# ON $\Omega$ -CLOSED SETS AND $\Omega$ s-CLOSED SETS IN TOPOLOGICAL SPACES

T. NOIRI (Yatsushiro) and O. R. SAYED (Assiut)

**Abstract.** New classes of sets called  $\Omega$ -closed sets and  $\Omega$ s-closed sets are introduced and studied. Also, we introduce and study  $\Omega$ -continuous functions and  $\Omega$ s-continuous functions and prove pasting lemma for these functions. Moreover, we introduce classes of topological spaces called  $\Omega - T_{\frac{1}{2}}$  and  $\Omega - T_s$ .

#### 1. Introduction

Many concepts of topology have been generalized by considering the concept of semi-open sets due to Levine [10] instead of open sets. On the other hand, the study of generalized closed sets in a topological space was initiated by Levine [11] and the concept of  $T_{\frac{1}{2}}$  spaces was introduced. In 1987, Bhattacharyya and Lahiri [4] introduced the class of semi-generalized closed sets and used them to obtain properties of semi- $T_{\frac{1}{2}}$  spaces. In 1990, Arya and Nour [1] defined the generalized semi-closed sets and studied some characterizations of s-normal spaces. The modified forms of generalized closed sets and generalized continuity were studied by Balachandran, Devi, Maki and Sundaram [3, 8]. This paper is a continuation of their works.

## 2. Preliminaries

Throughout this paper  $(X, \tau)$  and  $(Y, \sigma)$  will always denote topological spaces on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of  $(X, \tau)$ , Cl (A), Int (A) and D[A] [5, 6] denote the closure, the interior and the derived set of A, resp.

We recall some known definitions and properties needed in this paper.

0236-5294/\$ 20.00 © 2005 Akadémiai Kiadó, Budapest

Key words and phrases:  $\Omega$ -closed,  $\Omega$ -closed,  $\Omega$ -continuity,  $\Omega$ - $T_{\frac{1}{2}}$  space and  $\Omega - T_s$  space.

<sup>2000</sup> Mathematics Subject Classification: 54A05, 54C08.

DEFINITION 2.1. Let  $(X, \tau)$  be a topological space. A subset  $A \subseteq X$  is said to be

(1) semi-open [10] if  $A \subseteq \operatorname{Cl}(\operatorname{Int}(A))$  and semi-closed if  $\operatorname{Int}(\operatorname{Cl}(A)) \subseteq A$ ,

(2)  $\alpha$ -open [13] if  $A \subseteq Int(Cl(Int(A)))$ ,

(3) regular open if A = Int(Cl(A)) and regular closed if A = Cl(Int(A)).

DEFINITION 2.2 [5]. Let  $(X, \tau)$  be a topological space and  $A, B \subseteq X$ . Then A is semi-closed if and only if X - A is semi-open and the semi-closure of B, denoted by sCl(B), is the intersection of all semi-closed sets containing B.

DEFINITION 2.3 [7]. Let  $(X, \tau)$  be a topological space,  $A \subseteq X$  and  $x \in X$ . Then x is said to be a semi-limit point of A if and only if every semi-open set containing x contains a point of A different from x.

DEFINITION 2.4 [7]. Let  $(X, \tau)$  be a topological space and  $A \subseteq X$ . The set of all semi-limit points of A is said to be the semi-derived set of A and is denoted by  $D_s[A]$ .

DEFINITION 2.5 [5]. Let  $(X, \tau)$  be a topological space and  $A \subseteq X$ . The semi-interior of A, denoted by sInt (A), is the union of all semi-open subsets of A.

DEFINITION 2.6. A subset  $A \subseteq X$  is said to be

(1) generalized closed (briefly g-closed) [11] if  $Cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open,

(2) semi-generalized closed (briefly sg-closed) [4] if  $sCl(A) \subseteq U$  whenever  $A \subseteq U$  and U is semi-open,

(3) generalized semi-closed (briefly gs-closed) [1] if  $sCl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open.

DEFINITION 2.7. A function  $f: (X, \tau) \to (Y, \sigma)$  is said to be:

(1) g-continuous [3] if  $f^{-1}(V)$  is g-closed in  $(X, \tau)$  for every closed set V of  $(Y, \sigma)$ ,

(2) sg-continuous [13] if  $f^{-1}(V)$  is sg-closed in  $(X, \tau)$  for every closed set V of  $(Y, \sigma)$ ,

(3) gs-continuous [8] if  $f^{-1}(V)$  is gs-closed in  $(X, \tau)$  for every closed set V of  $(Y, \sigma)$ ,

(4) semi-continuous [10] if  $f^{-1}(V)$  is semi-open in  $(X, \tau)$  for every open set V of  $(Y, \sigma)$ ,

(5) contra-continuous [9] if  $f^{-1}(V)$  is closed in  $(X, \tau)$  for every open set V of  $(Y, \sigma)$ ,

(6) perfectly-continuous [2] if  $f^{-1}(V)$  is both open and closed in  $(X, \tau)$  for every open set V of  $(Y, \sigma)$ .

### **3.** $\Omega$ -closed sets and $\Omega$ s-closed sets

DEFINITION 3.1. A subset A of  $(X, \tau)$  is said to be  $\Omega$ -closed in  $(X, \tau)$  if  $sCl(A) \subseteq Int(U)$  whenever  $A \subseteq U$  and U is semi-open in  $(X, \tau)$ .

DEFINITION 3.2. A subset A of  $(X, \tau)$  is said to be  $\Omega$ s-closed in  $(X, \tau)$  if  $sCl(A) \subseteq Int(Cl(U))$  whenever  $A \subseteq U$  and U is semi-open in  $(X, \tau)$ .

PROPOSITION 3.1. If  $D[E] \subseteq D_s[E]$  for each subset E of a space  $(X, \tau)$ , then the union of two  $\Omega$ -closed sets (resp.  $\Omega$ s-closed sets) is  $\Omega$ -closed (resp.  $\Omega$ s-closed).

PROOF. Let A and B be  $\Omega$ -closed (resp.  $\Omega$ s-closed) subsets of X and let U be a semi-open set such that  $A \cup B \subseteq U$ . Then,  $\mathrm{sCl}(A) \subseteq \mathrm{Int}(U)$  and  $\mathrm{sCl}(B) \subseteq$  $\subseteq \mathrm{Int}(U)$  (resp.  $\mathrm{sCl}(A) \subseteq \mathrm{Int}(\mathrm{Cl}(U))$  and  $\mathrm{sCl}(B) \subseteq \mathrm{Int}(\mathrm{Cl}(U))$ ). Since  $D[A] \subseteq D_s[A]$  and  $D[B] \subseteq D_s[B]$ , then we have that  $\mathrm{Cl}(A) = \mathrm{sCl}(A)$  and  $\mathrm{Cl}(B) = \mathrm{sCl}(B)$ . Therefore,  $\mathrm{Cl}(A \cup B) = \mathrm{Cl}(A) \cup \mathrm{Cl}(B) = \mathrm{sCl}(A) \cup \mathrm{sCl}(B)$  $\subseteq \mathrm{Int}(U)$ , i.e.,  $\mathrm{sCl}(A \cup B) \subseteq \mathrm{Int}(U)$  (resp.  $\mathrm{sCl}(A \cup B) \subseteq \mathrm{Int}(\mathrm{Cl}(U))$ ). Hence,  $A \cup B$  is  $\Omega$ -closed (resp.  $\Omega$ s-closed).

PROPOSITION 3.2. (1) Every open and semi-closed subset of  $(X, \tau)$  is  $\Omega$ -closed.

(2) Every  $\Omega$ -closed subset of  $(X, \tau)$  is  $\Omega$ s-closed and gs-closed.

PROOF. (1) Let A be an open and semi-closed subset of  $(X, \tau)$  and  $A \subseteq U$ , where U is a semi-open subset of X. Then,  $\operatorname{sCl}(A) = A = \operatorname{Int}(A) \subseteq \operatorname{Int}(U)$ . Hence, A is  $\Omega$ -closed.

(2) Let A be an  $\Omega$ -closed subset of  $(X, \tau)$  and  $A \subseteq U$ , where U is a semiopen subset of X. Then,  $\mathrm{sCl}(A) \subseteq \mathrm{Int}(U) \subseteq \mathrm{Cl}(\mathrm{Int}(U))$ . Hence, A is an  $\Omega$ s-closed subset of  $(X, \tau)$ . To prove the second part let A be an  $\Omega$ -closed subset of  $(X, \tau)$  and  $A \subseteq U$ , where U is an open subset of X. Then,  $\mathrm{sCl}(A) \subseteq \mathrm{Int}(U) \subseteq U$ . Hence, A is gs-closed.

REMARK 3.1. We have the following relationship between  $\Omega$ -closed sets,  $\Omega$ s-closed sets and related sets:



Fig. 1

REMARK 3.2. In Proposition 3.2, the converses are not necessarily true. (1) Not every  $\Omega$ -closed set is semi-closed as shown by Example 3.1.

- (2) An  $\Omega$ s-closed set need not be  $\Omega$ -closed as shown by Example 3.2.
- (3) A gs-closed set is not always  $\Omega$ -closed as shown by Example 3.3.

EXAMPLE 3.1. Let  $X = \{a, b, c, d\}$  and  $\tau = \{X, \phi, \{c, d\}\}$ . The subset  $\{a, b, d\}$  of X is  $\Omega$ -closed but it is not semi-closed.

EXAMPLE 3.2. Let  $X = \{a, b\}$  and  $\tau = \{X, \phi, \{a\}\}$ . The subset  $\{a\}$  of X is  $\Omega$ s-closed but it is neither  $\Omega$ -closed nor gs-closed. Therefore,  $\{a\}$  is not g-closed.

EXAMPLE 3.3. Let  $X = \{a, b, c\}$  and  $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ . The subset  $\{c\}$  of X is g-closed and hence gs-closed but it is neither  $\Omega$ s-closed nor  $\Omega$ -closed.

REMARK 3.3. (1)  $\Omega$ -closedness and g-closedness are independent by Examples 3.3 and 3.4 (below).

(2)  $\Omega$ s-closedness and g-closedness are independent by Examples 3.2 and 3.3.

(3)  $\Omega s$  -closedness and gs-closedness are independent by Examples 3.2 and 3.3.

EXAMPLE 3.4. Let  $X = \{a, b, c\}$  and  $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ . Then, the subset  $\{b\}$  of  $(X, \tau)$  is  $\Omega$ -closed but it is not g-closed.

PROPOSITION 3.3. If a subset A is  $\Omega$ -closed in  $(X, \tau)$ , then  $\mathrm{sCl}(A) - A$  does not contain a non empty semi-closed set.

PROOF. Let F be a semi-closed set in  $(X, \tau)$  such that  $F \subseteq \operatorname{sCl}(A) - A$ . Then  $F \subseteq \operatorname{sCl}(A)$  and  $A \subseteq X - F$ . Since A is  $\Omega$ -closed, then  $\operatorname{sCl}(A) \subseteq \operatorname{Int}(X - F) = X - \operatorname{Cl}(F)$ . Therefore,  $F \subseteq \operatorname{Cl}(F) \subseteq X - \operatorname{sCl}(A)$ . Hence,  $F \subseteq (X - \operatorname{sCl}(A)) \cap \operatorname{sCl}(A) = \phi$ .

PROPOSITION 3.4. If a subset A is  $\Omega$ s-closed in  $(X, \tau)$ , then  $\mathrm{sCl}(A) - A$  does not contain a non empty semi-open and semi-closed set.

PROOF. Let F be semi-open and semi-closed in  $(X, \tau)$  such that  $F \subseteq$ sCl (A) - A. Then we have that  $A \subseteq X - F$  and sCl  $(A) \subseteq$  Int (Cl (X - F))= X - Cl (Int (F)). Thus we obtain  $F \subseteq Cl (Int (F)) \subseteq X - sCl (A)$ . Therefore,  $F \subseteq (X - sCl (A)) \cap sCl (A) = \phi$ .

PROPOSITION 3.5. If a subset A of  $(X, \tau)$  is semi-open and  $\Omega$ -closed, then it is semi-closed.

PROOF. Since A is semi-open and  $\Omega$ -closed, then  $\mathrm{sCl}(A) \subseteq \mathrm{Int}(A) \subseteq A$ . Hence,  $\mathrm{sCl}(A) = A$  and A is semi-closed.

THEOREM 3.1. A subset A of  $(X, \tau)$  is regular open if and only if A is  $\alpha$ -open and  $\Omega$ -closed.

PROOF. Suppose A is an  $\alpha$ -open and  $\Omega$ -closed set. Then A is semi-open and  $\Omega$ -closed and by Proposition 3.5, A is semi-closed. So, Int  $(\operatorname{Cl}(A))$  $\subseteq A$ . Since A is  $\alpha$ -open, then  $A \subseteq \operatorname{Int} (\operatorname{Cl}(\operatorname{Int}(A))) \subseteq \operatorname{Int} (\operatorname{Cl}(A))$ . Thus,  $A = \operatorname{Int} (\operatorname{Cl}(A))$  and A is regular open. Conversely, let A be regular open, then A is  $\alpha$ -open. Since A is regular open, A is open and semi-closed. By Proposition 3.2, A is  $\Omega$ -closed (see Fig. 1).

THEOREM 3.2. An open set of  $(X, \tau)$  is gs-closed if and only if it is  $\Omega$ -closed.

PROOF. Let A be an open and gs-closed set. Assume that  $A \subseteq U$ , where U is a semi-open set in X. Thus  $A = \text{Int}(A) \subseteq \text{Int}(U)$ . Since Int(U) is open in X and A is gs-closed, then  $\text{sCl}(A) \subseteq \text{Int}(U)$  and A is an  $\Omega$ -closed set. Conversely, it is obvious that every  $\Omega$ -closed set is gs-closed.

LEMMA 3.1 [14]. Let  $A \subset B \subset X$  where  $(X, \tau)$  is a topological space and B is semi-open in the space X. Then A is semi-open in the space X if and only if A is semi-open in B.

THEOREM 3.3. Let B and Y be subsets of a space  $(X, \tau)$  such that  $B \subseteq Y \subseteq X$ .

(1) If B is an  $\Omega$ -closed set in the subspace Y and Y is an open and  $\Omega$ closed set in  $(X, \tau)$ , then B is an  $\Omega$ -closed set in  $(X, \tau)$ .

(2) If Y is open and B is  $\Omega$ -closed in  $(X, \tau)$ , then B is an  $\Omega$ -closed set in the subspace Y.

PROOF. (1) Let U be a semi-open set of  $(X, \tau)$  such that  $B \subseteq U$ . Since B is an  $\Omega$ -closed set in the subspace Y, then we have  $\mathrm{sCl}_Y(B) \subseteq \mathrm{Int}_Y(U \cap Y)$ . Then we obtain that  $Y \cap \mathrm{sCl}(B) \subseteq \mathrm{sCl}_Y(B) \subseteq \mathrm{Int}_Y(U \cap Y) = \mathrm{Int}(U \cap Y)$ . Hence  $\mathrm{Int}(U \cap Y) \cup \{X - \mathrm{sCl}(B)\}$  is semi-open in  $(X, \tau)$  and it contains Y. Since Y is  $\Omega$ -closed in  $(X, \tau)$ , then we have

$$\operatorname{sCl}(B) \subseteq \operatorname{sCl}(Y) \subseteq \operatorname{Int}\left[\operatorname{Int}(U \cap Y) \cup \left\{X - \operatorname{sCl}(B)\right\}\right]$$
$$\subseteq \operatorname{Int}(U) \cup \left\{X - \operatorname{sCl}(B)\right\}.$$

Thus  $sCl(B) \subseteq Int(U)$  and B is  $\Omega$ -closed in  $(X, \tau)$ .

(2) Let  $B \subseteq U$ , where U is semi-open in the subspace Y. Since Y is open in X, then by Lemma 3.1 U is semi-open in  $(X, \tau)$ . Since B is an  $\Omega$ -closed set in  $(X, \tau)$ , then  $\mathrm{sCl}(B) \subseteq \mathrm{Int}(U)$ . Since Y is open in X, then  $\mathrm{Int}(U) =$  $\mathrm{Int}_Y(U)$  and  $\mathrm{sCl}_Y(B) = Y \cap \mathrm{sCl}(B) \subseteq \mathrm{sCl}(B) \subseteq \mathrm{Int}(U) = \mathrm{Int}_Y(U)$ . Hence, B is an  $\Omega$ -closed set in the subspace Y.

COROLLARY 3.1. Let  $B \subseteq Y \subseteq X$  and Y be open and  $\Omega$ -closed in  $(X, \tau)$ . Then, the following are equivalent:

(1) B is  $\Omega$ -closed in  $(X, \tau)$ .

(2) B is an  $\Omega$ -closed set in the subspace Y.

THEOREM 3.4. Let B and Y be subsets of a space  $(X, \tau)$  such that  $B \subseteq Y \subseteq X$ .

(1) If B is an  $\Omega$ s-closed set in the subspace Y and Y is an open and  $\Omega$ -closed set in  $(X, \tau)$ , then B is an  $\Omega$ s-closed set in  $(X, \tau)$ .

(2) If Y is open and B is  $\Omega$ s-closed in  $(X, \tau)$ , then B is an  $\Omega$ s-closed set in the subspace Y.

PROOF. (1) Let U be a semi-open set of  $(X, \tau)$  such that  $B \subseteq U$ . Since B is an  $\Omega$ s-closed set in the subspace Y, then  $\mathrm{sCl}_Y(B) \subseteq \mathrm{Int}_Y(\mathrm{Cl}_Y(U \cap Y))$ . So,

$$Y \cap \mathrm{sCl}(B) \subseteq \mathrm{sCl}_Y(B) \subseteq \mathrm{Int}_Y(\mathrm{Cl}_Y(U \cap Y)) = \mathrm{Int}\left(\mathrm{Cl}(U \cap Y)\right) \cap Y.$$

Hence Int  $(\operatorname{Cl}(U \cap Y)) \cup \{X - \operatorname{sCl}(B)\}$  is semi-open in  $(X, \tau)$  and it contains Y. Since Y is an  $\Omega$ -closed set in  $(X, \tau)$ , then we have that  $\operatorname{sCl}(B) \subseteq \operatorname{sCl}(Y)$  $\subseteq \operatorname{Int} [\operatorname{Int} (\operatorname{Cl}(U \cap Y)) \cup (\{X - \operatorname{sCl}(B)\})] \subseteq \operatorname{Int} (\operatorname{Cl}(U)) \cup \{X - \operatorname{sCl}(B)\}.$ Thus, we obtain  $\operatorname{sCl}(B) \subseteq \operatorname{Int} (\operatorname{Cl}(U))$  and B is  $\Omega$ s-closed in  $(X, \tau)$ .

(2) Let  $B \subseteq U$ , where U is semi-open in the subspace Y. Since Y is open in X, then by Lemma 3.1 U is semi-open in  $(X, \tau)$ . Since B is an  $\Omega$ s-closed set in  $(X, \tau)$ , then  $\mathrm{sCl}(B) \subseteq \mathrm{Int}(\mathrm{Cl}(U))$ . Since Y is open in X, then  $\mathrm{Int}(U)$  $= \mathrm{Int}_Y(U)$  and  $\mathrm{sCl}_Y(B) = Y \cap \mathrm{sCl}(B) \subseteq \mathrm{Int}(\mathrm{Cl}(U)) \cap Y = \mathrm{Int}_Y(\mathrm{Cl}_Y(U))$ . Hence, B is an  $\Omega$ s-closed set in the subspace Y.

## 4. $\Omega$ -continuity and $\Omega$ s-continuity

Let  $f: (X, \tau) \to (Y, \sigma)$  be a function from a topological space  $(X, \tau)$  into a topological space  $(Y, \sigma)$ .

DEFINITION 4.1. A function  $f: (X, \tau) \to (Y, \sigma)$  is said to be  $\Omega$ -continuous (resp.  $\Omega$ s- continuous) if  $f^{-1}(V)$  is  $\Omega$ -closed (resp.  $\Omega$ s-closed) in  $(X, \tau)$  for every closed set V of  $(Y, \sigma)$ .

DEFINITION 4.2. A function  $f : (X, \tau) \to (Y, \sigma)$  is said to be  $\Omega$ -irresolute (resp.  $\Omega$ s-irresolute) if  $f^{-1}(V)$  is  $\Omega$ -closed (resp.  $\Omega$ s-closed) in  $(X, \tau)$  for every  $\Omega$ -closed (resp.  $\Omega$ s-closed) set V of  $(Y, \sigma)$ .

**PROPOSITION 4.1.** (1) Every  $\Omega$ -continuous function is gs-continuous.

(2) Every  $\Omega$ -continuous function is  $\Omega$ s-continuous.

(3) Every contra-continuous and semi-continuous function is  $\Omega$ -continuous.

REMARK 4.1. We have the following relationship between  $\Omega$ -continuity and  $\Omega$ s-continuity and other related generalized continuity.



REMARK 4.2. In Proposition 4.1, the converses are not necessarily true. (1) Not every gs-continuous function is  $\Omega$ -continuous as shown by Example 4.1.

(2) An  $\Omega$ s-continuous function need not be  $\Omega$ -continuous as shown by Example 4.2.

(3) An  $\Omega$ -continuous function is not always semi-continuous as shown by Example 4.3.

EXAMPLE 4.1. Let  $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}, Y = \{p, q\}$ and  $\sigma = \{Y, \phi, \{p\}\}$ . Define a function  $f : (X, \tau) \to (Y, \sigma)$  as follows: f(a) = f(b) = p and f(c) = q. Then f is continuous and hence g-continuous and gscontinuous. But it is not  $\Omega$ s-continuous and hence not  $\Omega$ -continuous. There exists a closed set  $\{q\}$  of  $(Y, \sigma)$  such that  $f^{-1}(\{q\})$  is not  $\Omega$ s-closed in  $(X, \tau)$ .

EXAMPLE 4.2. Let  $X = \{a, b\}, \tau = \{X, \phi, \{a\}\}, Y = \{p, q\}$  and  $\sigma = \{Y, \phi, \{p\}\}$ . Define the function  $f : (X, \tau) \to (Y, \sigma)$  as follows: f(a) = q and f(b) = p. Then f is an  $\Omega$ s-continuous function which is not  $\Omega$ -continuous. Also, it is neither gs-continuous nor g-continuous.

EXAMPLE 4.3. Let  $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}, Y = \{p, q\}$  and  $\sigma = \{Y, \phi, \{p\}\}$ . Define a function  $f : (X, \tau) \to (Y, \sigma)$  as follows: f(a) = f(c) = p and f(b) = q. Then f is  $\Omega$ -continuous but it is not semi-continuous. There exists a closed set  $\{q\}$  of  $(Y, \sigma)$  such that  $f^{-1}(\{q\})$  is  $\Omega$ -closed but not semi-closed in  $(X, \tau)$ .

EXAMPLE 4.4. Let  $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}, Y = \{p, q\}$  and  $\sigma = \{Y, \phi, \{p\}\}$ . Define a function  $f : (X, \tau) \to (Y, \sigma)$  as follows: f(a) = f(c) = p and f(b) = q. Then f is  $\Omega$ -continuous but not g-continuous. Because there exists a closed set  $\{q\}$  of  $(Y, \sigma)$  such that  $f^{-1}(\{q\})$  is  $\Omega$ -closed but not g-closed in  $(X, \tau)$ .

REMARK 4.3. (1)  $\Omega$ -continuity and g-continuity are independent by Examples 4.1 and 4.4.

(2)  $\Omega$ s-continuity and g-continuity are independent by Examples 4.1 and 4.2.

(3)  $\Omega$ s-continuity and gs-continuity are independent by Examples 4.1 and 4.2.

## 5. Applications

DEFINITION 5.1. A topological space  $(X, \tau)$  is said to be

- (1)  $\Omega T_{\frac{1}{2}}$  if every  $\Omega$ s-closed set is semi-closed in  $(X, \tau)$ ,
- (2)  $\Omega T_s$  if every  $\Omega$ s-closed set is closed in  $(X, \tau)$ ,
- (3) semi- $T_{\frac{1}{2}}$  [4] if every sg-closed set is semi-closed.

DEFINITION 5.2. A topological space  $(X, \tau)$  is said to be semi- $T_0$  (resp. semi- $T_1$ ) [12] if for each pair of distinct points x, y of X, there exists a semi-open set  $U_x$  containing x but not y or (resp. and) a semi-open set  $U_y$  containing y but not x.

**PROPOSITION 5.1.** Let  $(X, \tau)$  be a topological space.

(1) For each  $x \in X, \{x\}$  is semi-closed or its complement  $X - \{x\}$  is  $\Omega$ -closed in  $(X, \tau)$ .

(2) For each  $x \in X, \{x\}$  is open and semi-closed or its complement  $X - \{x\}$  is  $\Omega$ s-closed in  $(X, \tau)$ .

PROOF. (1) Suppose that  $\{x\}$  is not semi-closed in  $(X, \tau)$ . Then  $X - \{x\}$  is not semi-open and the only semi-open set containing  $X - \{x\}$  is X. Therefore, sCl  $(X - \{x\}) \subseteq$  Int (X) = X. So,  $X - \{x\}$  is  $\Omega$ -closed in  $(X, \tau)$ .

(2) Suppose that  $\{x\}$  is not semi-closed in  $(X, \tau)$ . Then by (1),  $X - \{x\}$  is  $\Omega$ -closed in  $(X, \tau)$  and then  $\Omega$ s-closed. Suppose that  $\{x\}$  is not open and let U be a semi-open set such that  $X - \{x\} \subseteq U$ . If U = X, then

$$\operatorname{sCl}(X - \{x\}) \subseteq \operatorname{Int}(\operatorname{Cl}(U)) = U.$$

If  $U = X - \{x\}$ , then we have that  $\operatorname{Int}(\operatorname{Cl}(U)) = \operatorname{Int}(\operatorname{Cl}(X - \{x\})) =$ Int (X) = X. Hence,  $\operatorname{sCl}(X - \{x\}) \subseteq \operatorname{Int}(\operatorname{Cl}(U))$ . Therefore,  $X - \{x\}$  is  $\Omega$ s-closed in  $(X, \tau)$ .

THEOREM 5.1. For a topological space  $(X, \tau)$ , the following are equivalent:

- (1) Every  $\Omega$ -closed set is semi-closed in  $(X, \tau)$ ;
- (2) For each  $x \in X$ ,  $\{x\}$  is semi-open or semi-closed in  $(X, \tau)$ ;
- (3)  $(X, \tau)$  is semi- $T_{\frac{1}{2}}$ .

PROOF. (1)  $\Longrightarrow$  (2). Suppose that for a point  $x \in X$ ,  $\{x\}$  is not semiclosed  $(X, \tau)$ . By Proposition 5.1 (1)  $X - \{x\}$  is  $\Omega$ -closed in  $(X, \tau)$ . By assumption,  $X - \{x\}$  is semi-closed in  $(X, \tau)$  and hence  $\{x\}$  is semi-open. Therefore, each singleton is semi-open or semi-closed in  $(X, \tau)$ .

 $(2) \Longrightarrow (1)$ . Let A be an  $\Omega$ -closed set in  $(X, \tau)$ . We want to prove that sCl(A) = A. Suppose  $x \in sCl(A)$ .

Case 1:  $\{x\}$  is semi-open in  $(X, \tau)$ . Then  $\{x\} \cap A \neq \phi$  which implies  $x \in A$ .

Case 2:  $\{x\}$  is semi-closed in  $(X, \tau)$  and  $x \notin A$ . Then  $\mathrm{sCl}(A) - A$  contains a semi-closed set  $\{x\}$  and this contradicts Proposition 3.3. Hence  $x \in A$  and A is semi-closed. Therefore, Every  $\Omega$ -closed set is semi-closed in  $(X, \tau)$ .

(2)  $\Leftrightarrow$  (3). This is shown in [17, Theorem 4.8].

THEOREM 5.2. For a topological space  $(X, \tau)$ , the following properties hold:

(1) If  $(X, \tau)$  is  $\Omega - T_s$ , then for each  $x \in X$  the singleton  $\{x\}$  is open or semi-closed;

(2)  $(X,\tau)$  is  $\Omega - T_{\frac{1}{2}}$  if and only if for each  $x \in X$ ,  $\{x\}$  is semi-open or semi-closed and open in  $(X,\tau)$ ;

(3) If  $(X,\tau)$  is  $\Omega - T_s$ , then it is  $\Omega - T_{\frac{1}{2}}$ ;

(4) If  $(X,\tau)$  is  $\Omega - T_{\frac{1}{2}}$ , then it is semi- $\overline{T}_{\frac{1}{2}}$ .

PROOF. (1) Suppose that for some  $x \in X$ ,  $\{x\}$  is not semi-closed. By Proposition 5.1  $X - \{x\}$  is  $\Omega$ -closed in  $(X, \tau)$ . Hence,  $X - \{x\}$  is  $\Omega$ s-closed in  $(X, \tau)$ . Since  $(X, \tau)$  is  $\Omega - T_s$ , then  $X - \{x\}$  is closed in  $(X, \tau)$ . Thus  $\{x\}$ is open.

(2) Necessity. Suppose that a singleton  $\{x\}$  is not semi-closed or open. By Proposition 5.1  $X - \{x\}$  is  $\Omega$ s-closed in  $(X, \tau)$ . Using the assumption we have that  $\{x\}$  is semi-open.

Sufficiency. It follows from the assumption that every subset is semiopen and semi-closed. Then  $(X, \tau)$  is  $\Omega - T_{\frac{1}{2}}$ .

(3) It is straightforward from the definitions of  $\Omega-T_s$  spaces and  $\Omega-T_{\frac{1}{2}}$  spaces.

(4) It is obvious from (2) above and Theorem 5.1.

REMARK 5.1. We have the following implications. But a semi- $T_{\frac{1}{2}}$  space is not necessarily  $\Omega - T_{\frac{1}{2}}$  as shown by Example 5.1 (below).



EXAMPLE 5.1. Let  $X = \{a, b, c\}$  and  $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ . Then  $(X, \tau)$  is a semi- $T_{\frac{1}{2}}$  space which is not  $\Omega - T_{\frac{1}{2}}$  since  $\{b\}$  is neither semi-open nor semi-closed.

THEOREM 5.3. Let  $f: (X, \tau) \to (Y, \sigma)$  and  $g: (Y, \sigma) \to (Z, v)$  be two functions.

(1)  $g \circ f$  is  $\Omega$ -continuous (resp.  $\Omega$ s-continuous) if g is continuous and f is  $\Omega$ -continuous (resp.  $\Omega$ s-continuous).

(2)  $g \circ f$  is  $\Omega$ -irresolute (resp.  $\Omega$ s-irresolute) if both f and g are  $\Omega$ -irresolute (resp.  $\Omega$ s-irresolute).

(3)  $g \circ f$  is  $\Omega$ -continuous (resp.  $\Omega$ s-continuous) if g is  $\Omega$ -continuous (resp.  $\Omega$ s-continuous) and f is  $\Omega$ -irresolute (resp.  $\Omega$ s-irresolute).

(4) Let  $(Y, \sigma)$  be an  $\Omega - T_s$  space. Then  $g \circ f$  is continuous if f is continuous and g is  $\Omega$ s-continuous.

(5) Let f be  $\Omega$ s-continuous. Then f is continuous (resp. semi-continuous) if  $(X, \tau)$  is  $\Omega - T_s$  (resp.  $\Omega - T_{\frac{1}{2}}$ ).

**PROOF.** Obvious.

DEFINITION 5.3. A function  $f: X \to Y$  is said to be semi-closed [15] (resp. pre-semi-closed [16]) if for each closed (resp. semi-closed) set F of X, f(F) is semi-closed in Y.

THEOREM 5.4. Let  $f: (X, \tau) \to (Y, \sigma)$  be a function.

(1) Let f be an  $\Omega$ s-irresolute and closed surjection. If  $(X, \tau)$  is an  $\Omega - T_s$  space, then  $(Y, \sigma)$  is also  $\Omega - T_s$ .

(2) Let f be an  $\Omega$ s-irresolute and semi-closed surjection. If  $(X, \tau)$  is an  $\Omega - T_s$  space, then  $(Y, \sigma)$  is  $\Omega - T_{\frac{1}{2}}$ .

(3) Let f be an  $\Omega$ s-irresolute and pre-semi-closed surjection. If  $(X, \tau)$  is an  $\Omega - T_{\frac{1}{2}}$  space, then  $(Y, \sigma)$  is  $\Omega - T_{\frac{1}{2}}$ .

PROOF. Obvious.

#### 6. Pasting lemma

Let  $X = A \cup B$  and  $f : A \to Y$  and  $h : B \to Y$  be two functions. f and h are called compatible if f(x) = h(x) for every  $x \in A \cap B$ . The combination  $f \bigtriangledown h : (X, \tau) \to (Y, \sigma)$  is defined by  $(f \bigtriangledown h)(x) = f(x)$  if  $x \in A$  and  $(f \bigtriangledown h)(x) = h(x)$  if  $x \in B$ .

THEOREM 6.1. Suppose that A and B are both  $\Omega$ -closed and open subsets of  $(X, \tau)$ . Let  $f : (A, \tau_{A}) \to (Y, \sigma)$  and  $h : (B, \tau_{B}) \to (Y, \sigma)$  be compatible functions. Assume that  $D[E] \subseteq D_s[E]$  for any  $E \subseteq X$ . If f and h are  $\Omega$ -continuous (resp.  $\Omega$ s-continuous), then the combination  $f \bigtriangledown h : (X, \tau)$  $\to (Y, \sigma)$  is also  $\Omega$ -continuous (resp.  $\Omega$ s-continuous).

PROOF. Let F be a closed subset of  $(Y, \sigma)$ . By definition  $(f \bigtriangledown h)^{-1}(F) = f^{-1}(F) \cup h^{-1}(F)$ . By the assumption  $f^{-1}(F)$  is  $\Omega$ -closed ( $\Omega$ s-closed) in  $(A, \tau_{/A})$  and  $h^{-1}(F)$  is  $\Omega$ -closed ( $\Omega$ s-closed) in  $(B, \tau_{/B})$ . Since A and B are both  $\Omega$ -closed and open subsets of  $(X, \tau)$ , by Theorem 3.3 (Theorem 3.4)  $f^{-1}(F)$  and  $h^{-1}(F)$  are both  $\Omega$ -closed (resp.  $\Omega$ s-closed) sets in  $(X, \tau)$ . Then by Proposition 3.1,  $f^{-1}(F) \cup h^{-1}(F)$  is  $\Omega$ -closed ( $\Omega$ s-closed) in  $(X, \tau)$ . Hence,  $f \bigtriangledown h$  is  $\Omega$ -continuous ( $\Omega$ s-continuous).

## References

- S. P. Arya and T. M. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21 (1990), 717–719.
- [2] S. P. Arya and R. Gupta, On strongly continuous mappings, Kyungpook Math. J., 14 (1974), 131–143.
- [3] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 12 (1991), 5–13.
- [4] P. Bhattacharyya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29 (1987), 375–382.
- [5] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971), 99–112.
- [6] S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math., 74 (1972), 233–254.
- [7] P. Das, Note on some applications of semi-open sets, Progr. Math. (Allahabad), 7 (1973), 33–44.
- [8] R. Devi, H. Maki and K. Balachandran, Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 14 (1993), 41–54.
- [9] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 19 (1996), 303–310.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [11] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89–96.
- [12] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, 89 (1975), 395–402.
- [13] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [14] T. Noiri, On semi-continuous mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 54 (1973), 210–214.
- [15] T. Noiri, A generalization of closed mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 54 (1973), 412–415.
- [16] D. Sivaraj, Semihomeomorphisms, Acta Math. Hungar., 48 (1986), 139–145.
- [17] P. Sundaram, H. Maki and K. Balachandran, Semi-generalized continuous maps and semi-T<sub>1</sub> spaces, Bull. Fukuoka Univ. Ed. Part III, 40 (1991), 33–40.

(Received September 26, 2003; revised November 13, 2003)

DEPARTMENT OF MATHEMATICS YATSUSHIRO COLLEGE OF TECHNOLOGY YATSUSHIRO, KUMAMOTO 866-8501 JAPAN E-MAIL: NOIRI@AS.YATSUSHIRO-NCT.AC.JP

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE ASSIUT UNIVERSITY ASSIUT 71516 EGYPT E-MAIL: O.R.SAYED@YAHOO.COM