Skip to main content

Development of Near-Infrared Fluorescent Probes with Large Stokes Shifts for Non-Invasive Imaging of Tumor Hypoxia

Research Authors
Kensuke Okuda, Bahaa G. M. Youssif, Ryosuke Sakai, Takahiro Ueno, Takayuki Sakai, Tetsuya Kadonosono, Yasuyuki Okabe, Ola I. Abdel Razek Salem, Alaa M. Hayallah, Mostafa A. Hussein, Shinae Kizaka-Kondoh, and Hideko Nagasawa*
Research Journal
Heterocycles
Research Publisher
The Japan Institute of Heterocyclic Chemistry publication
Research Rank
1
Research Vol
Vol 101, No. 2
Research Website
NULL
Research Year
2020
Research Abstract

A series of near-infrared (NIR) fluorochromes with large Stokes shifts was designed, synthesized, and evaluated for application in non-invasive imaging of tumor hypoxia. Each NIR fluorescent hypoxia probe comprised a tricarbocyanine dye and a 2-nitroimidazole-containing moiety as a hypoxia marker that binds to cellular nucleophiles via bioreductive activation under hypoxic conditions. Nucleophilic displacement of the amino-nucleophilic linker moiety of heptamethine cyanine dyes having a 2-chloro-1-cyclohexenyl ring and a 2-nitroimidazole moiety yielded various fluorochromes with different hydrophilicity. These exhibited long emission wavelengths (747–758 nm) with large Stokes shifts (111–125 nm) and high quantum yield (0.04–0.34). GPU-210, 297, and 316 showed significantly higher levels of fluorescence under hypoxic than under normoxic conditions on treating SUIT-2/HRE-Luc pancreatic cancer cells. Among these, only GPU-316 showed significant fluorescence intensity in tumor tissue in in vivo fluorescence imaging of mouse xenograft models.