Research Date
Research Department
Research File
Research Journal
Neurochemical Research
Research Member
Research Vol
2020 Jul;45(7):1. Epub 2020 Apr 6.
Research Year
2020
Research_Pages
576-1591
Research Abstract
This study investigated the effect of a high-fat diet rich in corn oil (CO-HFD) on the memory retention and hippocampal oxidative stress, inflammation, and apoptosis in rats, and examined if the underlying mechanisms involve modulating Resolvin D1 (RvD1) levels and activation of p66Shc. Also, we tested if co-administration of RvD1 could prevent these neural adverse effects induced by CO-HFD. Adult male Wistar rats were divided into 4 groups (n=18/each) as control fed standard diet (STD) (3.82 kcal/g), STD + RvD1 (0.2 µg/Kg, i.p/twice/week), CO-HFD (5.4 kcal/g), and CO-HFD + RvD1. All treatments were conducted for 8 weeks. With normal fasting glucose levels, CO-HFD induced hyperlipidemia, hyperinsulinemia, increased HOMA-IRI and reduced the rats’ memory retention. In parallel, CO-HFD increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), cytoplasmic cytochrome-c, and cleaved caspase-3 and significantly decreased levels of glutathione (GSH), Bcl-2, and manganese superoxide dismutase (MnSOD) in rats’ hippocampi. Besides, CO-HFD significantly reduced hippocampal levels of docosahexaenoic acid (DHA) and RvD1, as well as total protein levels of Nrf2 and significantly increased nuclear protein levels of p-NF-κB. Concomitantly, CO-HFD increased hippocampal protein levels of p-JNK, p53, p66Shc, p-p66Shc, and NADPH oxidase. However, without altering plasma and serum levels of glucose, insulin, and lipids, co-administration of RvD1 to CO-HFD completely reversed all these events. It also resulted in similar effects in the STD fed-rats. In conclusion, CO-HFD impairs memory function and induces hippocampal damage by reducing levels of RvD1 and activation of JNK/p53/p66Shc/NADPH oxidase, effects that are prevented by co-administration of RvD1.