tion to map out a sequence of actions where a dataset is 
continually segmented according to certain parameters. 
DTA models are applied to deal with complex classifi-
cation and regression problems (tree branches). Deci-
sion tree models comprise of nodes (which examine the 
weight of a particular attribute), branch/edges (which 
match to the examination result and link to the follow-
ing leaf or node ), and leaf nodes (the terminal leaves 
that forecast the upshot), making it a complete structure, 
as shown in Fig. 7 (DeRousseau et al. 2018; Nunez et al. 
2020; Omran et al. 2016). Compared to classical regres-
sion methods, decision tree models offer better accuracy 
in prediction (Deshpande et al. 2014). Additionally, 

these models explicitly describe the relationships and 
patterns inherent in datasets through base and regression 
equations, whereas other intelligent algorithms such as 
SVR and ANN keep them hidden (Almasi et al. 2017). 
As shown in Table 5, four types of DTMs, namely the 
''M5P tree'', ''Random Forest'' (RF), operation tree (OT), 
and Extreme Gradient Boosting (XGBoost) and were 
mainly applied to forecast the mechanical characteristics 
of RAC. The method and its applications are shown 
infra. 
 
8.1 M5P-tree model 
M5P (or M5′) algorithm is an expanded and recon-
structed M5 algorithm version that includes three main 
steps (splitting, pruning, and smoothing), as shown in 
Fig. 8 (Behnood et al. 2015a, 2015b, 2017; Wang and 
Witten 1997;), i.e., 1) Splitting, a procedure is con-
structed utilizing a partition criterion that splits up the 
datasets into small subgroups. 2) Pruning, for removing 
or merging unwanted sub-trees to overwhelm datasets 
over-smoothing that occurred through model building 

Table 4 Outline of applied SVMs-based RAC models. 

Method 
Size of 

data sets 
TD, % VD, % TSD, % Input parameters*

Output of 
model 

Statistical index* Reference 

SVMC 74 68 N/A 32 
WCR, PCA, PFA, 

FAR 
CS MSER  Deng et al. (2018) 

SVMR 400 80 N/A 20 
WCR, RAN, CAC, 

FTA, CS, WAR 
EM ,MSER   ,  Golafshani and Behnood 

(2018a) 
650 50 N/A 50 CS 
346 51 N/A 49 CT 

LS-
SVMR 

421 47 N/A 53 

 
PCA, ACR, DRC, 

ARC, WCR EM 

 
,MSER   ,  Gholampour et al. (2018)

ICA-
SVMR 

209 80 N/A 20 
RFA, RCA, WCR, 
WMR, ARC, NCA

CS , , ,MSEσR  R    Duan et al. (2020) 

*The definition of the abbreviations is illustrated in Tables 1 and 2. 

 
Fig. 7 General schematic of decision tree models. 
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and 3) Smoothing to reimburse for keen cut-outs that 
occur between neighbouring linear models at tree leaves. 
To divide the datainput space and produce the model of 
regression tree, a rate named the factor of standard de-
viation (σ), which is the highest reduction of data-output 
errors after splitting, is recognised (Behnood et al. 2015, 
2017). The M5 model has been modified to the M5P-
tree model to handle numeric attributes besides missing 
attribute rates. In the M5P-tree model, all numeric char-
acteristics are converted to binary datasets before the 
model is built (Almasi et al. 2017; Omran et al. 2016; 
Yi et al. 2018). M5P algorithm has been adopted in 
many investigations to foresee the mechanical charac-
teristics of RAC (Behnood et al. 2015a, 2015b; 

Deshpande et al. 2014; Gholampour et al. 2018). Use of 
this tree algorithm contained prediction of the CS, 
modulus of elasticity (ME), and tensile strength (TS) of 
RAC. The tree model in these studies includes various 
input variables, as listed in Table 5. They were demon-
strated that the M5P-tree algorithm accurately forecast 
the CS, TS, and ME, as indicated by the statistical 
measures. 
 
8.2 Random forest (RF) 
The RF model has been used in several investigations as 
a prediction tool, too. This model mixes several decision 
tree algorithms, each developed from a modern training 
process according to the "bagging" approach (Chehreh 
Chelgani et al. 2016; Han et al. 2019). This bagging 
approach (or bootstrap, aggregation) is a group training 
process consisting of these two main steps. During 
bootstrap, the first one, independent datasets and corre-
spondingly distributed are generated by randomly re-
sampling the raw data-input. In the aggregation stage, 
the modified data sets are utilized to independently in 
training the primary forecasters (Han et al. 2019). The 
outcomes are achieved using averaging the forecasts of 
each tree forecaster within this stage. The RF models 
have outstanding achievement in classification tasks 
such as strong robustness in terms of big feature data-
sets, integrating interactions between predictor variables, 
great quality, and free applications (Breiman 2004; Han 
et al. 2020; Janitza et al. 2016). The schematic diagram 
of the RF structure is shown in Fig. 9. This model has 
been extensively used to deal with classification and 
regression issues in civil engineering, e.g., Ghiasi et al. 
(2018), Huang and Burton (2019), Rahman et al. (2021) 
and Zhang et al. (2019). The RF model has been im-
proved with a BAS algorithm to predict the CS of RAC 
that contains waste of rubbers by Sun et al. (2019). The 

Table 5 Outline of applied DT-based RAC models. 

Method 
Size of 
datasets 

TD, % VD, % TSD, % Input parameters
Output of 

model 
Statistical index Reference 

257 70 15 15 

CEM, RFA, W/C/S, 
NFA, NCA (10, 20 
mm), RFA, RCA 

(10, 20 mm), WCR, 
PCA, WMR, RAN, 

ACR 

CS , ,MSER  R    Deshpande et al. (2014)

270 80 N/A 20 
WCR, ADM, PFA, 
PCA, CAC, FTA, 
VRA, SSD, ARC

CS 2, ,MSER R  R  
Behnood et al.  
(2015a, 2015b) 

454 80 N/A 20 
CS, WCR, CAC, 
FTA, VRA, SSD, 

ARC 
EM 2 ,R  R  

Behnood et al.  
(2015a, 2015b) 

650 50 N/A 50 CS 
346 51 N/A 49 CT 

M5P- 
Tree 

 

421 47 N/A 53 

 
PCA, ACR, DRC, 

ARC, WCR EM 

 
,MSER   ,  

 
Gholampour et al. (2018)

RF 138 10-fold cross-validation 
W, CEM, SP, CRA, 
FRA, SCM, AGE, 

NFA, NCA 
CS , MSER  R  Sun et al. (2019) 

ICA-
XGBoost 

209 80 N/A 20 
RFA, RCA, WCR, 
WMR, ARC, NCA

CS , , ,MSEσR  R    Duan et al. (2020) 

 

 
Data 

Splitting 

Pruning 

Smoothing

Model 

Maximize σ 
Overcome data 
overfitting 
Compensate for 
discontinuities 

 
Fig. 8 Processes of M5-tree model. 
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authors concluded that the BAS could tune the RF 
model efficiently, and consequently, the hyperparame-
ters of the RF model were obtained. Their proposed 
model showed precisely predicted the CS of RAC with 
a correlation coefficient is 96%. 
 
8.3 Operation tree (OT) 
Operation tree (OT) is a tree data structure that de-
scribes a mathematical formula (Chen et al. 2013; Tsai 
2011; Yeh et al. 2010). These sets are created hierarchi-
cally together (layer by layer) in such a way that they 
describe a pattern of a tree. As an example, an OT 
model consisting of 5 layers with a total of 31 nodes is 

exhibited in Fig. 10, where X1 is the root meant a 
mathematical operation (+, −, etc.), X2 to X15 are tree 
branches meant a constant, a variable or a mathematical 
operation and X16 to X31 are leaves meant as a con-
stant or a variable (Chen and Wang 2010). For instance, 
Fig. 11 shows the OT algorithm for the mathematical 
formula shown below. The algorithm applied mathe-
matical operations (÷, ×, − and log), variables (α, β and 
γ) and a constant 10. 

( )
10

log
Z

α β
γ

×
=

−
 (1) 

Building a regression model by an OT needs to set 
suitable mathematical operations, constants, and vari-
ables on the root, branches, and leaves of the OT. When 
the OT structure is set up to describe a particular 
mathematical equation, the OT can produce a predicted 
output value for each dataset by replacing the dataset 
entry values with variables on the tree branches or 
leaves. The model performance of this process can be 
assessed by statistical indexes such as the MSER  be-
tween the original and predicted output values. Mini-

 ߙ  ߚ

 ߛ

ൊ 

ൈ 

൅ ݈݃݋ 

10
 

Fig. 11 Illustration of an example of OT model. 

Layer 1 

Layer 2 

Layer 3 

Layer 4 

Layer 5 

Top Layer  

Middle 
Layers 

Bottom 
Layer  

Fig. 10 The OT architecture with 5 layers and 31 nodes. 

 
Fig. 9 The schematic structure of the RF algorithm. 



A. H. A. Ahmed, W. Jin and M. A. H. Ali / Journal of Advanced Concrete Technology Vol. 20, 404-429, 2022 415 

 

mum MSER  for the OT is the best-fit tree model for 
the datasets (Chen and Wang 2010). An advantage of the 
OT model compared to traditional models is that it does 
not require a predetermined formula structure. In addi-
tion, the OT model has a flexible mathematical equation. 
But optimizing the architecture to better fit the data is a 
separate optimization problem. Hence, the process of 
OT cannot be solved by traditional mathematical pro-
gramming. To overcome this shortcoming, genetic algo-
rithms have been proposed to optimize the process of 
the OT model to fit the data best (Cheng and Gosno 
2010; Peng et al. 2009, 2010). Cheng and Gosno (2010) 
used the OT model to predict the elastic modulus of 
RAC. They have proposed the symbiotic polyhedron 
algorithm combined with OR to improve the perform-
ance of the OT model. Their results revealed that the 
proposed algorithm had shown superiority over other 
conventional methods in terms of robustness and stabil-
ity. 

 
8.4 Extreme gradient boosting (XGBoost) 
Extreme gradient boosting (XGBoost) is one of the 
well-known ensemble tree algorithms developed by 
Tianqi Chen and co-workers (Chen and Guestrin 2016; 
Chen et al. 2020b). Also, it is a modification for gradi-
ent boosting (GB) technique to improve the speed and 
accuracy in tree-based ML models (sequential decision 
trees) (Biau et al. 2019; Friedman 2002). The XGBoost 
model deals with both regression and classification 
problems efficiently as the boosted trees are produced 
and worked parallel (Agapitos et al. 2017; Zhou et al. 
2019b). Alike the GB decision tree and GB machine 
model, XGBoost proposes a strong and fast algorithm 
for several engineering simulation problems based on 
the parallel boosting trees, e.g., Li (2019), Lloyd (2014), 
Nguyen-Sy et al. (2020), Nguyen et al. (2021) and Zhou 
et al. (2019b). To increase its accuracy of predicting, 
Duan et al. (2020) combined a novel algorithm, ICA, 
with XGBoost algorithm for predicting the CS of RAC. 
They compared their proposed hybrid model with three 
other AI models (ICA-ANN, ICA-ANFIS, and ICA-
SVR models), and the proposed model was superior to 
the other models. 
 
9. Evolutionary algorithms (EAs) 

Evolutionary algorithms (EAs) are a set of heuristic 
exploration algorithms in which the procedure of deter-
mining an answer in the exploration dataspace is ac-

cording to the biological evolution system that has five 
steps: 1) selection; 2) mutation; 3) recombination; 4) 
reproduction; and 5) recombination (Mashwani 2013). 
These steps of evolutionary algorithms are shown in Fig. 

12. In the first step, an initial population that describes 
the candidate solutions set is randomly generated. Next 
step, this group is evaluated by a fitness task. Then, the 
following generation with a finer set of nominees is 
thereafter developed via recombination and mutation 
stages. The recombination stage comprises of producing 
new nominees by a binary operator that is used to the 
prior group (parents). After that, the mutation only 
transforms a nominee from prior groups. Next applying 
both these operators a modified data set generation is 
generated according to a fitness task. This reiterative 
manner breaks once the wanted target of the fitness task 
is obtained or once the highest mass of the generations 
is given (Deb et al. 2005; Lücken et al. 2014). 

EAs have been adopted for assessing RAC strength. 
Golafshani and Behnood (2018b) used a set of the EA 
models, namely Artificial Bee-Colony algorithm (ABC), 
Genetic Programming (GP), and Biogeography-Based 
Programming (BBP), to predict an EM for RAC. Their 
proposed methods delivered high performance, as 
shown by error measures used to evaluate and compare 
the performance of their developed models, see 
Golafshani and Behnood (2018b). Additionally, fine 
aggregate-to-total aggregate ratio (FTA) along with wa-
ter absorption and CS of concrete had a notable effect 
on the EM of RAC. 

 
10. Useful AI libraries and tools 

The availability of open-source libraries and tools has 
made the modelling process much easier than before. 
These libraries and tools such as WEKA (Witten et al. 
1999), a graphical user interface (GUI) for developing 
ML and data mining designs. And TensorFlow library is 
a big platform for ML and DL (Abadi et al. 2016). It has 
wide, flexible tools and community resources that give 
researchers advanced the state-of-the-art in DL and ML 
and developers efficiently build and expand AI-powered 
applications. And Torch is an ML library with a focus on 
ANN. It was originally written by Lua, a scripting lan-
guage (Collobert et al. 2002). Also, PyTorch, rewritten 
by Python, is one of the most popular DL frameworks 
(Paszke et al. 2019). Furthermore, LibSVM (Chang and 
Lin 2011), which efficiently implements SVMs. In addi-
tion, the Scikit-Learn and Theano libraries were re-
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Fig. 12 Outline of evolutionary algorithms process. 
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leased and publicly licensed and written by Python 
(Theano Development Team 2016; Pedregosa et al. 
2011; Pölsterl 2010). They implement many different 
ML algorithms, including ANN, SVMs, and RF. Besides, 
they use functions such as stratification, train-test split-
ting, cross-validation, and metrics needed to develop 
and evaluate a robust ML model. All these libraries, 

tools, and many more have helped develop AI-based 
RAC models quickly and efficiently. 
 
11. Discussion and interpretation 

AI systems have been used by many researchers as an 
innovative strategy to predict the mechanical character-
istics of RAC. As shown in Figs. 13, 14 and Table 6, 
the statistical indexes regained from the list of most 
recent investigations reflect the remarkable advantage of 
the AI algorithms over non-linear regression (NLR) and 
conventional empirical methods of the similar test data-
sets. This could be interpreted by the powerful AI algo-
rithms to precisely predict the characteristics of intricate 
RAC mixtures as the relations between the constituents 
of the concrete mix and its resultant CS are a highly 
nonlinear problem. Moreover, in Tables 3 to 5 show that 
the AI algorithms have been developed based on mas-
sive and comprehensive databases, which means that the 
number of datasets applied to develop these methods is 
much greater than that of the empirically-based gener-
ated formulas. Hence, the use of empirical formulas is 
restricted to a small number of cases, leading to a 
greater error in predicting an "unseen" dataset. In addi-
tion, a likely problem correlated with conventional sta-
tistical and empirical methods is their insufficiency to 

 
Fig. 14 AI models (RF, ANN) performance compared to conventional models: Method 1: ACI 318 (ACI 2011), Method 2: 

EN 1992-1-1 (Beeby and Narayanan 1993), Method 3: GB 50008 (Kaklauskas et al. 2015), Method 4: JSCE Guideline 

No. 15 (Ueda and Takewaka 2007), Method 5: NZS 3101 (Inwood 1999), Method 6: Zsutty (fib 2010; Bentz and Collins, 

2017), Method 7: Critical Shear Crack Theory (CSCT), Method 8: Simplified MCFT (Vecchio and Collins 1986), Method 

9: Zhang (1997), Method 10: ANN, Method 11: RF (Yu et al. 2020). 
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࣬= Correlation coefficient 
  Root mean square error %ࣧ = Mean absolute percentage error = ܧܵܯ࣬ Nash–Sutcliffe Efficiency =ܧ 

Fig. 13 Comparison between AI algorithms (ANN, M5P) 

and non-linear regression (NLR) (Deshpande et al. 

2014). 
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afford a precise estimate of the characteristics of RAC 
with new combinations, neglecting the impact of these 
new components on the desired product. In contrast, the 
models from AI give the choice of modernizing the pre-
diction methodology via managing the number of data-
inputs (characteristics) and components deemed in the 
model. Besides, the effect of each input parameter on 
RAC strength can be estimated by AI systems through 
sensitivity analysis, such as in (Xu et al. 2019b). These 
merits of AI models mean that the application of con-
ventional methods is limited to specific problems where 
the mixture understudy has a simple structure, as con-
ventional methods conveniently provide explicit 
mathematical formulae. 

Besides the differences between conventional ap-
proaches and AI algorithms, there are contrasts in pro-
cedure and performance between AI algorithms. Thus, 
each AI algorithm has many advantages and disadvan-
tages comparing with other algorithms. This can be in-
terpreted by the values of the statistical indexes in Table 

7, which shows the performance of some AI models 
over the same test datasets. 

As noted earlier, numerous investigations have 
adopted the ANN due to its powerful benefits. With an 
obvious vector set of weight and bias as well as a limit 
number of hidden neurons and hidden layers obtained 
after many iterations, the structure of the ANN model 
can be well defined. But such a repetitive process of 
trying and adjusting errors takes a lot of time. Another 
significant gap in the ANN algorithms is related to a BP 

strategy, as the training stage is done by the gradient 
descent approach toward resulting errors that may lead 
to local optimal (Ayaz et al. 2015; Jafrasteh and 
Fathianpour 2017; Wang et al. 2015). In Fig. 15, a con-
vergence process of BNN toward local optimum solu-
tion and prevention of global solution was a big concern 
(Chandwani et al. 2015; Yang et al. 2021). Applying the 
extreme learning machine (ELM) as another option can 
alleviate the convergence concern with the local minima 
and contribute further easiness as there are no stopping 
criteria and learning rates are needed (Christou et al. 
2019; Sussner and Campiotti 2010). The ELM has been 
compared to BNN by Alshamiri et al. (2019) and per-
formed better with the ELM paradigm. Despite this, the 
model adopted may need more hidden layers than the 
BNN methodology because of the arbitrary perception 

Table 6 Comparison between some AI models and empirical methods with the same dataset. 

Statistical indexes  Output Reference Model 
(AI: Empirical) MSER    

7.71:28.15 15.13:54.22 CS 
ANN (Pereira et al. 2012) 

0.480:0.720 11.890:14.650 TS 

ANN (Bui et al. 2018) 4425.89:5749.73 11.21:17.85 ME 

Xu et al. (2019b) 

ANN (Jalal et al. 2020) 0.24:1.26 5.85:6.7 CS Chen et al. (2020a) 

 

Table 7 Comparison between some AI models with the same data used. 

Statistical indexes 
AI Model 

MSER   2R  
The amount of data Output Reference 

ANN - 19.7676 0.9185
ANFIS - 25.4530 0.9075

257 CS Khademi et al. (2016) 

GEP 14.18 31.29 - 
ANN 7.71 15.13 - 

332 CS 

GEP 9287.91 30.19 - 
ANN 4425.89 11.21 - 

421 EM 

GEP 1.60 28.11 - 
ANN 0.64 9.39 - 

152 FS 

GEP 1.86 64.26 - 
ANN 0.48 11.89 - 

346 STS 

Xu et al. (2019b) 

ANN 1.602 11.971 0.982 
ANFIS 1.725 3.904 0.975 
SVM 1.393 7.453 0.989 

 
72 

 
CS 

Jalal et al. (2020) 

 

Fig. 15 BNN fitting mechanism (Ben Chaabene et al. 2020).
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of entrance hidden biases and weights (Alaba et al. 
2019; Tripathi et al. 2020; Zhang and Zhang 2017). An 
intemperate amount of hidden layers utilized in intricate 
shapes may result in overfitting, meaning that the intri-
cacy of RAC characteristics can be overestimated with 
ANN (Behnood and Golafshani 2018). For overwhelm-
ing the disadvantages mentioned above, several meta-
heuristic and combined algorithms were suggested to 
improve the ANN process and its performance, such as 
GA, Grasshopper Optimization (GO), and Salp Swarm 
(SS) algorithms (Kandiri et al. 2021). For case, utilizing 
GA algorithms and ensembles such as bagging and gra-
dient enhancement for improving ANN foretelling per-
formance have been demonstrated to be viable (Yuan et 

al. 2014). Nevertheless, the GA-ANN approach pro-
posed before by Yuan et al. (2014) led to increasing 
algorithm intricacy and calculation loads. Another elec-
tive comprises utilizing ANFIS algorithms, which asso-
ciation learning capabilities of the ANN and thinking 
abilities of FL. Sobhani et al. (2010) and Sahin and Erol 
(2017) detailed that ANFIS seems to identify the 
nonlinear form handle with fast learning ability. Addi-
tionally, this is confirmed through a comparative inves-
tigation carried out in Dao et al. (2019a, 2019b). Never-
theless, ANFIS has some concerns regarding fuzzy rule 
choice that influence its accuracy besides, a failure to 
produce multi-output parameters (Yu et al. 2018a). 

Concerning SVMs models, they have appeared capa-
ble of nonlinear mapping and optimum generalization 
capacities (Yu et al. 2018a). They too can distinguish 
and coordinate SVs in the training stage, which blocks 
non-SVs from influencing the accuracy of the algorithm. 
Nevertheless, this method suffers from numerous draw-
backs, e.g., a heuristic way for choosing a suitable ker-
nel-function, as depending mainly on the trials and er-
rors manner. Besides, the process of the nonlinear 
SVMR method and its performance cannot be simply 
performed since this method of a nonlinear data map-
ping can be complicated (Chamarczuk et al. 2020). 

The previously mentioned strategies (ANN and 
SVMs) are deemed as ‘‘black-box” algorithms because 
of a gigantic number of nodes and inside relationships 
(Alimi et al. 2020; Elsheikh et al. 2019; Farquad et al. 
2014; Han and Wang 2011; Yadav and Chandel 2014). 
So, producing a straightforward scientific equation that 
depicts the useful relationship between I and O factors 
during those algorithms is troublesome. To deal with 
this issue, choice EA and tree algorithms can be used. 
These algorithms have the capacity to create unequivo-
cal mathematical equations that depict the relation 
among data attributes and their resultant data-outputs. 
Though, DT models may force to data-overfitting prob-
lems. Besides, the efficiency of both EA and DT models 
is regularly smaller than that of hybrid-based models 
and standalone SVMs and ANN algorithms, as proven 
using performance indexes recovered from distinctive 
past investigations (Behnood et al. 2015c; Bui et al. 
2018). Weaknesses of DT algorithms can be moderated 

by tree-based combination algorithms like RF and Mul-
tiple Additive Regression Trees (MART). For example, 
Chou et al. (2011) showed better outcomes from the 
MART algorithm than those taken from standalone 
SVMs and ANN. But ensemble algorithms produce 
more complexity to the algorithm and further calcula-
tion time. 

One critical measure of AI models is the input data-
feature significance. Some articles have shown the ef-
fect of those input parameter traits on predicted  RAC 
mechanical strengths via sensitivity analysis (Khademi 
et al. 2016). Sensitivity analysis defines the extent to 
which each input trait affects the prediction of the model 
output by calculating a sensitivity scale (Cortez and 
Embrechts 2011, 2013). According to the type of AI 
model, sensitivity analysis can be performed applying 
different techniques. For instance, sensitivity analysis of 
ANN algorithms can be done employing many systems, 
such as the weights system, the partial derivatives sys-
tem, and the classical stepwise system. Naderpour et al. 
(2018) showed the significance of each data input trait 
by the significance of the weights system and inferred 
that the water absorption capacity and the ratio of water 
to total materials of the RA were the most effective data 
input traits for predicting the CS for RAC. Also, the 
number of datasets used to generate AI models to pre-
dict RAC strength varies from one investigation to an-
other. The range was 72 (Deng et al. 2018) to 1178 
(Dantas et al. 2013). Because no set rule defines how 
much data is required to create an AI model. However, 
as it is known, the more data used, the fewer errors and 
the higher the accuracy. For example, cases that consid-
ered fewer information examples might show accurate 
outcomes. However, in this case, the model can show a 
higher error when tested on unseen datasets compared to 
those generated from more comprehensive databases. 

 
12. Recommendations and practical gaps 

Since all AI algorithms discussed earlier have different 
merits and demerits, the choice of the most proper algo-
rithm relies on diverse bases. The characteristic of the 
relation among RAC components and their mechanical 
properties is a key element that impacts the algorithm 
selection. If the relation is exceedingly nonlinear and 
influenced by many features, using SVM or ANN mod-
els would be the best alternative due to their excellent 
power to solve problems in a nonlinear context with 
lower errors. For better processes and more precise re-
sults, optimizing those algorithms with meta-heuristic 
models is more powerful. Still, when algorithm clarity is 
needed, the use of evolutionary algorithms and decision 
trees can be recommended as they can produce clear 
mathematical equations that well represent natural rela-
tions among I and O data. However, the efficiency of 
both algorithms is less than that of standalone and hy-
brid SVMs and ANN algorithms as shown by perform-
ance indexes exposed in Table 7. Using combination 
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algorithms is able to improve the precision of DT but 
may lead to model complexity and greater computation 
time. Based on the present study, hybrid SVMs and 
ANN algorithms have given the best performance to 
foresee RAC characteristics in terms of process and 
accuracy. Despite the increased calculation time, using 
those algorithms on big datasets with suitable feature 
choices would produce the most precise outcomes. Nev-
ertheless, the only system to choose the most proper 
meta-heuristic algorithm is according to a trials and er-
rors process. Hence, no accurate system is available to 
choose the best optimization model because they can 
give diverse results from one case to another. 

Although most of the AI methods reviewed herein 
have proven reliable in predicting the mechanical 
strength of RAC, deep learning and assembly methods 
have not been widely applied to models of RAC materi-
als, they have usually surpassed other methods in terms 
of speed and accuracy (Akinosho et al. 2020; Salehi and 
Burgueno 2018). Hence, these methods appear to be 
very promising for future investigations in this field and 
merit further investigation. Also, transfer learning is one 
of the modern trends that serve AI models that can be 
greatly benefited in future studies for predicting me-
chanical strength of RAC because of its effective role in 
training deep neural networks accurately with a small 
dataset compared to conventional training. This is very 
helpful in the data science field as most real-world chal-
lenges typically do not have enough data sets to train 
complex RAC models, e.g., Ford et al. (2022), Pan and 
Yang (2010) and Zhuang et al. (2021). It is worth noting 
that the number of contributions in the literature that 
includes joining AI models with meta-heuristic algo-
rithms is very limited.  Thus, there is an evident short-
age of joining powerful algorithms such as, e.g., Particle 
Swarm Optimization (PSO), Tree Parzen Estimators 
(TPE), and Backtracking Search Algorithm (BSA), with 
AI models to improve the global optimization in pre-
dicting the mechanical strength of the RAC. 

Furthermore, explainable AI (XAI) is an important 
research direction related to the challenge of illuminat-
ing ambiguous ML models in contexts where transpar-
ency is critical, as these models can be dealt with com-
plex tasks (e.g., regression or classification). As shown 
before, most AI investigations usually focus on the RAC 
mechanical characteristics prediction goal but infre-
quently on providing explanations/justifications for 
them. Additionally, users in various fields need to com-
prehend before engaging in decisions with inherent risks. 
Also, XAI tools include a variety of interpretable ML 
methods that help people with understanding the rela-
tionship between I and O variables via interpretation of 
results of a predictive AI model to enable clarity and 
fairness in the AI algorithmic decision-making ap-
proaches. Details on the importance of XAI and its his-
tory, methodology, techniques, tools, etc., have been 
discussed in many studies such as, Agarwal and Das 
(2010), Biecek (2018), Islam et al. (2022), Liang et al. 

(2022) and Linardatos et al. (2021). 
 

13. Conclusions 

Numerous recent investigations have been carried out to 
forecast mechanical properties for concrete mixture, 
examining the advantages of some strategies and show-
ing the shortcomings of others. Especially, predicting 
the RAC mechanical characteristics (as an intricate con-
crete mixture) by traditional empirical and statistical 
methods has been a major challenge as these methods 
are commonly imprecise, and their updating is time-
consuming and costly. So, investigators have proposed 
AI algorithms to overwhelm such shortcomings. In this 
paper, the most popular AI algorithms used to predict 
the mechanical properties of RAC are organized into 
four categories, i.e., ANNs, SVMs, DTs, and EAs. The 
application of these algorithms in predicting the CS, SS, 
TS, and EM of RAC has been reviewed. Besides, the 
benefits and disadvantages of the given procedures have 
been critically examined and analysed. It has been no-
ticed that numerous factors affect these algorithms' per-
formance, such as the physical relation among RAC 
components and their mechanical strength, number of 
training dataset examples, and size of parameters se-
lected in each algorithm. The review and analysis of the 
performance of AI algorithms, besides their advantages 
and disadvantages displayed in this paper, should help 
researchers and stakeholders in determining the proper 
technique to predict the RAC mechanical characteristics. 
Results revealed that AI models precisely forecast the 
RAC mechanical characteristics and that RA water-
absorption and crush index, besides the proportion of 
water-to-total-materials, had the highest effect on the 
RAC mechanical characteristics. Finally, more research 
needs to be done to explore the reliability of AI models 
in predicting the properties of more innovative modifi-
cation types performed on RAC. 
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Appendix: List of the algorithm acronyms 
 

 

Adaptive-Neuro-Fuzzy-Inference-System  ANFIS Grasshopper Optimization  GO 
Artificial Bee-Colony Algorithm  ABC Imperialist Competitive Algorithm  ICA 
Artificial Neural Networks  ANN Least-Squares LS 
Backpropagation Neural Network  BNN Levenberg-Marquardt Method  LMM 
Biogeography-Based Programming  BBP M5P-Tree Model  M5P 
Cuckoo Search Method  CSM Multi-Layer Perceptron MLP 
Decision Trees  DT Multiple Additive Regression Trees MART
Evolutionary Algorithms  EA Multiple Linear Regression MLR 
Extreme Gradient Boosting  XGBoost Multivariate Adaptive Regression Spline MARS
Fuzzy Logic FL Non-Linear Regression NLR 
Gaussian Process Regression GPR Operation Tree OT 
Genetic Algorithm GA Radial-Based Neural Network RNN 
Genetic Programming GP Random Forest RF 
Gradient Boosting  GB Salp Swarm SS 
Gradient Descent Method GDM Support Vector Machines SVMs 

 


