Ω -OPEN SETS AND Ωs-OPEN SETS IN TOPOLOGICAL SPACES

O. R. SAYED

Department of Mathematics Faculty of Science Assiut University Assiut 71516, EGYPT e-mail: sayed_o_r@yahoo.com

ABSTRACT. New classes of sets called Ω -open sets and Ωs -open sets are introduced and studied. Also, as applications we introduce and study Ω -compact spaces and Ωs - compact spaces.

1. INTRODUCTION AND PRELIMINARIES

Many concepts of general topology have been generalized, by considering the concept of semi-open sets due to Levine [8]. The study of generalized closed sets in the topological spaces was initiated by Levine [9] and the concept of $T_{1/2}$ spaces was introduced. In 1987,

Bhattacharyya and Lahiri [3] introduced the class of semi-generalized closed sets and used them to obtain properties in $semi-T_{1/2}$ spaces. In 1990, Arya and Nour [1] defined the generalized semi-closed sets and studied some characterizations of s-normal spaces. The modified forms of generalized closed sets and generalized continuity were studied by Balachandran, Devi, Maki and Sundaram [2, 7]. Recently, Noiri and Sayed [12] introduced

⁰Received May 5, 2006. Revised May 19, 2006.

⁰2000 Mathematics Subject Classification: 54A05,54C08

 $^{^{0}}$ Keywords: Ω -open, Ω s-open, Ω -compact space and Ω s- compact space.

and studied new classes of sets called Ω -closed sets and Ωs -closed sets. Also, they introduced and studied Ω -continuous functions and Ωs - continuous functions and proved pasting lemma for these functions. Moreover, they introduced classes of topological spaces called $\Omega - T_{1/2}$ and $\Omega - T_s$. This paper is a continuation of their works.

Throughout this paper (X, τ) and (Y, σ) will always denote topological spaces on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of (X, τ) , Cl(A),

Int(A), D[A], sCl(A), sInt(A) and $D_s[A]$ [4-5] denote the closure of A, the interior of A, the derived set of A,

the semi-closure of A, the semi-interior of A and the semi- derived set of A, respectively.

We recall some known definitions and properties.

DEFINITION 1.1. Let (X,τ) be a topological space. A subset $A\subseteq X$ is said to be:

(1) semi-open [8] if $A \subseteq Cl(Int(A))$ and semi-closed if $Int(Cl(A)) \subseteq A$,

(2) α -open [11] if $A \subseteq Int(Cl(Int(A)))$,

(3) regular open if A = Int(Cl(A)) and regular closed if A = Cl(Int(A)).

DEFINITION 1.2 [4]. Let (X, τ) be a topological space and $A, B \subseteq X$. Then A is semi-closed if and only if X - A is semi-open and the semi-closure of B, denoted by sCl(B), is the intersection of all semi-closed sets containing B.

DEFINITION 1.3 [7]. Let (X, τ) be a topological space, $A \subseteq X$ and $x \in X$. Then x is said to be a semi-limit point of A if and only if every semi-open set containing x contains a point of A diffrent from x

DEFINITION 1.4 [7]. Let (X, τ) be a topological space and $A \subseteq X$. The set of all semi-limit point of A is said to be semi-derived set A and is denoted by $D_s[A]$

DEFINITION 1.5 [6]. Let (X, τ) be a topological space and A, B be two non-void subsets of X. Then A and B are said to be semi-separated if $A \cap sCl(B) = sCl(A) \cap B = \phi$.

DEFINITION 1.6 [4]. Let (X, τ) be a topological space and $A \subseteq X$. The semi-interior of A, denoted by sInt(A), is the union of all semi-open subsets of A.

DEFINITION 1.7 [12]. A subset A of (X, τ) is said to be Ω -closed if $sCl(A) \subseteq Int(U)$ whenever $A \subseteq U$ and U is semi-open.

DEFINITION 1.8 [12]. A subset A of (X, τ) is said to be Ωs -closed if $sCl(A) \subseteq Int(Cl(U))$ whenever $A \subseteq U$ and U is semi-open.

DEFINITION 1.9 [12]. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be:

- (1) Ω -continuous if $f^{-1}(V)$ is Ω -closed in (X,τ) for every closed set V of (Y,σ) .
- (2) Ωs -continuous if $f^{-1}(V)$ is Ωs -closed in (X,τ) for every closed set V of (Y,σ) .
- (3) Ω -irresolute if $f^{-1}(V)$ is Ω -closed in (X, τ) for every Ω -closed set V of (Y, σ) .
- (4) Ωs -irresolute if $f^{-1}(V)$ is Ωs -closed in (X, τ) for every Ωs -closed set V of (Y, σ) .

PROPOSITION 1.10 [12]. If for any subset E of (X,τ) , $D[E] \subseteq D_s[E]$, then the union of two Ω -closed sets (resp. Ωs -closed sets) is Ω -closed (resp. Ωs -closed).

2. Ω -OPEN SETS AND Ωs -OPEN SETS

DEFINITION 2.1. A subset A of (X, τ) is said to be Ω -open in (X, τ) if its complement X - A is Ω -closed in (X, τ) .

DEFINITION 2.2. A subset A of (X, τ) is said to be Ωs -open in (X, τ) if its complement X - A is Ωs -closed in (X, τ) .

PROPOSITION 2.3. Let (X, τ) be a topological space and $A \subseteq X$.

- (1) A is an Ω -open set if and only if $Cl(F) \subseteq sInt(A)$ whenever $F \subseteq A$ and F is semi-closed.
- (2) A is an Ωs -open set if and only if $Cl(Int(F)) \subseteq sInt(A)$ whenever $F \subseteq A$ and F is semi-closed.
 - (3) If A is Ω -open, then A is Ω s-open.

PROOF. (1) Necessity. Let A be an Ω -open set in (X, τ) and suppose $F \subseteq A$, where F is semi-closed. Then, X - A is Ω -closed and it is contained in the semi-open set X - F. Therefore, $sCl(X - A) \subseteq Int(X - F)$. Hence, $Cl(F) \subseteq sInt(A)$.

Sufficiency. If F is a semi-closed set such that $Cl(F) \subseteq sInt(A)$ whenever $F \subseteq A$, it follows that $X - A \subseteq X - F$ and $X - sInt(A) \subseteq X - Cl(F)$. Therefore, $sCl(X - A) \subseteq Int(X - F)$. Hence, X - A is Ω -closed and A becomes an Ω -open set. This proves (1).

(2) Necessity. Let A be an Ωs -open set in (X, τ) and suppose $F \subseteq A$, where F is semi-closed. By definition X - A is Ωs -closed and it is contained in the semi-open set X - F. Therefore, $sCl(X - A) \subseteq Int(Cl(X - F))$. Hence, $Cl(Int(F)) \subseteq sInt(A)$.

Sufficiency. If F is a semi-closed set such that $Cl(Int(F)) \subseteq sInt(A)$ whenever $F \subseteq A$, it follows that $X - A \subseteq X - F$ and $X - sInt(A) \subseteq X - Cl(Int(F))$. Therefore, $sCl(X - A) \subseteq Int(Cl(X - F))$. Hence, X - A is Ωs -closed and A becomes an Ωs -open set.

(3) Obvious.

LEMMA 2.4. (1) Let A_j (1 $\leq j \leq n$) be Ω -open sets of (X, τ) and semi-separated , i.e., $sCl(A_j) \cap A_i = \phi$ for $i \neq j$. Then, $\bigcup_{j=1}^n A_j$ is Ω -open.

PROOF. Assume that $F \subseteq \bigcup_{j=1}^n A_j$, where F is a semi-closed set in (X, τ) . Then, for each i we have $F \cap sCl(A_i) \subseteq (\bigcup_{j=1}^n A_j) \cap sCl(A_i) = \bigcup_{j=1}^n (A_j \cap sCl(A_i)) = A_i$. Since $F \cap sCl(A_i)$ is semi-closed and A_i is Ω -open, then $Cl(F \cap sCl(A_i)) \subseteq sInt(A_i)$ for each i. Therefore, we have $Cl(F) \subseteq Cl(\bigcup_{i=1}^n (F \cap sCl(A_i))) \subseteq \bigcup_{i=1}^n (Cl(F \cap sCl(A_i))) \subseteq \bigcup_{i=1}^n sInt(A_i) \subseteq sInt(\bigcup_{i=1}^n A_i)$. Hence, $\bigcup_{i=1}^n A_i$ is an Ω -open set.

DEFINITION 2.5 [10]. (1) A subset A of a topological space (X, τ) is said to be dominated by the interior of a semi-open set if $A \subseteq Int(W)$ whenever $A \subseteq W$ and W is semi-open.

(2) A subset A of a topological space (X, τ) is said to be dominated by the closure of a semi-closed set if its complement X - A is dominated by the interior of a semi-open set.

LEMMA 2.6 [10]. Let A and B be subsets of (X, τ) and (Y, σ) respectively such that $A \times B$ is dominated by the interior of a semi-open set. If A and B are both compact, then for a semi-open set U containing $A \times B$, there exist two open sets S and T such that $A \subseteq S$, $B \subseteq T$ and $S \times T \subseteq U$.

THEOREM 2.7. Let A and B be subsets of (X, τ) and (Y, σ) respectively.

(i) If $A \times B$ is dominated by the interior of a semi-open set and if A and B are both compact and Ω -closed sets, then $A \times B$ is an Ω -closed set.

(ii) If $A \times B$ dominates the closure of a semi-closed set and if A and B are both Ω -open

sets, then $A \times B$ is an Ω -open set.

(iii) If $A \times Y$ is Ω -open, then A is Ω -open.

PROOF. (i) Assume that $A \times B \subseteq U$, where U is a semi-open set, then by Lemma 2.4 there exist two open sets S and T such that $A \subseteq S$, $B \subseteq T$ and $S \times T \subseteq U$. Since A and B are Ω -closed sets, then $sCl(A \times B) \subseteq sCl(A) \times sCl(B) \subseteq Int(S) \times Int(T) \subseteq Int(S \times T) \subseteq Int(U)$. Hence, $A \times B$ is an Ω -closed set.

(ii) Let F be a semi-closed set of $(X \times Y, \tau \times \sigma)$ such that $F \subseteq A \times B$. Using assumption, for each $(x,y) \in F$, $sCl(\{x\} \times \{y\}) \subseteq sCl(\{x\}) \times sCl(\{y\}) \subseteq Cl(\{x\}) \times Cl(\{y\}) = Cl(\{(x,y)\}) \subseteq Cl(F) \subseteq A \times B$. Two semi-closed sets $sCl(\{x\})$ and $sCl(\{y\})$ are contained in A and B respectively. Since A and B are Ω -open, then $Cl(sCl(\{x\})) \subseteq sInt(A)$ and $Cl(sCl(\{y\})) \subseteq sInt(B)$ hold. This implies for each $(x,y) \in F$, $Cl((x,y)) \subset Cl(sCl(\{x\})) \times Cl(sCl(\{y\})) \subseteq sInt(A) \times sInt(B) \subseteq sInt(A \times B)$. So, $Cl(F) \subseteq sInt(A \times B)$. Hence $A \times B$ is Ω -open.

(iii) Let $W\subseteq A$ be a semi-closed set. Since $W\times Y$ is a semi-closed set such that $W\times Y\subseteq A\times Y$, then $Cl(W\times Y)\subseteq sInt(A\times Y)$. So, $Cl(W)\times Y\subseteq sInt(A)\times Y$. Therefore,

 $Cl(W) \subseteq sInt(A)$.

3. Ω -OPEN SETS AND Ωs -OPEN SETS FOR SUBSPACES

LEMMA 3.1. Let A and B be subsets of (X, τ) such that $A \subseteq B$. Suppose that B is open and semi-closed. Then, $A \in SC(B)$ (A is semi-closed with respect to the subspace B) if and only if $A \in SC(X)(A$ is semi-closed with respect to X).

PROOF. Let $A \in SC(B)$. Then, $B - A \in SO(B)$ (B - A) is semi-open with respect to the subspace B). Since $B - A \subseteq B \subseteq X$ and $B \in SO(X)$, then $B - A \in SO(X)$. Therefore, $(X - A) = (X - B) \cup (B - A) \in SO(X)$. Thus $A \in SC(X)$. Conversely, let $A \in SC(X)$. Then, $B - A = (X - A) \cap B \in SO(X)$. Therefore, $B - A \in SO(B)$. Thus, $A \in SC(B)$.

PROPOSITION 3.2. Suppose that for any subset E of (X, τ) , $D[E] \subseteq D_s[E]$ and both A and B are Ω -open (resp. Ωs -open) sets. Then, $A \cap B$ is Ω -open (resp. Ωs -open) set in (X, τ) .

PROOF. Since A and B are both Ω -open (resp. Ωs -open) sets, then X-A and X-B are both Ω -closed (resp. Ωs -closed) sets. Therefore, by Proposition 2.3 $(X-A) \cup (X-B)$ is Ω -closed (resp. Ωs -closed). Since $X-(A\cap B)=(X-A)\cup (X-B)$, then $A\cap B$ is Ω -open (resp. Ωs -open).

THEOREM 3.3. Let B and Y be subsets of (X, τ) such that $B \subseteq Y$ and Y is open and closed set.

- (1) If B is an Ω -open set relative to Y, then B is Ω -open in X;
- (2) If B is an Ωs -open set relative to Y, then B is Ωs -open in X.

PROOF. (1) Let B be an Ω -open set relative to Y such that $F \subseteq B$, where $F \in \dot{S}C(X)$. From Lemma 3.1, we have $F \in SC(Y)$. Therefore, $Cl_Y(F) \subseteq sInt_Y(B)$. Hence, $Y \cap Cl(F) \subseteq sInt_Y(B)$. Since $sInt_Y(B) \in SO(Y)$ and Y is open, then $sInt_Y(B) = sInt(sInt_Y(B)) \subseteq sInt(B)$. Thus, we have $Y \cap Cl(F) \subseteq Y \cap sInt(B)$. Hence, $Y \subseteq sInt(B) \cup (X - Cl(F))$. Hence, $Cl(F) \subseteq sInt(B) \cup (X - Cl(F)) \subseteq sInt(B)$. Thus B is C-open relative to C.

(2) Let B be an Ωs -open set relative to Y such that $F \subseteq B$, where $F \in SC(X)$. From Lemma 3.1, we have $F \in SC(Y)$. Therefore, $Cl_Y(Int_Y(F)) \subseteq sInt_Y(B)$. Hence, we have that $Y \cap Cl(Int(F)) \subseteq sInt_Y(B)$ and therefore $Y \cap Cl(Int(F)) \subseteq Y \cap sInt(B)$. Therefore, $Y \subseteq sInt(B) \cup (X - Cl(Int(F)))$. Hence, $Cl(Int(F)) \subseteq Cl(Y) \subseteq sInt(B) \cup (X - Cl(Int(F)))$. Therefore, $Cl(Int(F)) \subseteq sInt(B)$ and hence B is Ωs -open relative to X

THEOREM 3.4. Let X_0 be an open and semi-closed subset of (X, τ) .

- (1) If V is Ω -open relative to X. Then, $X_{\circ} \cap V$ is Ω -open relative to X_{\circ} .
- (2) If V is Ωs -open relative to X. Then, $X_{\circ} \cap V$ is Ωs -open relative to X_{\circ} .

PROOF. (1) Suppose that $F \subseteq X_{\circ} \cap V$, where $F \in SC(X_{\circ})$. By Lemma 3.1, $F \in SC(X)$ and hence $\overline{F} \subseteq sInt(V)$. Thus $\overline{F} \cap X_{\circ} \subseteq sInt(V) \cap X_{\circ}$. Since $sInt(V) \cap X_{\circ} \in SO(X)$, then $sInt(V) \cap X_{\circ} \in SO(X_{\circ})$. So, $sInt(V) \cap X_{\circ} = sInt_{X_{\circ}}(sInt(V) \cap X_{\circ}) \subseteq sInt_{X_{\circ}}(V \cap X_{\circ})$. Therefore, $\overline{F} \cap X_{\circ} = Cl_{X_{\circ}}(F) \subseteq sInt_{X_{\circ}}(V \cap X_{\circ})$ and so $X_{\circ} \cap V$ is Ω -open relative to X_{\circ} .

(2) Suppose that $F \subseteq X_{\circ} \cap V$, where $F \in SC(X_{\circ})$. By Lemma 3.1, $F \in SC(X)$ and hence $F^{\circ -} \subseteq sInt(V)$. Thus $F^{\circ -} \cap X_{\circ} \subseteq sInt(V) \cap X_{\circ}$. Since $sInt(V) \cap X_{\circ} \in SO(X)$, then $sInt(V) \cap X_{\circ} \in SO(X_{\circ})$. So, $sInt(V) \cap X_{\circ} = sInt_{X_{\circ}}(sInt(V) \cap X_{\circ}) \subseteq sInt_{X_{\circ}}(V \cap X_{\circ})$. Therefore, $Cl_{X_{\circ}}(Int_{X_{\circ}}(F)) \subseteq F^{\circ -} \cap X_{\circ} \subseteq sInt_{X_{\circ}}(V \cap X_{\circ})$ and so $X_{\circ} \cap V$ is Ωs -open relative to X_{\circ} .

LEMMA 3.5. Let B and Y be subsets of (X, τ) such that $B \subseteq Y$.

(1) If B is Ω -open in (X, τ) and Y is open and semi-closed, then B is Ω -open relative to Y,

(2) If Y is open and closed, then B is Ωs -open in (X, τ) if and only if B is Ωs -open relative to Y.

PROOF. (1) From Theorem 3.4 (1) $B = B \cap Y$ is Ω -open relative to Y.

(2) From Theorem 3.4 (2) $B = B \cap Y$ is Ωs -open relative to Y.

4. Ω -COMPACT SPACES AND Ωs -COMPACT SPACES

DEFINITION 4.1.

(1) A topological space (X, τ) is said to be Ω - compact if every cover of X by Ω -open sets has a finite subcover.

(2) A topological space (X, τ) is said to be Ωs - compact if every cover of X by Ωs -open sets has a finite subcover.

DEFINITION 4.2. (1) A subset Y of a topological space (X, τ) is said to be Ω - compact relative to X if every cover of Y by Ω -open sets of X has a finite subcover.

(2) A subset Y of a topological space (X, τ) is said to be Ωs - compact relative to X if every cover of Y by Ωs -open sets of X has a finite subcover.

DEFINITION 4.3. (1) A subset Y of a topological space (X, τ) is said to be Ω -compact if the space (Y, τ_Y) is Ω -compact.

(2) A subset Y of a topological space (X, τ) is said to be Ω s- compact if the space (Y, τ_Y) is Ω s- compact.

PROPOSITION 4.4. (1) An Ω -closed subset K of an Ω - compact space (X, τ) is Ω -compact relative to X.

(2) An Ω s-closed subset K of an Ω s-compact space (X, τ) is Ω s-compact relative to X.

PROOF. (1) Let Φ be a cover of K by Ω -open sets of X. Since K is an Ω -closed subset of X, then X-K is Ω -open. Hence, the member $\Phi \cup (X-K)$ form an Ω -open cover of X. Since X is Ω - compact, then $\Phi \cup (X-K)$ contains a finite subcover of X. In other words, there are a finite number of Ω -open sets $U_1, U_2, ..., U_n$ of Φ such that $U_1 \cup U_2 ... \cup U_n \cup (X-K) = X$. Hence, $U_1, U_2, ..., U_n$ covers K and K is Ω - compact relative to X.

(2) The proof is similar to (1).

THEOREM 4.5. Let (X, τ) be a topological space and let G be an open and closed subset of X.

(1) G is Ω -compact if and only if it is Ω -compact relative to X.

(2) G is Ωs -compact if and only if it is Ωs -compact relative to X.

PROOF. Let $\Phi = \{U_{\alpha} : \alpha \in \nabla\}$ be a cover of G, where U_{α} is Ω -open relative to X for each $\alpha \in \nabla$. Since G is open and closed, then by Theorem 3.4 (1) we have $G \cap U_{\alpha}$ is Ω -open relative to G for each $\alpha \in \nabla$. Since G is Ω -compact, then there exists a finite subfamily

 ∇_{\circ} of ∇ such that $G = \bigcup \{G \cap U_{\alpha} : \alpha \in \nabla_{\circ}\}$. Therefore, $G \subseteq \bigcup \{U_{\alpha} : \alpha \in \nabla_{\circ}\}$ and G is Ω -compact relative to X.

Conversely, let G be Ω -compact relative to X and $\Phi = \{U_{\alpha} : \alpha \in \nabla\}$ be a cover of G, where U_{α} is Ω -open relative to G for each $\alpha \in \nabla$. Then by Theorem 3.3 (1) we have U_{α} is Ω -open relative to X for each $\alpha \in \nabla$. Since G is Ω -compact relative to X, then there exists a finite subfamily ∇_{\circ} of ∇ such that $G = \bigcup \{U_{\alpha} : \alpha \in \nabla_{\circ}\}$. Therefore, G is Ω -compact.

(2) The proof is similar to (1).

THEOREM 4.6. Let (X,τ) be a topological space and let A and G be subsets of X such that $A \subseteq G$ and G be open and closed.

(1) A is Ω -compact relative to G if and only if it is Ω -compact relative to X. (2) A is Ωs -compact relative to G if and only if it is Ωs -compact relative to X.

PROOF. (1) Let $\Phi = \{U_{\alpha} : \alpha \in \nabla\}$ be a cover of A, where U_{α} is Ω -open relative to X for each $\alpha \in \nabla$. Since G is open and closed, then by Theorem 3.4 (1) we have $G \cap U_{\alpha}$ is Ω -open relative to G for each $\alpha \in \nabla$ and $A \subseteq \{G \cap U_{\alpha} : \alpha \in \nabla\}$ Since A is Ω -compact relative to G, then there exists a finite subfamily ∇_o of ∇ such that $A \subseteq \bigcup \{G \cap U_\alpha : \alpha \in \nabla_o\}$. Therefore, $A \subseteq \bigcup \{U_{\alpha} : \alpha \in \nabla_{\circ}\}$ and A is Ω -compact relative to X.

Conversely, let A be Ω -compact relative to X and $\Phi = \{U_{\alpha} : \alpha \in \nabla\}$ be a cover of A, where U_{α} is Ω -open relative to G for each $\alpha \in \nabla$. Then by Theorem 3.3 (1) we have U_{α} is Ω -open relative to X for each $\alpha \in \nabla$. Since A is Ω -compact relative to X, then there exists a finite subfamily ∇_{\circ} of ∇ such that $A \subseteq \bigcup \{U_{\alpha} : \alpha \in \nabla_{\circ}\}$. Therefore, A is Ω -compact

relative to G.

(2) The proof is similar to (1).

PROPOSITION 4.7. (1) Let $f:(X,\tau)\to (Y,\sigma)$ be Ω -continuous (resp. Ω -irresolute) and let the subset B of (X, τ) be Ω -compact relative to X. Then, f(B) is compact in (Y, σ) (resp. Ω -compact relative to Y).

(2) Let $f:(X,\tau)\to (Y,\sigma)$ be Ωs -continuous (resp. Ωs -irresolute) and the subset B of (X,τ) be Ω s-compact relative to X. Then, f(B) is compact in (Y,σ) (resp. Ω s-compact

relative to Y).

PROOF.(1) Let $\Phi = \{U_{\alpha} : \alpha \in \nabla\}$ be a collection of open (resp. Ω -open) subsets of (Y,σ) such that $f(B)\subseteq\bigcup\{U_\alpha:\alpha\in\nabla\}$. Then, $B\subseteq\bigcup\{f^{-1}(U_\alpha):\alpha\in\nabla\}$ and so there exists a finite subfamily ∇_{\circ} of ∇ such that $B \subseteq \bigcup \{f^{-1}(U_{\alpha}) : \alpha \in \nabla_{\circ}\}$. Therefore, $f(B) \subseteq$ $\bigcup \{U_{\alpha} : \alpha \in \nabla_{\circ}\}$. Thus, f(B) is compact in (Y, σ) (resp. Ω -compact relative to Y).

(2) The Producted American (dipsed) function if f(V) is Ω -closed (resp. Ωs -closed) in (Y, σ)

for every closed set V in (X, τ) .

DEFINITED Nodes. (Issp. f preXDs)closed) by rintiarfulfoff(bi). if henlosed (resp. \Os-closed) in (Y, σ) for every Ω -closed (resp. Ωs -closed) set V in (X, τ) .

PROPOSITION 4.9. Let $f:(X,\tau)\to (Y,\sigma)$ be a function. Then

(1) f is pre- Ω -closed if and only if for every $S \subseteq Y$ and every Ω -open set $U \subseteq X$ containing $f^{-1}(S)$, there exists an Ω -open V containing S such that $f^{-1}(V) \subseteq U$.

(2) f is pre- Ω s-closed if and only if for every $S \subseteq Y$ and every Ω s-open set $U \subseteq X$ containing $f^{-1}(S)$, there exists an Ωs -open V containing S such that $f^{-1}(V) \subseteq U$.

PROOF. (1) Assume f is pre- Ω -closed. For any subset S of Y and any Ω -open set $U \subseteq X$ containing $f^{-1}(S)$ we put V = Y - f(X - U). Since $f^{-1}(S) \subseteq U$, then $f(X - f^{-1}(S)) \supseteq f(X - U)$. Therefore, $V = Y - f(X - U) \supseteq Y - f(X - f^{-1}(S)) = Y - f(f^{-1}(Y - S)) \supseteq Y - (Y - S) = S$. Since U is Ω -open, X - U is Ω -closed and by hypothesis f is pre- Ω -closed we see that V is Ω -open in Y. Moreover, we have $f^{-1}(V) = X - f^{-1}(f(X - U)) \subseteq X - (X - U) = U$.

Conversely, for every Ω -closed subset F of X, we have $f^{-1}(Y - f(F)) = X - f^{-1}(f(F)) \subseteq X - F$. Let U = X - F and S = Y - f(F). Then, by hypothesis there exists an Ω -open subset V of Y such that $f^{-1}(V) \subseteq X - F$ and $Y - f(F) \subseteq V$. Therefore, we have $F \subseteq X - f^{-1}(V) = f^{-1}(Y - V)$. Hence, $Y - V \subseteq f(F) \subseteq f(F^{-1}(Y - V)) \subseteq Y - V$. Then, Y - V = f(F) is

 Ω -closed.

(2) The proof is similar to (1).

THEOREM 4.10. Let $f:(X,\tau)\to (Y,\sigma)$ be a function. Then

(1) Let f be pre- Ω -closed and $f^{-1}(y)$ is Ω -compact relative to X for each $y \in Y$. Suppose that G is Ω -compact relative to Y. If for each finite Ω -open sets are semi-separated, then $f^{-1}(G)$ is Ω -compact relative to X.

(2) Let f be pre- Ωs -closed and $f^{-1}(y)$ is Ωs -compact relative to X for each $y \in Y$. Suppose that G is Ωs -compact relative to Y. If for each finite Ωs -open sets are semi-separated, then

 $f^{-1}(G)$ is Ωs -compact relative to X.

PROOF. (1) Let $\Phi = \{F_{\alpha} : \alpha \in \nabla\}$ be a cover of $f^{-1}(G)$ by Ω -open subsets of X. Then, for each $y \in G$ there exists finite subfamily $\nabla(y)$ of ∇ such that $f^{-1}(y) \subseteq \bigcup \{F_{\alpha} : \alpha \in \nabla(y)\}$. Put $U(y) \subseteq \bigcup \{F_{\alpha} : \alpha \in \nabla(y)\}$. Since f is pre- Ω -closed, then by Proposition 4.9 there exists an Ω -open subset V(y) of Y such that $y \in V(y)$ and $f^{-1}(V(y)) \subseteq U(y)$. Since $\{V(y) : y \in G\}$ is a cover of G by Ω -open subsets of Y, there exists a finite number of points $y_1, y_2, ..., y_n$ in G such that $G \subseteq \bigcup \{V(y_j) : j = 1, ..., n\}$. Then, we have $f^{-1}(G) \subseteq \bigcup_{j=1}^n f^{-1}(V(y_j)) \subseteq \bigcup_{j=1}^n U(y_j) = \bigcup_{j=1}^n \bigcup_{\alpha \in \nabla(y_j)} F_{\alpha}$.

(2) The proof is similar to (1).

Acknowledgement. The author thanks professor T. Noiri of Yatsushiro College of Technology for several comments.

REFERENCES

 S. P. Arya and T. M. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21 (8) (1990), 717-719.

 K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 12(1991), 5-13.

 P. Bhattacharyya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29 (3) (1987), 375-382.

S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1972), 99-112.

 S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math., 74 (1972), 233-254.

- 6. P. Das, Note on semi-connectedness, Indian J.Mech. Math., 29 (1981), 11-17.
- R. Devi, H. Maki and K. Balachandran, Semi-generalized closed maps and generalized semi-closed maps, Mem.Fac. Sci. Kochi Univ. Ser. (A), Math., 14 (1993), 41-54.
- 8. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- N. Levine, Generalized closed sets in topology, Rend. Cric. Mat. Palermo (2),19 (1970), 89-96.
- H. Maki, K. Balachandran and R. Devi, Remarks on semi-generalized closed sets and generalized semi-closed sets, Kyungpook Math. J.,36 (1996),155-163.
- 11. O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- T. Noiri and O. R. Sayed, On Ω-closed sets and Ωs-closed sets in topological spaces, Acta Math. Hungar., 107 (4) (2005), 315-326.
- 13. P. Sundaram, H. Maki and K. Balachandran, Semi-generalized continuous maps and $semi-T_{1/2}$ spaces, Bull. Fukuoka Univ.Ed. Part III,40 (1991),33-40.