Skip to main content

Mechanisms and Structures of Crotonase Superfamily Enzymes – How Nature Controls Enolate and Oxyanion Reactivity

Research Authors
Refaat B. Hamed, Edward T. Batchelar, Clifton I. J., Christopher J. Schofield
Research Department
Research Journal
Cell. Mol. Life Sci., DOI: 10.1007/s00018-008-8082-6
Research Rank
1
Research Vol
Vol. 65
Research Year
2008
Research Member
Research Abstract

Structural and mechanistic studies on the crotonase superfamily (CS) are reviewed with the aim of illustrating how a conserved structural platform can enable catalysis of a very wide range of reactions. Many CS reactions have precedent in the ‘carbonyl’ chemistry of organic synthesis; they include alkene hydration/isomerization, aryl-halide dehalogenation, (de)carboxylation, CoA ester and peptide hydrolysis, fragmentation of β-diketones and C-C bond formation, cleavage and oxidation. CS enzymes possess a canonical fold formed from repeated ββα units that assemble into two approximately perpendicular β-sheets surrounded by α-helices. CS enzymes often, although not exclusively, oligomerize as trimers or dimers of trimers. Two conserved backbone NH groups in CS active sites form an oxyanion ‘hole’ that can stabilize enolate/oxyanion intermediates. The range and efficiency of known CS-catalyzed reactions coupled to their common structural platforms suggest that CS variants may have widespread utility in biocatalysis.