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ABSTRACT. New classes of sets called 2-open sets and Q2s-open sets are introduced and
studied. Also, as applications we introduce and study Q-compact spaces and Qs- compact

spaces.

1. INTRODUCTION AND PRELIMINARIES

Many concepts of general topology have been generalized, by considering the concept of
semi-open sets due to Levine [8]. The study of generalized closed sets in the topological
spaces was initiated by Levine [9] and the concept of T} spaces was introduced. In 1987,

Bhattacharyya and Lahiri [3] introduced the class of semi-generalized closed sets and used
them to obtain properties in semi — Ty, spaces. In 1990, Arya and Nour (1] defined

the generalized semi- closed sets and studied some characterizations of s-normal spaces,
The modified forms of generalized closed sets and generalized continuity were studied by

Balachandran, Devi, Maki and Sundaram [2, 7. Recently, Noiri and Sayed [12] introduced
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and studied new classes of sets called Q-closed sets and s-closed sets. Also, they introduced
and studied Q-continuous functions and s~ continuous functions and proved pasting lemma
for these functions. Moreover, they introduced classes of topological spaces called Q — T2

and Q — T,. This paper is a continuation of their works.

Throughout this paper (X,7) and (Y, o) will always denote topological spaces on which
no separation axioms are assumed, unless otherwise mentioned. When A is a subset of
(X, ), Cl(A),

Int(A), D[A], sCl(A), sInt(A) and D,[A] [4-5] denote the closure of A, the interior of A, the
derived set of A,
the semi-closure of A, the semi-interior of A and the semi- derived set of A, respectivily.

We recall some known definitions and properties.

DEFINITION 1.1. Let (X,7) be a topological space. A subset A C X is said to be:
(1) semi-open [8] if A C Cl(Int(A)) and semi-closed if Int(Cl(A)) € A,

(2) a-open [11] if A C Int(Cl(Int(A))),

(3) regular open if A= Int(Cl(A)) and regular closed if A = Cl(Int(A)).

DEFINITION 1.2 [4]. Let (X,7) be a topological space and A,B C X. Then A is
semi-closed if and only if X — A is semi-open and the semi-closure of B, denoted by sCl(B),

is the intersection of all semi-closed sets containing B.

DEFINITION 1.3 [7]. Let (X,7) be a topological space, AC X and z € X. Then z
is said to be a semi-limit point of A if and only if every semi-open set containing x contains

a point of A diffrent from z
DEFINITION 1.4 [7]. Let (X,7) be a topological space and A C X. The set of all
semi-limit point of A is said to be semi-derived set A and is denoted by D,[A]
DEFINITION 1.5 [6]. Let (X,7) be a topological space and A, B be two non-void
subsets of X. Then A and B are said to be semi-separated if ANsCI(B) = sCl(A)NB = ¢.

DEFINITION 1.6 [4]. Let (X, 1) be a topological space and A C X. The semi-interior
of A, denoted by sInt(A), is the union of all semi-open subsets of A.

DEFINITION 1.7 [12]. A subset A of (X, 7) is said to be Q-closed if sCl(A) C Int(U)
whenever A C U and U is semi-open.

DEFINITION 1.8 [12]. A subset A of (X,7) is said to be s-closed if sCl(A) C
Int(Cl(U))) whenever AC U and U is semi-open.

il
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DEFINITION 1.9 [12]. A function f: (X,7) — (Y, 0) is said to be:
(1) 2-continuous if f~1(V) is 2 -closed in (X, 7) for every closed set V of (Y,0).

(2) f2s-continuous if f~}(V') is s -closed in (X, 7) for every closed set V of (Y,a).
(3) Q-irresolute if f~1(V) is N-closed in (X, 7) for every {1—closed set V of (Y, 0).

(4) Qs-irresolute if f~1(V) is Qs-closed in (X, 7) for every 2s—closed set V' of (Y.o).

PROPOSITION 1.10 [12]. If for any subset E of (X, 7) , DIE] € D,|E], then the
union of two -closed sets (resp. 2s-closed sets) is Q-closed (resp. Qs -closed)

2. Q -OPEN SETS AND Qs-OPEN SETS

DEFINITION 2.1. A subset A of (X, 7) is said to be Q-open in (X,7) if its comple-
ment X — 4 is Q -closed in (X, 7.

DEFINITION 2.2. A subset A4 of (X,7) is said to be Qs-open in (X,7) if its
complement X — A is Qs -closed in (X,7).

PROPOSITION 2.3. Let (X, 7) be a topological space and A C X.

(1) A is an Q-open set if and only if CI(F) C sInt(A) whenever F C A and F is semi-
closed.

(2) A is an Qs-open set if and only if Cl(Int(F)) C sInt(A) whenever F C A4 and F is
semi-closed.

(3) If A is Q-open, then A is s-open.

PROOF. (1) Necessity. Let A be an Q-open set in (X, 7) and suppose F' C A, where
F is semi-closed. Then, X — A is -closed and it is contained in the semi-open set X — F,
Therefore, sCl(X — A) C Int(X — F). Hence, CI(F) C sInt(A).

Sufficiency. If F is a semi-closed set such that CI(F) C sInt(A) whenever F C A, it
follows that X — A C X — F and X — sInt(A) C X — CI(F). Therefore, sCI(X — A) C
Int(X — F). Hence, X — A is Q-closed and A becomes an {2-open set. This proves (1).

(2) Necessity, Let A be an Qs-open set in (X, 7) and suppose F' C A, where F is semi-
closed. By definition X — A is Qs-closed and it is contained in the semi-open set X — F'.
Therefore, sCI(X — A) C Int(CI(X — F)). Hence, Cl(Int(F)) C sInt(A).

Sufficiency. If F'is a semi-closed set such that Cl(Int(F)) C sInt(A) whenever F C A, it
follows that X — A C X — F and X — sInt(A) C X — Cl(Int(F)). Therefore, sCI(X — A) C
Int(Cl(X — F)). Hence, X — A is Qs-closed and A becomes an fs-open set.

(3) Obvious.

LEMMA 2.4. (1) Let A;(1 < j < n) be Q-open sets of (X, 7) and semi-separated , i.e.,
sCU(A;) N A; = ¢ for i # j.Then, |J]_, A; is Q-open.

j=1
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PROOF. Assume that F' C U;'=1 Aj, where F is a semi-closed set in (X,7). Then,
for each i we have F N sCl(A;) C (U;zl A;) N sCl(A;) = ULI(AJ- N sCl(A;)) = A
Since F N sCL(A;) is semi-closed and A; is {2-open, then CI(F N sCl(A;)) C sInt(A;) for
each i. Therefore, we have CI(F) C Cl(UL-,(F N sCl(A:))) UL, (CU(F n sCL(A:))))

c UL, sint(A;) € sInt(U;., A) . Hence, P, A; is an Q-open set.

DEFINITION 2.5 [10]. (1) A subset A of a topological space (X, 7) is said to be
dominated by the interior of a semi-open set if A C Int(W) whenever A C W and W is
semi-open.

(2) A subset A of a topological space (X, ) is said to be dominated by the closure of a
semi-closed set if its complement X — A is dominated by the interior of a semi-open set.

LEMMA 2.6 [10]. Let A and B be subests of (X, 7) and (Y, o) respectively such that
A x B is dominated by the interior of a semi-open set. If A and B are both compact, then
for a semi-open set U containing A x B, there exist two open sets S and T such that AC S,
BCTand SxTCU.

THEOREM 2.7. Let A and B be subests of (X, 7) and (Y,0) respectively.

(i) If A x B is dominated by the {nterior of a semi-open set and if A and B are both
compact and )-closed sets, then A x B is an Q-closed set.

(i) If A x B dominates the closure of a semi-closed set and if A and B are both (-open
sets, then A x B is an (l-open set.

(iii) If A x Y is Q-open, then A is 2-open.

PROOF. (i) Assume that A x B C U, where U is a semi-open set, then by Lemma 2.4
there exist two open sets S and T such that AC S, BC Tand SxT C U. Since Aand B are
Q-closed sets, then sCI(Ax B) C sCl(A)xsCl(B) © Int(S)xInt(T) C Int(SxT) € Int(U).
Hence, A x B is an (I-closed set.

(ii) Let F be a semi-closed set of (X xY, T x ) such that F € Ax B. Using assumption, fo:
cach (z.y) € F, sCl({z} x {y}) € sCl({z})xsCl({y}) € CUl{z})xCU{y}) = Cl{(z 1)) &
CI(F) € A x B. Two semi-closed sets sCl({z}) and sCl({y}) are contained in A and B
respectively. Since A and B are {-open, then Cl(sCl({z})) C sInt(A) and Cl(sCl({y})) €
sInt(B) hold. This implies for each (z,y) € F, Cl((z,y)) C CUsCl({z}))* Cl(sCl({y})) C
sInt(A) x sInt(B) C sInt(A x B). So, CI(F) C sInt(A x B). Hence A x B is (2 -open.

(iii) Let W C A be a semi-closed set. Since W x Y is a semi-closed set such that
W xY C AxY, then Cl(W xY) C sInt(AxY). So, ClIW)xY C sInt(A) xY. Therefore,
Cl(W) C sInt(A).

3. 0-OPEN SETS AND Qs-OPEN SETS FOR SUBSPACES

LEMMA 3.1. Let A and B be subsets of (X, ) such that A C B. Suppose that B is
open and semi-closed. Then, A € SC(B) (A is semi-closed with respect to the subspace I )
if and only if A € SC(X)(A is semi-closed with respect to X).
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PROOF. Let A € SC(B). Then, B — A € SO(B) (B — A is semi-open with respect to
the subspace B). Since B—A C ,B C X and B € SO(X), then B— A € SO(X). Therefore.
(X = A) = (X — B)U (B — A) € SO(X). Thus A € SC(X). Conversely, let Ac SC(X)
Then, B — A = (X — A)N B € SO(X). Therefore, B — A € SO(B). Thus, A € SC(B).

PROPOSITION 3.2. Suppose that for any subset E of (X, 7), D[E] C D,[E) and both
A and B are Q-open (resp. (s-open) sets. Then, AN B is Q-open (resp. §s-open) set in
(X,7).

PROOF, Since A and B are both Q-open (resp. s -open) sets, then X — A and X — B
are both Q-closed (resp. Qs-closed) sets. Therefore, by Proposition 2.3 (X — A)U (X — B)
is Q-closed (resp. Qs-closed). Since X — (AN B) = (X — A) U(X — B), then AN B is
-open (resp. (s-open).

THEOREM 3.3, Let B and Y be subsets of (X, 7) such that B C Y and ¥ is open

., and closed set.

(1) If B is an Q-open set relative to Y, then B is { -open in X;
(2) If B is an (s-open set relative to ¥, then B is s -open in X.

PROOF. (1) Let B be an Q-open set relative to Y such that F C B, where F € SC(X).
From Lemma 3.1, we have F' € SC(Y'). Therefore, Cly (F) C sinty (B). Hence, YNCI(F) C
sInty(B). Since sInty(B) € SO(Y) and Y is open, then sInty (B) = sInt(sInty(B)) C
sInt(B). Thus, we have Y N CI(F) C Y N sInt(B). Hence, Y C sInt(B)U (X — CI(F)).
Hence, CI(F') C, sInt(B) U (X — CI(F)) C sInt(B). Thus B is {)-open relative to X.

(2) Let B be an Qs-open set relative to ¥ such that F C B, where F € SC(X). From
Lemma 3.1, we have F' € SC(Y). Therefore, Cly (Inty(F)) C sInty(B). Hence, we have
that ¥ N Cl(Int(F)) C sInty(B) and therefore Y N Cl(Int(F)) C Y N sInt(B). Therefore,
Y C sInt(B)U (X — Cl(Int(F)). Hence, Cl(Int(F)) C CI(F) C CUY) C sInt(B) U

(X — Cl(Int(F))). Therefore, Cl(Int(F)) C sInt(B) and hence B is {}s-open relative to X

THEOREM 3.4. Let X, be an open and semi-closed subset of (X, 7).
(1) If V is Q2-open relative to X. Then, X, NV is N-open relative to X,.
(2) If V is §2s-open relative to X. Then, X, NV is 2s-open relative to X,.

PROOF. (1) Suppose that F C X,NV, where F € SC(X,). By Lemma 3.1, F € SC(X)
and hence F C sInt(V). Thus F N X, C sInt(V) N X,. Since sInt(V)N X, € SO(X), then
slnt(V) N X, € SO(X,). So, sInt(V) N X, = sIntx, (sint(V)N X,) C sintx, (VN X,).

« Therefore, F N X, = Clx, (F) C sIntx,(V N X,) and so X, NV is Q-open relative to X,.

(2) Suppose that F C X, NV, where F € SC(X,). By Lemma 3.1, F € SC(X) and
hence F°~ C sInt(V). Thus F°~ N X, C sInt(V) N X,. Since sInt(V)NX, € SO(X), then
sint(V)n X, € SO(X,). So, sInt(V)N X, = sIntx, (sInt(V) N X.) C sIntx (VN X,).
Therefore, Clx, (Intx,(F)) € F°~NX, C sIntx,(VNX,) and so X,NV is Ns-open relative
to X,.

LEMMA 3.5. Let B and Y be subsets of (X, 7) such that B C Y.
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(1) If B is Q-open in (X, 7) and Y is open and semi-closed, then B is Q-open relative to
Y,

(2) If Y is open and closed, then B is Q2s-open in (X, 7) if and only if B is (ls-open
relative to Y.

PROOF. (1) From Theorem 3.4 (1) B = BNY is Q-open relative to Y.
(2) From Theorem 3.4 (2) B = BNY is (s-open relative to Y.

4. -COMPACT SPACES AND §s-COMPACT SPACES

DEFINITION 4.1.

(1) A topological space (X,7) is said to be - compact if every cover of X by {-open
sets has a finite subcover.

(2) A topological space (X, 7) is said to be {2s- compact if every cover of X by (ls-open
sets has a finite subcover.

DEFINITION 4.2. (1) A subset Y of a topological space (X, 7) is said to be )- compact
relative to X if every cover of Y by Q-open sets of X has a finite subcover.

(2) A subset Y of a topological space (X, 7) is said to be §s- compact relative to X if
every cover of Y by Qs-open sets of X has a finite subcover.

DEFINITION 4.3. (1) A subset Y of a topological space (X,7) is said to be -
compact if the space (Y, 7y) is 2- compact.

(2) A subset Y of a topological space (X,) is said to be §2s- compact if the space (Y, 7v)
is £1s- compact.

PROPOSITION 4.4. (1) An Q-closed subset K of an §1- compact space (X,7) is Q-
compact relative to X.
(2) An Qs-closed subset K of an §2s- compact space (X,) is f2s- compact relative to X.

PROOF. (1) Let ® be a cover of K by Q-open sets of X. Since K is an Q-closed subset of
X, then X — K is Q-open. Hence, the member ®U(X - K ) form an €2 -open cover of X. Since
X is £2- compact, then U (X — K) contains a finite subcover of X. In other words, there are
a finite number of Q-open sets Uy, Uz, ..., Uy of @ such that Uy Uz .UU,U(X-K)=X.
Hence, Uy, Ua, ..., U, covers K and K is 2- compact relative to X.

(2) The proof is similar to (1).

THEOREM 4.5. Let (X,7) be a topological space and let G be an open and closed
subset of X.

(1) G is Q-compact if and only if it is Q-compact relative to X.

(2) G is Qs-compact if and only if it is Qs-compact relative to X,

PROOF. Let ® = {U, : a € V} be a cover of G, where U, is Q-open relative to X for
each o € V. Since G is open and closed, then by Theorem 3.4 (1) we have GNU, is Q-open
relative to G for each a € V. Since G is  -compact, then there exists a finite subfamily
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Vo of V such that G = {GNU, :a € Vo}. Therefore, G C |J{U, : a € V,} and G is
f-compact relative to X. oS

versely, let G be Q-compact relative to X and & = {Ua : @ € V} be a cover of G,
Q-open relative to G for each a € V. Then by Theorem 3.3 (1) we have U, is
4 en relative to X for each a € V. Since G is )-compact relative to X, then there exists
a finite subfamily V, of V such that G = U{Us : a € V. }. Therefore, G is Q-compact.

(2) The proof is similar to (1).

THEOREM 4.6. Let (X,7) be a topological space and let A and G be subsets of X
such that A C G and G be open and closed.

(1) A is Q-compact relative to G if and only if it is Q -compact relative to X,
(2) A is Qs-compact relative to G if and only if it is Qs -compact relative to X.

PROOF. (1) Let & = {U, : a € V} be a cover of A, where U, is Q-open relative to X for
tach a € V. Since G is open and closed, then by Theorem 3.4 (1) we have GNU, is N-open
Gloreacha € Vand AC {(GNU, :a € V} Since A is Q -compact relative to G,
exists a finite subfamily V, of V such that A C WU{GNU, : a € V,}. Therefore,
@ € Vo} and A is Q-compact relative to X.
, let A be Q-compact relative to X and & = {Uas : @ € V} be a cover of A,
-open relative to G for each a € V. Then by Theorem 3.3 (1) we have U,
relative to X for each o € V. Since A is 2-compact relative to X, then there
finite subfamily V, of V such that A C U{Ua : @ € V.. }. Therefore, 4 is Q-compact
to G.

.%Wk&mﬂam_(l).

IN 4.7, (1) Let f : (X,7) — (Y,0) be Q-continuous (resp. Q-irresolute)
ubset B of (X,7) be Q-compact relative to X. Then, f(B) is compact in (Y, o)
pact relative to Y ).

Let f

: (X,7) = (Y,0) be Qs-continuous (resp. s-irresolute) and the subset B of
Qs-compact relative to X. Then, f(B) is compact in (Y,0) (resp. Qs-compact

Let ® = {U, : a € V} be a collection of open (resp. f-open) subsets of

it f(B) € U{Ua:a€ V). Then, B C U{/'(Ua) : @ € V} and so there
family V, of V such that B C \J{f~*(Us) : a € V,}. Therefore, f(B) C

8, f(B) is compact in (Y, o) (resp. Q-compact relative to Y).

_ ?ﬁd) function if f(V) is Q-closed (resp. Q2s-closed) in (Y, o)

7).

preXDsiclos¢d) ) tiarfiifigh{bf). iT Renlosed (resp. Qs-closed)

(resp. Qs -closed) set V' in (X, 7).

Let f: (X,7) — (Y, 0) be a function. Then
if and only if for every S C Y and every Q-open set U C X
an §-open V containing S such that f~!(V) C U.

only if for every S C Y and every Qs-open set U C X
exists an {s-open V containing S such that f~'(V) C U.
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PROOF. (1) Assume f is pre-Q-closed. For any subset S of Y and any {}-open set UcX
containing f~'(S) we put V=Y — f(X — U). Since f~*(S) € U, then f(X — 748y 2
F(X = U). Therefore, V=Y - f(X-U) 2Y - HX=fHSN=Y-U'(Y-9)2
Y —-(Y-8)=S8. Since U is Q-open, X — U is Q-closed and by hypothesis [ is pre-{2-
closed we see that V is Q-open in Y. Moreover, we have f~1(V)=X - f-{(f(X-U)) <
X-(X-U)=U.

Conversely, for every §2-closed subset Fof X, we have f~'(Y - f(F)) = X2 (f () &
X—F.Let U = X—F and § =Y —f(F). Then, by hypothesis there exists an {2 -open subset
V of Y such that f~}(V) C X—FandY—f(F) C V. Therefore, we have F C X —f~'(V) =
J-YY = V). Hence, Y =V C f(F) € JUMY =V)) S Y - V. Then, Y -V = f(F) is
2-closed.

(2) The proof is similar to (1).

THEOREM 4.10. Let f: (X,7) — (Y,0) bea function. Then

(1) Let f be pre-Q-closed and f~1(y) is Q-compact relative to X for each y € Y. Suppose
that G is § -compact relative to Y. If for each finite Q-open sets are semi-separated, then
f~YG) is N-compact relative to X.

(2) Let f be pre-Qs-closed and f~1(y) is s-compact relative to X for each y € Y. Suppose
that G is §1s -compact relative to Y. If for each finite (s-open sets are semi-separated, then
f~YG) is Ns-compact relative to X.

PROOF. (1) Let & = {F, : a € V} be a cover of §~1(G) by Q-open subsets of X. Then,
for each y € G there exists finite subfamily V(y) of V such that f Yy CU{Fa:a€E V(y)}.
Put U(y) € U {Fa : a € V(y)} . Since f is pre-Q-closed, then by Proposition 4.9 there exists
an -open subset V (y) of Y such that y € V(y) and £~ (V()) € U(y)- Since {V(y):y € G}
is a cover of G by Q-open subsets of Y, there exists a finite number of points y1, Y2, ¥n
in G such that G € U{V(y;) :j = 1,...,n}. Then, we have f~}(G) € U}‘,l 2 (V(w)) €
Ut;:l Uty}) 7 U;sl UnEVly,-) F“"

(2) The proof is similar to (1).
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