كلية العلوم رسائل الماجستير والدكتوراه لعام 2023 قسم الفيزياء

scattering of some halo nuclei, such as ^{4,6,8} He at energies up to 200 MeV/nucleon using the optical model potentials is Ali Ibrahim Dr. Sherif Rashad Mokhtar Dr. Hisham Hosny Hussien Nuclei at low and intermediate energies	ملخص الرسالة	عدد الصفحات	الحجم	سنة المنح	لجنة الاشراف	نو ع الرسالة	عنوان الرسالة	ID	اسم الباحث	م
constructed only from the single folding (SF) and São-Paulo (SP) potentials, the phenomenological imaginary part with Woods-Saxon form is used. The SF potential is derived considering three different nuclear densities of 4.6.8He (GG, GO and G2S) and Gaussian form effective	The proton elastic scattering of some halo nuclei, such as ^{4,6,8} He at energies up to 200 MeV/nucleon using the optical model potentials is studied. The real part is constructed only from the single folding (SF) and São-Paulo (SP) potentials, the phenomenological imaginary part with Woods-Saxon form is used. The SF potential is derived considering three different nuclear densities of ^{4,6,8} He (GG, GO and G2S)	105	,		Prof. Dr. Ahmed Ali Ibrahim Dr. Sherif Rashad Mokhtar Dr. Hisham	الرسالة دكتور اه	Elastic Scattering of Halo Nuclei at low and		Nagwa Ahmed Ali Mohamed	1

densities are considered to				
be superimposed of two				
parts, a density for a core				
plus a density of two neutron				
halos. Where, the different				
distributions, in GG, GO and				
G2S density distributions of				
⁶ He have extensive tails				
apparent in their halo				
structure with large radii				
which are larger than the ⁴ He				
density (which is a core of				
⁶ He nucleus). The density of				
⁸ He has also extended tails				
compared with the ⁴ He				
density, thus considered as a				
core of ⁸ He nucleus but with				
less radius than ⁶ He.				
The real optical				
potentials of the proton				
elastic scattering with				
helium nuclei in a variety of				

energy ranges with the two				
different types of OP are				
provided, and it is				
determined that the potential				
of ⁸ He is deeper than that of				
⁶ He and ⁴ He. On a few free				
parameters, including the				
imaginary and spin-orbit				
potentials as well as a				
normalisation factor N_R of				
the real folded potential, the				
search is carried out using				
the FRESCO code.				
With the exception				
of the energy 85 MeV,				
where there is a little amount				
of diffraction at a 70° angle,				
the resultant angular				
distributions of the elastic				
scattering differential cross				
section yield for ⁴ He at G				
density, extremely excellent				

_		 1	T.	
fits to the experimental data				
for energies of 27,88, 31, 55,				
71, 156, and 200 MeV. The				
results showed that both				
potential types accurately				
reflect the experimental data;				
however, for most energies,				
SP offers a somewhat better				
match than SF. The				
differential cross sections of				
^{6,8} He proton elastic				
scattering at various energies				
(in MeV/N) at the GG, GO,				
and G2S densities showed a				
satisfactory fitting				
throughout the whole				
observed angular range for				
low and intermediate energy				
in the two halo nuclei.				
Therefore, the choice of				
density has some influence				
on how the differential				

		ı		
cross-sections behave.				
Studying the				
P+ ^{10,11} Be elastic scattering				
of nuclei at incident energies				
for ¹⁰ Be at energies of 9, 15,				
39.1, and 59.3 MeV/nucleon				
and ¹¹ Be at energies of 38.4				
and 49.3 MeV/nucleon. The				
SF potential is derived using				
two different nuclear				
densities (GG and GO) for ¹¹				
Be and Gaussian form				
effective NN interactions.				
The angular distributions of				
the P $+^{10}$, 11 Be elastic				
scattering cross-section are				
extracted using a calculated				
potential supplemented by				
phenomenological imaginary				
(in set1). The investigation is				
carried out using the free				

/	 1	 1		т т	
parameters $(N_r, N_l, N_S, \text{ and })$					
of the FRESCO code. The					
resulting angular					
distributions of the elastic					
scattering differential cross-					
section produced for ¹⁰ Be at					
Gaussian(G) density is a					
very good fit at some					
energies (including the					
surface potential in set3),					
while the energy increases					
the divergence remains					
apparent. This is because at					
low incident energy, surface					
absorption is strong and					
Ws(r) is dominant. The					
results indicate that the SP					
optical potential (in set1)					
reproduces the experimental					
data well with a slightly					
better fit than the SF					
potential at most energies.					

Furthermore, set1 of				
both potentials (GG and GO)				
of the differential cross-				
sections of proton elastic				
scattering of ¹¹ Be at energies				
(38.4, 49.3 MeV/nucleon), at				
GG and GO densities, at (SF				
and SP) potentials in (set1,				
set2, and set3) show				
satisfactory fitting of all over				
the angular range. There is a				
disagreement in				
experimental values				
observed in the cross-				
sections if the surface				
potential in 38.4				
MeV/nucleon energy is				
included. The advantage of				
the surface potential to				
improve the experimental				
values is shown at				
49.3MeV/nucleon and the				

	 -	 		
GG density gives a good				
agreement in the two				
potentials (SF & SP).				
In the framework of				
OLA the ${}^{6}\text{He}+{}^{12}\text{C}$ and				
¹¹ Be+ ¹² C elastic scattering				
differential cross-sections				
are calculated at different				
incident energies using the				
Gaussian-2s density				
distributions of the halo				
nuclei. The average total				
nucleon-nucleon cross-				
section (of the halo nuclei,				
the ratio of the real to the				
imaginary parts of the NN				
scattering amplitude (), and				
the range parameter of the				
NN elastic differential cross				
are adjusted to enhance the				
results of the elastic-				
<u> </u>	 		<u> </u>	

scattering differential cross-				
section.				
It is observed that case 3 (in				
which the three parameters				
reasonably reproduce the				
data in the whole range than				
cases (1 and 2); except for				
$^{6}\text{He} + ^{12}\text{C}$ at 82.3MeV/N and				
$^{11}\text{Be} + ^{12}\text{C}$ at 49.3eV/N the				
data are improved above 8°.				
The effects of the Coulomb				
interaction and the breakup				
of the projectiles were not				
investigated, and some				
authors showed that the				
Coulomb breakup occurs at				
very forward angles.				
The Pauli blocking potential				
for the ⁶ He+ ¹² C elastic				
scattering is constructed as				
the na- nucleus elastic				

لقد حظیت المواد الفیرایتیة ذات الترکیب البلوری سبینال بالکثیر	211	200	2023/11/27	Prof. Dr. Abd El-Hameed Abo Sehly	دكتوراة	Synthesis, characterization and	13024820	Haiam Ahmed Hassan Sakty	2
than the lighter nuclei.									
in the heavier projectiles									
potentials are more effective									
found that the Pauli blocking									
in some cases not all. It is									
effect enhances the data of the differential cross-section									
the standard form, and their									
colliding nuclei is added to									
the potential between two									
formed in the inner part of									
shallow pocket, which is									
consisted of α particles. This									
nα are assumed to be									
folding procedure, thus, the									
scattering by using a single									

الي المقياس النانومتري، والتي				\neg
تختلف عن خصائص هذه المواد				
فى المقياس الميكروميترية،				
وهذه التغييرات والتطورات في				
الخواص تفتح مجالات جديدة				
لمزيد من التطبيقات. وتسلط هذه				
الدراسة الضوء على تحضير،				
وتوصيف، ودراسة الخصائص				
التركيبية والمغناطيسية، وكذلك				
الخواص الحفزية لبعض				
مركبات فيرايت النيكل زنك				
النانومترية، ودراسة تأثير				
استبدال ايون النيكل بأيون الزنك				
على الخواص المغناطيسية				
والضوئية لمركب النيكل زنك				
فيرايت النانونة .				
و تشتمل الرسالة على ستة				
فصول:				

				\neg
يتناول الفصل الاول مقدمة عن				
المواد الفيراتية وبعض				
خصائصها، وتأثير الحجم				
النانومترى على الخواص				
المغناطيسية والنشاط الحفزي و				
استخدامها كذلك في معالجة				
المياه الملوثة بالصبغة، كما أنه				
قد تم استعراض اهم النتائج				
للأبحاث التي تم نشرها مسبقا				
في المجلات العلمية على				
المواد نيكل - زنك فيرايت.				
ويتناول الفصل الثاني من				
الدراسة طريقة تحضير مركبات				
فيرايت النيكل زنك باستخدام				
الترسيب المصاحب و كذلك				
المعضد بالموجات الفوق صوتية				
حيث أن هذه الطريقة العملية				
ملائمة، وغير مكلفة، وصديقة				

	<u> </u>	 	 	 	
البيئة، ووسيلة فعالة لتحضير					
الحوافز. وتم أيضا توصيف					
العينات الناتجة بعد التحميص					
بواسطة كل من حيود الأشعة					
السينية (XRD)					
والميكروسكوب الألكتروني					
النافذ عالى الدقة (TEM)،					
مطياف الاشعه السينيه					
الإلكتروضوئية (XPS)،					
واطياف الاشعة تحت الحمراء					
باستخدام تحویل					
فورييه (FTIR)، و تم دراسة					
الخواص الكهربية كما تمت					
دراسة الخواص المغناطيسية					
العينات بواسطة مغناطومتر					
العينة المتذبذبة (VSM) .					
(- ,					
ويوضح الفصل الثالث نتائج					
دراسة الخواص التركيبة					
5					

والكهربية والمغناطيسية لمادة					
فيرايت النيكل - زنك					
النانوبلوري وقد أشارت قياسات					
حيود اشعة السينية وأطياف					
الاشعة تحت الحمراء إلى تكون					
طور احادی ذو ترکیب بلوری					
سبينال (مكعب) لكل عينات					
النظام المحضرة وقد وجد ان					
حجم التبلور تتراوح بين 9 -					
23.7 نانومتر للعينات المعالجة					
بالموجات فوق الصوتية و11-					
27 نانومتر للعينات غير					
المعالجة بالموجات فوق					
الصوتية لقد وجد أن ثابت					
الشبكة يتناقص لفيرايت النيكل					
- زنك مع زيادة استبدال الزنك .					
وبما أن كثافة الأشعة السينية					
تعتمد على ثابت الشبكة، فإن					
كثافة الأشعة السينية لفيرايت					
	I	l			

النيكل الزنك تنخفض من 5.3				
جم/سم ³ إلى 5.1 جم/سم ³ مع				
زيادة إحلال الزنك. كما أكدت				
نتائج الميكروسكوب الالكتروني				
النافذ عالي الدقة و مطياف				
الاشعه السينيه الإلكتروضوئية				
أن الجسيمات في الحجم				
النانومتري وكذلك نجاح				
ااستبدال أيونات النيكل بالزنك.				
أما تحليل FTIR يوفر				
معلومات حول الخصائص				
الهيكلية والسطحية للعوامل				
الحفازة المحضرة ولقد تبين من				
النتائج ان حساب نطاق التردد				
يكون أقل لتردد التمدد لرابطة				
M-Oفي مواقع الثماني				
السطوح يبلغ 415 سم ⁻¹ ، في				
حين يتم تعيين نطاق تردد أعلى				
لاهتزازات التمدد لرابطة M-O				

	 1		I	
في مواقع رباعي السطوح يبلغ				
560 سم ⁻¹ . ومع ذلك، لوحظ				
تحول طفيف في نطاق				
الامتصاص فيما يتعلق باستبدال				
الزنك أظهرت نتائج قياسات				
التوصيل الكهربي للتيار				
المستمر أن الفيرايت ويظهر				
سلوك أشباه الموصلات كدالة				
لدرجة الحرارة، مما يعني أن				
مقاومته الكهربائية تتناقص مع				
ارتفاع درجة الحرارة .				
وأظهرت النتائج انخفاض قيم				
فجوة الطاقة مع زيادة درجات				
حرارة التحميص . بينما تزداد				
قيم فجوة الطاقة بزيادة إحلال				
الزنك من 0.39 إلى 0.69				
الكترون فولت. بالإضافة إلى				
ذلك فإن نتائج VSM أكدت أن				
محفزات فيرايت النيكل				

اظهرت طبیعة مغناطیسیة بینما اظهرت محفزات فیرایت الزنك اظهرت محفزات فیرایت الزنك طبیعة ممغنطة ووجد أن قیم المغنطة التشبع (Ms) قد تحسنت	
طبيعة ممغنطة ووجد أن قيم	
مغنطة التشيع (Ma) قد تحسنت	
(11.5)	
مع الموجات الفوق صوتية و	
درجات حرارة التحميص تم	
تعزيز مغنطة تشبع فيرايت	
الزنك بإضافة المزيد من أيونات	
النيكل، ووصلت قيمتها إلى الحد	
الأقصىي	
ا عند Ni _{0.6} Zn _{0.4} Fe ₂ O ₄	
بقيمة 64.9 emu/g. في	
المجال المجال	
القسري(H _c) لفريت الزنك	
بشكل كبير من مع زيادة محتوى	
(184.5 → الزنك من من (184.5)	
ر (18.7 . ويعزى تباين	
الخواص المغناطيسية مع تغير	
نسب النيكل و الزنك إلى إعادة	

توزيع الكاتيون.				
يشمل الفصل الرابع من				
الرسالة دراسة امتزاز غاز				
النيتروجين على سطح				
المحفزات نيكل- زنك فيرايت				
النانونة لقياس المساحة السطحية				
و المسامية. و وجد أن الزنك				
فيرايت يتمتع بأعلى مساحة				
سطح كما أنه يتميز بمسام من				
نوع ميكرو. في حين أن النيكل				
فيرايت و النيكل زنك فيرايت				
أنها عبارة عن محفزات				
متوسطة المسام من نوع ميزو ،				
وأن ارتفاع درجة حرارة				
التحميص يتسبب في تناقص				
مساحة سطح S _{BET} للمحفزات				
نیکل- زنك فیرایت بسبب زیادة				
أحجامها البلورية عبر عملية				

التحميص علاوة على ذلك، فإن				
تباین قیم مساحة سطح یتناسب				
مع حجم المسام الإجمالي (V _p).				
و يتناول الفصل الخامس				
نتائج النشاط الحفزي عن طريق				
دراسة التحول الحفزى للكحول				
الايزوبروبيلي على سطح نيكل-				
زنك فيرايت. وقد تم دراسة				
تأثير العوامل المختلفة المؤثرة				
على عملية الحفز مثل درجة				
حرارة التفاعل, وزن الحافز,				
درجة حراره تحميص العامل				
الحفاز وزمن التفاعل وذلك				
للوصول الى الظروف المثلى				
لفاعلية هذه العوامل الحفازه.				
وبصورة عامه فقد وجد أن				
الحوافز النانونة نيكل- زنك				
فيرايت حوافز لها فاعلية عالية				

لأنتزاع الهيدروجين من الكحول				
وتكوين الأسيتون تحت الظروف				
المختاره. و تبين من النتائج أن				
الحافز Ni _{0.1} Zn _{0.9} Fe ₂ O ₄ له				
كفاءة تحويل بنسبة تقريبا				
100% للأيزوبروبانول				
وانتقائية إلى أسيتون أكبر من				
.% 87				
وأخيرا يتناول الفصل السادس				
دراسة كفاءة امتزاز سطح نيكل-				
زنك فيرايت النانوية المعالجة				
بالموجات فوق الصوتية لصبغة				
الكريستال البنفسجي من المياه				
الملوثة. واتضح من النتائج ان				
الازالة تمت بكفاءة أكبر من				
99.5 % من الصبغة، و وزن				
0.2 جم من العينة و تركيز				
ابتدائي للصبغة 100 مجم/ لتر				

151. 40 " 11 "		I	<u> </u>	1	
و درجة الحموضة 10 خلال					
20 دقيقة من وقت التلامس.					
تتمتع المادة المازة النانونة بقدرة					
امتزاز تصل إلى 473.9 مجم					
/ جم في وجود الحافز					
،Ni _{0.1} Zn _{0.9} Fe ₂ O ₄					
أعلى بكثير بالمقارنة بالقيم					
المُسجلة عنها في الأبحاث					
السابقة لإزالة صبغة الكريستال					
البنفسجي. أظهرت دراسة اتزان					
الامتزاز وحركيته أن الامتزاز					
ذو طبيعة كيميائية ويحكم					
بالمسام و أوضحت دراسة					
حركية الامتزاز إلى أن نظام					
الامتزاز يتبع النموذج الحركي					
من الدرجة الثانية. ويمكن					
إعادة تدوير المواد المازة					
وإعادة استخدامها عدة مرات					
بنفس الكفاءة تقريبا. و أخيرا					

يمكن اعتبار المواد النانونة				
المحضرة أحد أفضل الخيارات				
للتخلص من هذه الصبغة				
الخطرة: نظرًا لتكلفتها				
المنخفضة ومغنطيسيتها الفائقة				
وقدرتها العالية على الامتزاز، و				
تجدر الاشارة هنا أنه يمكن				
فصل مادة الامتزاز النانوية				
بسهولة من النظام باستخدام				
مغناطيس قوي خارجي.				
وتتوافق أهداف الرسالة و				
التطبيقات محل الدراسة مع				
رؤية مصر 2030 في أن				
يكون المجتمع المصري بحلول				
عام 2030 مجتمعا مبدعا،				
ومبتكرا، ومنتجا للعلوم				
والتكنولوجيا والمعارف. ويتميز				
بوجود نظام متكامل يضمن				
القيمة التنموية للابتكار				

والمعرفة، ويربط تطبيقات				
المعرفة ومخرجات الابتكار				
بالأهداف والتحديات الوطنية				
من الثاني الفصل ويتناول				
مركبات تحضير طريقة الدراسة				
باستخدام زنك النيكل فيرايت				
كذلك و المصاحب الترسيب				
الفوق صوتية بالموجات المعضد				
العملية هذه الطريقة أن حيث				
وصديقة مكلفة، وغير ملائمة،				
التحضير فعالة ووسيلة للبيئة،				
أيضا توصيف وتم الحوافز.				
التحميص بعد الناتجة العينات				
الأشعة حيود من كل بواسطة				
(XRD) السينية				
الألكترونى والميكروسكوب				
، (TEM) الدقة عالى النافذ				
مطياف الاشعه السينيه				

،(XPS)الإلكتروضوئية				
الحمراء تحت الاشعة واطياف				
تحویل باستخدام				
دراسة و تم .، (FTIR)فورييه				
كما تمت الكهربية الخواص				
المغناطيسية دراسة الخواص				
مغناطومتر بواسطة للعينات				
(VSM) المتذبذبة العينة				
الثالث الفصل ويوضح				
التركيبة الخواص دراسة نتائج				
والكهربية والمغناطيسية لمادة				
زنك النيكل ـ فيرايت				
قياسات أشارت وقد النانوبلوري				
وأطياف اشعة السينية حيود				
تكون إلى الحمراء تحت الاشعة				
بلوری ذو ترکیب احادی طور				
عينات لكل)مكعب(سبينال				
ان وجد وقد المحضرة النظام				

التبلور تتراوح بين 9 - حجم				
23.7 نانومتر للعينات المعالجة				
بالموجات فوق الصوتية و11-				
27 نانومتر للعينات غير				
المعالجة بالموجات فوق				
لقد وجد أن ثابت الصوتية				
الشبكة يتناقص لفيرايت النيكل -				
الزنك زنك مع زيادة استبدال.				
وبما أن كثافة الأشعة السينية				
تعتمد على ثابت الشبكة، فإن				
كثافة الأشعة السينية لفيرايت				
الزنك تنخفض من 5.3 النيكل				
جم/سم ³ إلى 5.1 جم/سم ³ مع				
كما أكدت زيادة إحلال الزنك				
الميكروسكوب الالكتروني نتائج				
عالي الدقة و مطياف النافذ				
الاشعه السينيه الإلكتروضوئية				
أن الجسيمات في الحجم				
النانومتري وكذلك نجاح ااستبدال				

أما تحليل أيونات النيكل بالزنك.				
معلومات حول يوفر FTIR				
الخصائص الهيكلية والسطحية				
ولقد للعوامل الحفازة المحضرة				
نطاق حساب ان تبین من النتائج				
يكون أقل لتردد التمدد التردد				
في مواقع M-O لرابطة				
الثماني السطوح يبلغ 415 سم-				
1، في حين يتم تعيين نطاق تردد				
أعلى لاهتزازات التمدد لرابطة				
في مواقع رباعي M-O				
ومع . السطوح يبلغ 560 سم ⁻¹				
اذلك، لوحظ تحول طفيف في				
نطاق الامتصاص فيما يتعلق				
أظهرت نتائج باستبدال الزنك				
قياسات التوصيل الكهربي للتيار				
المستمر أن الفيرايت ويظهر				
سلوك أشباه الموصلات كدالة				
لدرجة الحرارة، مما يعني أن				

مقاومته الكهربائية تتناقص مع				
وأظهرت ارتفاع درجة الحرارة				
انخفاض قيم فجوة الطاقة النتائج				
مع زیادة درجات حرارة				
بينما تزداد قيم فجوة التحميص.				
الطاقة بزيادة إحلال الزنك من				
الكترون 0.39 إلى 0.69				
فإن ذلك إلى بالإضافة فولت.				
أكدت أن محفزات VSM نتائج				
أظهرت طبيعة فيرايت النيكل				
مغناطيسية بينما أظهرت				
طبيعة فيرايت الزنك محفزات				
ممغنطة ووجد أن قيم مغنطة				
قد تحسنت مع (M _s) التشبع				
الموجات الفوق صوتية و				
تم درجات حرارة التحميص				
فيرايت تعزيز مغنطة تشبع				
بإضافة المزيد من أيونات الزنك				
النيكل، ووصلت قيمتها إلى الحد				

الأقصى				
Ni _{0.6} Zn _{0.4} Fe ₂ O ₄ عند				
. في 64.9 emu/gبقيمة				
حين انخفض المجال				
لفريت الزنك بشكل (H_c) القسري				
كبير من مع زيادة محتوى الزنك				
. (184.5 → 18.7)سن				
ويعزى تباين الخواص				
المغناطيسية مع تغير نسب				
النيكل و الزنك إلى إعادة توزيع				
الكاتيون.				
من الرابع الفصل يشمل				
غاز الرسالة دراسة امتزاز				
النيتروجين على سطح				
فيرايت المحفزات نيكل- زنك				
النانونة لقياس المساحة السطحية				
و المسامية. و وجد أن الزنك				
فيرايت يتمتع بأعلى مساحة				

سطح كما أنه يتميز بمسام من				
نوع ميكرو. في حين أن النيكل				
فیرایت و النیکل زنك فیرایت				
أنها عبارة عن محفزات				
متوسطة المسام من نوع ميزو ،				
وأن ارتفاع درجة حرارة				
التحميص يتسبب في تناقص				
للمحفزات S _{BET} مساحة سطح				
فيرايت بسبب زيادة نيكل- زنك				
أحجامها البلورية عبر عملية				
علاوة على ذلك، فإن التحميص				
يتناسب مساحة سطح تباين قيم				
.(V _p)مع حجم المسام الإجمالي				
الخامس نتائج الفصل يتناول و				
النشاط الحفزي عن طريق				
دراسة التحول الحفزى للكحول				
الایزوبروبیلی علی سطح نیکل۔				
فيرايت. وقد تم دراسة تأثير زنك				
			1	

		I		
العوامل المختلفة المؤثرة على				
عملية الحفز مثل درجة حرارة				
التفاعل, وزن الحافز, درجة				
حراره تحميص العامل الحفاز				
وزمن التفاعل وذلك للوصول				
الى الظروف المثلى لفاعلية هذه				
العوامل الحفازه. وبصورة عامه				
فقد وجد أن الحوافز النانونة				
فيرايت حوافز لها نيكل- زنك				
فاعلية عالية لأنتزاع الهيدروجين				
من الكحول وتكوين الأسيتون				
تحت الظروف المختاره. و تبين				
من النتائج أن الحافز				
له كفاءة Ni _{0.1} Zn _{0.9} Fe ₂ O ₄				
تحويل بنسبة تقريبا 100%				
للأيزوبروبانول وانتقائية إلى				
.%أسيتون أكبر من 87				
السادس الفصل يتناول وأخيرا				

دراسة كفاءة امتزاز سطح				
فيرايت النانوية نيكل- زنك				
المعالجة بالموجات فوق				
الصوتية لصبغة الكريستال				
البنفسجي من المياه الملوثة.				
واتضح من النتائج ان الازالة				
99.5 تمت بكفاءة أكبر من				
% من الصبغة، و وزن 0.2				
جم من العينة و تركيز ابتدائي				
للصبغة 100 مجم/ لتر و				
درجة الحموضة 10 خلال				
.20 دقيقة من وقت التلامس				
تتمتع المادة المازة النانونة				
بقدرة امتزاز تصل إلى				
مجم / جم في وجود 473.9				
الحافز				
، وهو Ni _{0.1} Zn _{0.9} Fe ₂ O ₄				
أعلى بكثير بالمقارنة بالقيم				
المُسجلة عنها في الأبحاث				
]	

السابقة لإزالة صبغة			
أظهرت الكريستال البنفسجي			
دراسة اتزان الامتزاز			
وحركيته أن الامتزاز ذو			
طبيعة كيميائية ويحكم			
و أوضحت دراسة بالمسام			
حركية الامتزاز إلى أن نظام			
الامتزاز يتبع النموذج			
الحركي من الدرجة الثانية.			
ويمكن إعادة تدوير المواد			
المازة وإعادة استخدامها عدة			
مرات بنفس الكفاءة تقريبا. و			
أخيرا يمكن اعتبار المواد			
النانونة المحضرة أحد أفضل			
الخيارات للتخلص من هذه			
الصبغة الخطرة: نظرًا			
لتكلفتها المنخفضة			
ومغنطيسيتها الفائقة وقدرتها			
العالية على الامتزاز، و تجدر			

الاشارة هنا أنه يمكن فصل									
مادة الامتزاز النانوية بسهولة									
من النظام باستخدام مغناطيس									
قوي خارجي.									
وتتوافق أهداف الرسالة و									
التطبيقات محل الدراسة مع									
رؤية مصر 2030 في أن									
يكون المجتمع المصري									
بحلول عام 2030 مجتمعا									
مبدعا، ومبتكرا، ومنتجا									
للعلوم والتكنولوجيا									
والمعارف. ويتميز بوجود									
نظام متكامل يضمن القيمة									
التنموية للابتكار والمعرفة،									
ويربط تطبيقات المعرفة									
ومخرجات الابتكار بالأهداف									
والتحديات الوطنية									
							100		
The structural and	101	200	2022/11/1	Prof. Dr. Mohamed Mahmoud	ماجستیر صادر	Studies on	13024096	Doaa	1

optical properties of As_xSe_{100-x} compositions ranging from (\mathbf{x} =5-50 at. %) alloys were studied. Bulk materials were prepared using the well known meltquench technique. The investigated compositions in the thin film form were deposited on glass substrates using the thermal evaporation technique at room temperature. The main conclusions that can be drawn from this thesis can be summarized as follows:	Hafiz Prof. Dr. Abdel-Aziz Abul-Fadl Abdel-Aziz Prof. Dr. Abdel- Hamid Abo Aladb Darwish Abusehly Prof. Dr. Mohamed Ahmed Al-Joraid	structural, thermal, and optical properties of As–Se alloys for phase change applications	Muhammed Hashem
• Structural properties of As_xSe_{100-x} thin films The XRD analysis of As_xSe_{100-x} (5 \leq x \leq 50)			

compositions emphases the				
amorphous structure of the				
prepared samples either in				
bulk or in thin film form. We				
calculated some theoretical				
parameters that are related to				
the arsenic content change in				
the As_xSe_{100-x} system. In the				
present compound of				
As_xSe_{100-x} , the rigidity				
percolation threshold (RPT)				
occurs at As=40 at.%.				
• Thermal analysis of As _x Se _{100-x} chalcogenide glassy alloys				
Effect of As atoms as				
modifiers (cross-linking of				
polymeric Se structure) and				
the formation of the glass				
network was investigated by				
detailed analysis of the				
compositional trend of T_g of				

			T	T	T	
As_xSe_{100-x} network glasses.						
The existence of a linear						
region in the $T_g(x)$						
relationship at small values						
of x can be accounted for on						
the basis of the stochastic						
agglomeration theory and						
similar theoretical models						
which predict a slope						
equations. Some of the						
disagreements between the						
predictions of the theoretical						
models and the experimental						
data can be attributed to the						
complexity of the molecular						
structure in the As _x Se _{100-x}						
network glasses, in						
particular, at higher values						
of x. Proper understanding						
of the dominant local						
structure of the glass						
network at different						

composition is essential for
any attempt to describe in
details the nature of the
covalent glass network.
• Studies on the
structural and optical
properties of As _x Se _{100-x}
thin films
The optical characterization
of the different compositions
of amorphous As _x Se _{100-x}
semiconducting films ($x = 5$ -
50 at.%) has been carried out
using the transmittance and
reflectance spectra. The
envelope method suggested
by Swanepoel has been
applied to the films. The
optical characterization
shows that the refractive
index of the As _x Se _{100-x} thin
X 100 X

films increases and the fundamental band gap decreases from 1.91 to 1.77 eV with increasing arsenic content upto 40 at.% and increase for films containing As >40 at.%. The behavior of the refractive index dispersion and its dependence on composition of amorphous As _x Se _{100-x} thin films were discussed using single oscillator model.									
Chapter 1 Infers neutron properties, noting their greater mass than protons (1,838.68 times that of electrons) and potential β- decay. Neutrons are highly penetrative and pose biological tissue	128	200	2023/10/26	Prof. Galal Saad Hassan Dr. Mahmoud Bakr	ماجستیر صادر	Neutron Buildup and Its Applications	13023937	Rawheya Ahmed Abd Elkader Mahmoud	2

damage risks. Handling				
requires special shielding				
and precautions. Neutrons				
are categorized by energy				
into Slow, Intermediate, and				
Fast neutrons. Neutron beam				
applications involve				
instrument and technique				
development for scattering				
and imaging, including				
Wolter optics, Small-Angle				
Neutron Scattering (SANS),				
Neutron moisture gauge,				
Neutron imaging, Boron				
Neutron Capture Therapy				
(BNCT), and Neutron				
Activation Analysis (NAA).				
The study used a numerical				
model to compute various				
parameters for different				
concrete materials to create a				
shield for an IECF system				

emitting fast neutrons and				
X-rays.				
Chapter 2				
In this chapter, the buildup				
factor mathematically,				
representing the ratio of total				
radiation reaching a point to				
the primary radiation				
reaching the same point.				
Describe neutron				
attenuation, influenced by				
nuclear reactions like				
fission, capture, and				
scattering, while X-rays				
interact with electrons, and				
neutrons interact with nuclei.				
Discuss total and partial				
reaction cross-sections as				
microscopic data denoting				
the probability of neutron				
interaction, measured in				
barns, with the total cross-				

section being the sum of			
individual cross-sections for			
a specific nuclide. Explain			
the neutron shielding process			
involving three steps:			
slowing down neutrons,			
absorbing them, and			
addressing shielding			
materials that absorb			
neutrons and any			
accompanying gamma or X-			
rays.			
Chapter 3			
This chapter concerns a			
fusion device utilizing			
inertial electrostatic			
confinement fusion (IECF),			
emitting fast neutrons at 2.45			
MeV and low-energy			
photons below 3 MeV. The			
radiation source is at the			
center of a 3 \times 3 \times 3 m ³			

cubic room, with dimensions				
of 60 cm in height, 130 cm				
_				
from each side, and 200 cm				
from the top. Effective				
radiation shielding is crucial.				
The study investigates five				
types of high-strength, long-				
lasting concrete suitable for				
widespread use in Egypt:				
Ilmenite-Magnetite Concrete				
(IMC), Ordinary Concrete-1				
(OC-1), Barite-containing				
Concrete (BC), Ordinary				
Concrete-2 (OC-2), and				
Serpentine-containing				
Concrete (SC). Fast				
neutrons, with energies from				
MeV to eV, attenuate				
primarily through scattering,				
while thermal neutrons, in				
the sub-meV range, are				
mainly absorbed by heavy				

			,	
atoms through nuclear				
capture. The effectiveness of				
shielding against photons is				
assessed by the linear				
attenuation coefficient (µl				
cm ⁻¹), where greater				
attenuation in a small				
thickness (x cm) indicates				
better photon shielding				
capabilities.				
<u>Chapters (4 & 5)</u>				
In these two chapters, the				
results of this thesis reveal				
the concrete thickness				
required to attenuate fast				
neutrons to 1/100 of the				
incident value for different				
concrete types: SC, OC-1,				
BC, IMC, and OC-2.				
Serpentine concrete (SC)				
proves to be the most				
effective among the concrete				

11.1.0	T T	1		<u> </u>	Г	
types studied for neutron						
shielding. Barite concrete						
(BC), on the other hand,						
emerges as the most						
effective for shielding						
against x-rays. BC's superior						
performance can be						
attributed to its high						
attenuation ratio, allowing						
for a smaller concrete						
thickness to achieve the						
desired reduction in photon						
intensity. Furthermore, the						
presence of water moderates						
the effect, reducing the						
shielding thickness required						
to attenuate X-ray energy to						
the desired 1/100 of its						
initial intensity.						
The expected future						
outlook of the thesis, in						
outlook of the thesis, in						

accordance with Egypt's				
<u>Vision 2030</u> :				
The study is reflected in				
research developments with				
scientific and technological				
impact on Egyptian society.				
This includes the expansion				
of development,				
modernization, and the				
addition of research facilities				
that keep pace with global				
advancements in the field of				
specialization. Additionally,				
it involves enhancing the				
level of scientific research				
and applied studies at Assiut				
University, as represented by				
the neutron generator				
laboratory.				