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Abstract
Although antibiotics are fundamentally vital for treating human diseases, they became harmful to the ecosystem if 
they reach to the environment. Due to antibiotics are intensely vulnerable to oxidation, oxidation of antibiotics can be 
considered as a recognized tool for removal or degradation of antibiotics to save the humans and ecosystem. The exist-
ing research illuminates the kinetics of oxidative degradation of sulfafurazole antibiotic (SFZ) using chromium trioxide 
 (CrO3) in both  H2SO4 and  HClO4 media. The reactions in both acidic media showed a 1: 1.33 ± 0.07 stoichiometry (SFZ: 
 CrO3). The reliance of the rates of oxidation reactions on the reactants’ concentrations illuminated that the reactions were 
first order in  [CrO3], whereas in [SFZ] and  [H+], their orders were fractional-first and fractional-second, respectively. The 
rate of oxidation of SFZ in  H2SO4 was discovered to be higher than that observed in  HClO4. The oxidation rates were not 
influenced by the change in ionic strength (I) or dielectric constant (D). Addition of Cr(III) had not remarked effect on the 
rates. Free radical intervention tests were positive. The activation quantities were calculated then discussed. A conceiv-
able mechanism of oxidation was anticipated. Furthermore, the rate-law expressions were also derived.
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1 Introduction

Sulfonamide (sulfa) drugs are essential class of antibi-
otics for medication of diseases in humans as well as in 
animals [1, 2]. Despite, antibiotics are really required for  
treatment of humans, they are considered as one of the  
threatening pollutants for human health and ecosystem  
if they reach to the environment due to their involvement  
of complicated organic compounds [3–5]. The expired and  
unexploited sulfa drugs have several antagonistic impacts  
concerning humans and environment [6–8]. Thus, there is  
a great interest to ascertain operative and green treatment  
methodologies to remove or degrade such pollutants to  

safeguard human health. Traditional wastewater treatment 
plants were set to be ineffective for sulfa drugs degrada-
tion [9, 10]. However, antibiotics are known to impressively 
dispose to oxidation that can be a helpful method for anti-
biotics degradation [11–18]. Sulfafurazole or sulfisoxazole 
(SFZ) is one of sulfonamides that has antibiotic activity 
against Gram-negative and Gram-positive organisms. Lit-
tle investigations were performed on the kinetics of oxi-
dative degradation of sulfafurazole drug using different 
oxidants in various media [19–21].

There are many oxidants employed in oxidation 
reactions like permanganate, Mn(VII), [22–35], col-
loidal  MnIVO2 [36–44], cerium(IV ) [13, 14, 45–52], 
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hexachloroplatinate(IV) [53–58], hexacyanoferrate(III) 
[59–63], etc. In addition, there are several investiga-
tions on the oxidation by chromic acid  (H2CrVIO4) in 
acidic media [64–72]. Chromium (VI) oxide  (CrVIO3) is 
considered as a substantial multi-electron oxidant com-
monly used in organic synthesis [17, 18, 73, 74]. It has a 
high toxicity to biological systems and carcinogenic but 
its reduced form, Cr(III), is approximately non-toxic [75, 
76]. Thus, reductants can transform toxic Cr(VI) to Cr(III) 
compounds. Literature review revealed a paucity stud-
ies that interested on the oxidation kinetics by  CrO3 [17, 
18, 73, 74]. Therefore, our present research focuses on 
the description of the mechanism of  CrO3 oxidation of 
sulfafurazole drug in both  H2SO4 and  HClO4 supported 
by a complete understanding of reactions’ kinetics. In  
this study, we investigated the influence of variation of  
the acidic medium used on the reactions’ kinetics and  
to understand the behavior of the reactants in these 
acids. Our research announce a hopeful appropriately 
and safe strategy with a twofold value for human and 
ecosystem: degradation of sulfafurazole drug and 
transformation of the toxic  CrO3 to a relatively harm-
less Cr(III) compounds.

2  Results and discussion

2.1  Stoichiometry of the oxidative degradations 
of SFZ

The stoichiometry of oxidation of sulfafurazole (SFZ) 
using  CrO3 in both acidic media was explored using spec-
trophotometry. Numerous sets of the reaction mixtures 
with various compositions of the main reactants (SFZ 
&  CrO3 with a stock solution concentration of 0.1 M for 
each), at fixed  [H+] (2.0 M) and ionic strength of 2.5 M, 
were reserved until realization of the reactions. Evalu-
ation of unconsumed  CrO3 showed a 1: 1.33 ± 0.07 stoi-
chiometry (SFZ:  CrO3); i.e. 3 mol of SFZ were reacted with 
4 mol of  CrO3. So, the reactions can be generally illus-
trated by Scheme (1). 

The formation of Cr(III) was confirmed by the dark green 
precipitate, Cr(OH)3, which formed upon addition of 
 (NH4)2S(aq) or NaOH solutions to the reaction medium.

2.2  Spectral changes

The spectral variations during sulfafurazole oxidation 
by  CrO3 in 2.0 M of both  H2SO4 and  HClO4 solutions are 
introduced in Fig. 1(a) and (b), correspondingly. The docu-
mented spectra exhibited systematic disappearing of  CrO3 
band at λ = 349 nm with time. This behavior is a well-prove 
for oxidation of SFZ by  CrO3 and reduction of the latter, 
Cr(VI), to Cr(III). Under similar circumstances, the decay 
occurred during the oxidation of SFZ in  H2SO4 was dis-
covered to be greater than that occurred in  HClO4.

2.3  Effect of  [CrO3]

The impact of  CrO3 concentration on the oxidation rates 
was examined by changing its concentration in reactions’ 
mixtures at fixed [SFZ],  [H+], I and T. The results indicated 
non-substantial variation in the values of the rate con-
stants (kobs, calculated as the slopes of the first order plots) 
at several  [CrO3] as listed in Table 1. This situation illumi-
nated that the reactions disclosed first order reliance in 
 [CrO3] which also confirmed by the good linearity of (ln 
Abs. vs. time) plots in both acidic media as appeared in 
Fig. 2.

2.4  Effect of [SFZ]

The rate constant kobs was determined at various [SFZ] 
whilst other constituents were preserved constant. Ris-
ing [SFZ] was set to enhance the rates of reactions as pre-
sented in Table 1. Linear plots of kobs vs. [SFZ] with posi-
tively kobs axes’ intercepts were obtained, Fig. 3(a). Besides, 
log [SFZ] vs. log kobs plots were straight with gradients of 
0.76 and 0.81 in  H2SO4 and  HClO4, correspondingly, as 
shown in Fig. 3(b). So, these reactions were fractional-first 
orders in [SFZ] in both acids. Values of  R2 and standard 
deviation (S.D.) are added in Table S1 in the supporting 
information.

2.5  Effect of [H.+]

The impact of  [H+] on the rates of reactions was explored 
by performing the experiments at several  [H+] (1.0–3.0 M) 
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in both  H2SO4 and  HClO4 preserving all other variables 
stable. Augmenting  [H+] was set to enhance the rates 
(Table 1). Linear plots of kobs vs.  [H+]2 with positively kobs 
axes’ intercepts were acquired as demonstrated in Fig. 4(a) 
signifying fractional-second order credence in  [H+]. Also, 
log  [H+] vs. log kobs plots were straight with gradients of 
1.51 and 1.64 in  H2SO4 and  HClO4, respectively, as pre-
sented in Fig. 4(b), confirming the fractional-second order 
reliance in  [H+].

2.6  Effect of ionic strength (I) and dielectric 
constant (D)

To clarify certain information regarding to the oxidation 
mechanism, the influence of I on the rates of reactions 
was examined. So, the kinetic runs were performed at 
various values of I (2.5–4.0 M). In both acidic media, the 
gained outcomes signified that varying the values of 
I were set to have insignificant effects on the rates as 
listed in Table 1. Moreover, the impact of D was inspected 
by varying the water– t-butanol compositions (vol%) in 
the studied media. Results revealed that kobs values were 
appreciably unaffected with the increase in t-butanol 
content, reduce in D, as presented in Table S2.

2.7  Effect of [Mn(II)]

To explore the existence of Cr(IV) as one of the predicted 
intermediates during oxidation reactions by Cr(VI), Mn(II) 
was added to the reaction mixtures with its various con-
centrations at constant other reaction constituents. The 
acquired outcomes illuminated reduction in the oxidation 
rates with increasing [Mn(II)] confirming the existence of 
Cr(IV).

2.8  Effect of [Cr(III)]

The dependence of the oxidation rates on the reduction 
product of Cr(VI), i.e. Cr(III), was studied. For this, Cr(III) was 
initially added to the reactions’ mixtures with several con-
centrations, (4.0–12.0) ×  10–4 M, at fixed other constituents. 
The acquired outcomes illuminated no noteworthy impact 
of addition of Cr(III) on the oxidation rates.
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Fig. 1  Spectral variations through CrO3 oxidation of sulfafurazole (SFZ) in H2SO4 and HClO4 at 298  K. [SFZ] = 0.1, [CrO3] = 8.0 × 10–4, 
[H +] = 2.0, I = 2.5 M

Table 1  Dependence of kobs on  [CrO3], [SFZ],  [H+] and I at 298 K

Experimental error ± 4%

104  [CrO3], M [SFZ], M [H+], M I, M 105 kobs,  s
−1

H2SO4 HClO4

4.0 0.1 2.0 2.5 43.2 31.2
6.0 0.1 2.0 2.5 41.6 30.1
8.0 0.1 2.0 2.5 41.0 29.4
10.0 0.1 2.0 2.5 41.0 29.2
12.0 0.1 2.0 2.5 41.2 29.7
8.0 0.02 2.0 2.5 12.2 8.5
8.0 0.05 2.0 2.5 27.1 17.4
8.0 0.10 2.0 2.5 41.0 29.4
8.0 0.15 2.0 2.5 57.9 44.0
8.0 0.20 2.0 2.5 72.3 52.8
8.0 0.1 1.0 2.5 14.9 9.7
8.0 0.1 1.5 2.5 26.1 17.3
8.0 0.1 2.0 2.5 41.0 29.4
8.0 0.1 2.5 2.5 58.2 .140
8.0 0.1 3.0 2.5 73.8 54.9
8.0 0.1 2.0 2.5 41.0 29.4
8.0 0.1 2.0 3.0 39.8 28.1
8.0 0.1 2.0 3.5 40.6 29.9
8.0 0.1 2.0 4.0 40.3 28.6
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Fig. 2  Effect of [CrO3] on the oxidation rates at 298 K. [SFZ] = 0.1, [H +] = 2.0, I = 2.5 M
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Fig. 3  Plots of: a kobs vs. [SFZ], b log kobs vs. log [SFZ] at 298 K. [CrO3] = 8.0 × 10–4, [H +] = 2.0, I = 2.5 M
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2.9  Effect of temperature

To evaluate the activation quantities, the oxidation rates 
were examined at different temperatures (288–328 K) at 
fixed other variables. The results illuminated that aug-
menting temperature was set to increase the oxidation 
rates as presented in Table S3. The activation quantities 
of k2 (k2 = kobs / [SFZ]), were computed (see Table 2) via 
Eyring and Arrhenius graphs as illustrated in Fig. 5(a) and 
(b), respectively.

2.10  Free radical intervention test

The feasible attending of free radicals in the present reac-
tions was examined by supplement of acrylonitrile to the 
reactions’ mixtures, preserved for 4 h in an inert medium. 
Then, dilute the mixtures with methanol. These tests were 
positive where dense white precipitates were developed 
designating intervention of free radicals through the reac-
tions signifying that the reactions were proceeded via gen-
eration of free radicals.

2.11  Reactions mechanism

It was stated [77] that  CrO3 is hydrolyzed in water to form 
chromic acid as represented by Eq. (1)

The acquired positive free radical tests favored the involve-
ment of Cr(V) species in the reactions. Also, the reduction 
in the oxidation rates with increasing [Mn(II)] verified the 
participation of Cr(IV) in the present reactions [67, 68].

On the other hand, in sulfa drug structures, two groups 
were identified as the protonation sites in acidic media [78, 
79]. In sulfafurazole (SFZ), protonation occurs at the aro-
matic primary amino group and the anilinic  NH2 group [80, 
81]. The obtained strongly pH-dependent with fractional-
second order dependence is considered as a significant 
prove for protonation of sulfafurazole (symbolized by S) 
which can be illustrated by Eq. (2),

where,  SH2
2+ represents the protonated species of SFZ 

which is considered as the reactive species in the existing 
reactions’ kinetics. Also, the lower than unity order in [SFZ] 
refers to a complexation of the active species of both SFZ 
and the oxidant according to the following equation,

(2)CrO3 + H2O
−⇀
↽−H2CrO4

(3)S + 2H
+

K1
−⇀
↽− SH

2+

2

This was kinetically confirmed by the acquired positive 
intercepts in 1/kobs vs. 1/[S] plots [82] as presented in Fig. 6 
(b). The obtained trivial effects of I and D on the oxidation 
rates accorded with the reactions happening amongst an 
ion and a neutral molecule [83, 84], i.e. between  SH2

2+ and 
 H2CrO4. The formed complex,  [SH2 –  H2CrVIO4]2+ (C), was 
gently decomposed in the slow stage producing free radi-
cal SFZ and Cr(V) reactive intermediates,

This stage is followed by successive rapid stages to pro-
duce the final oxidative degradation products.

The suggested mechanism guides to derive the follow-
ing rate-law expressions (see Appendix S1 in the supporting 
information),

Equations (5) and (6) prerequisite that the graphs: 1/kobs 
vs. 1/[S] at fixed  [H+] and 1/kobs vs. 1/[H+]2 at fixed [S] must be 
linear with positively 1/kobs axes’ intercepts, as were acquired 
in both acidic media, Fig. 6(a) and (b), respectively, proving 
the legality of the proposed mechanism. The rate constant 
k1 and the equilibrium constants K1 & K2 at 298 K were evalu-
ated via Eqs. (5) and (6) and are inserted in Table 3.

2.12  Activation parameters

The obtained activation quantities are presented in 
Table 2. The high negatively ΔS# recommends construc-
tion of a rigid intermediate through the reactions [85]. 

(4)SH
2+

2
+ H2CrO4

K1
−⇀
↽−

[

SH2 − H2CrO4

]2+

(5)

[

SH2 − H2Cr
VI
O4

]2+ k2
→

slow

S
.
(free radical) + 3H

+ + H2Cr
V
O
−

4

(6)
1

kobs

=

(

1 + K1[H
+
]2

k1K1K2[H
+]2

)

1

[S]
+

1

k1

(7)
1

kobs

=

(

1

k1K1K2[S]

)

1

[H+]2
+

1

k1K2[S]
+

1

k1

Table 2  Activation quantities of k2.  [CrO3] = 8.0 ×  10–4, [SFZ] = 0.1, 
 [H+] = 2.0, I = 2.5 M

Acidic 
medium

ΔSJ 
 mol−1  K−1≠

ΔHkJ 
 mol−1≠

ΔG kJ 
 mol−1≠

298

E kJ  mol−1
a

≠

H2SO4  – 199.53 27.28 86.74 32.26
HClO4  – 202.19 27.43 87.68 29.93
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Also, the positive values of ΔH≠ and ΔG≠ manifests that 
the intermediate construction in the rate-determining 
step, as proposed in the reactions mechanism, was endo-
thermic and non-spontaneous, correspondingly [86]. The 
acquired higher Ea

≠ illuminated that the slow stage was 
the decomposition of constructed complexes to yield the 
degradation products [17].

3  Experimental

3.1  Materials

Most employed chemicals in this research work were of 
Sigma-Aldrich and Fluka. Bidistilled water was used as a 
solvent to make all solutions. Sulfafurazole (99.6%) was 

utilized as supplied. Fresh solution of chromium trioxide, 
 CrO3 (Sigma-Aldrich) was made prior to each run by dis-
solving the sample in bidistilled water and it was standard-
ized spectrophotometrically [17, 18]. Solutions of  H2SO4 
(Fluka, 97%) and  HClO4 (Sigma-Aldrich, 70%) were made 
by dilution with bidistilled water. Solutions of  Na2SO4 and 
 NaClO4 were made to fix the ionic strength (I) in  H2SO4 and 
 HClO4 solutions, correspondingly. t-Butanol was utilized to 
examine the impact of dielectric constant (D) of the reac-
tions media.

3.2  Kinetic measurements

Kinetic measurements were conveyed out underneath 
pseudo-first order circumstances where [SFZ] >  >  [CrO3]. 
The values of I of the reactions’ media were attained fixed 
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Fig. 5  a Eyring, b Arrhenius plots of k2. [CrO3] = 8.0 × 10–4, [SFZ] = 0.1, [H +] = 2.0, I = 2.5 M
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at 2.5 mol  dm–3. The progresses of the reactions were 
monitored via spectrophotometric tool by detecting the 
deterioration of the absorbance of Cr (VI) with time at 
λ = 349 nm using a temperature– accurate double-beam 
Shimadzu UV-1800 spectrophotometer. The first order 
rate constant plots (ln Abs. vs. time) were nearly linear 
and the values of kobs were calculated as the slopes of 
these plots. The mean values of about three distinctive 
runs were taken and were reproducible within ± 4%.

4  Conclusions

1. The kinetics of oxidative degradation of sulfafurazole 
(SFZ) by  CrO3 in both  H2SO4 and  HClO4 were examined.

2. The reactions in both acidic media showed a 1: 
1.33 ± 0.07 stoichiometry (SFZ:  CrO3).

3. The rate of oxidation of SFZ in  H2SO4 was discovered to 
be higher than that observed in  HClO4. 4. The activa-
tion quantities were calculated and discussed.

4. A proposed mechanism for the oxidative degradation 
was made.

5. The rate-law expressions were also derived.
6. This research announce a hopeful appropriately and 

safe strategy for degradation of SFZ antibiotic to safe-
guard the human health and ecosystem.

Data availability All data presented in this study are available on 
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