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Abstract This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy
topologies), introduced by Ying[1]. It investigates topological notions defined by means of «a-open sets
when these are planted into the framework of Ying’s fuzzifying topological spaces (by Lukasiewicz
logicin [0, 1]) . The concept of a-irresolute functions and a-compactness in the framework of fuzzifying
topology are introduced and some of their properties are obtained. We use the finite intersection prop-
erty to give a characterization of fuzzifying a-compact spaces. Furthermore, we study the image of
fuzzifying a-compact spaces under fuzzifying a-continuity and fuzzifying a-irresolute maps.
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1. Introduction

In the last few years fuzzy topology, as an important research
field in fuzzy set theory, has been developed into a quite
mature discipline [2-7]. In contrast to classical topology, fuzzy
topology is endowed with richer structure, to a certain extent,
which is manifested with different ways to generalize certain
classical concepts. So far, according to Ref. [3], the kind of
topologies defined by Chang [8] and Goguen [9] is called the
topologies of fuzzy subsets, and further is naturally called
L-topological spaces if a lattice L of membership values has
been chosen. Loosely speaking, a topology of fuzzy subsets
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(resp. an L-topological space) is a family 7 of fuzzy subsets
(resp. L-fuzzy subsets) of nonempty set X, and 7 satisfies the
basic conditions of classical topologies [10]. On the other hand,
Hohle in [11] proposed the terminology L-fuzzy topology to be
an L-valued mapping on the traditional powerset P(X) of
X. The authors in [5,6,12,13] defined an L-fuzzy topology to
be an L-valued mapping on the L-powerset LY of X.

In 1952, Rosser and Turquette [14] proposed emphatically
the following problem: If there are many-valued theories
beyond the level of predicates calculus, then what are the detail
of such theories? As an attempt to give a partial answer to this
problem in the case of point set topology, Ying in 1991
[1,15,16] used a semantical method of continuous-valued logic
to develop systematically fuzzifying topology. Briefly speaking,
a fuzzifying topology on a set X assigns each crisp subset of X
to a certain degree of being open, other than being definitely
open or not. In fact, fuzzifying topologies are a special case
of the L-fuzzy topologies in [12,13] since all the z-norms on I
are included as a special class of tensor products in these
paper. Ying uses one particular tensor product, namely Lukas-
iewicz conjunction. Thus his fuzzifying topologies are a special
class of all the I-fuzzy topologies considered in the categorical
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frameworks [12,13]. Roughly speaking, the semantical analysis
approach transforms formal statements of interest, which are
usually expressed as implication formulas in logical language,
into some inequalities in the truth value set by truth valuation
rules, and then these inequalities are demonstrated in an alge-
braic way and the semantic validity of conclusions is thus
established. So far, there has been significant research on fuzz-
ifying topologies [17-20]. For example, Ying [21] introduced
the concepts of compactness and established a generalization
of Tychonoff’s theorem in the framework of fuzzifying topol-
ogy. In [17] the concepts of fuzzifying a-open set and fuzzifying
a-continuity were introduced and studied. Also, Sayed [22]
introduced and studied the concept of fuzzifying a-Hausdorff
separation axiom. In classical topology, a-irresolute mappings
and a-compact spaces have been studied in [23-25], respec-
tively. As well as, they have been studied in fuzzy topology
in [26-28], respectively. In [29] it was shown that a-compact-
ness (due to Ganter, Steinlage and Warren) of fuzzy topolog-
ical spaces is the categorical compactness (in the sense of
Herrlich et al. [30]) which arises from a factorization structure
on the category of fuzzy topological and fuzzy continuous.
Also, some characterizations of a-compactness were given. In
this paper, the concept of a-irresolute mappings between fuzz-
ifying topological spaces has been studied. Furthermore, the
concept of a-compactness in the framework of fuzzifying
topology has been reported. The finite intersection property
used to give a characterization of the fuzzifying a-compact
spaces. Moreover, we study the image of fuzzifying a-compact
spaces under fuzzifying o -continuity and fuzzifying o-irreso-
lute mappings. Thus we fill a gap in the existing literature on
fuzzifying topology. We use the terminologies and notations
in [1,15-17,21] without any explanation. We will use the sym-
bol ® instead of the second “AND” operation A as dot is
hardly visible. This mean that [0] <[p = Y] <= [¢]®
[p] < [y]. Also, we need the following two facts: [¢p = Y] ®
[o] < [Y] and [(x = p) A (B — )] = [(x v f) = 7].

A fuzzifying topology on a set X [7,11] is a mapping
7 € 3(P(X)) such that:

(1 1(X) = Lu(¢) = L;
(2) for any A,B,7(4 N B) = t©(A) A ©(B);
(3) forany {4, : 1 € A},‘L’(U A,—V) = A t(4,).

r€A rea

The family of all fuzzifying a-open sets [17], denoted by
7, € J(P(X)), is defined as

A € 1,;=Vx(x € A > x € Int(Cl(Int(A4)))), i.e., 1,(4) = A
Int(Cl(Int(A4)))(x) xed

The family of all fuzzifying a-closed sets [17], denoted by
F, € 3(P(X)), is defined as 4 € F, := X — 4 € 1,. The fuzzify-
ing a-neighborhood system of a point x € X [17] is denoted by
N* € 3(P(X)) and defined as N%(4) = \/ 1,(B). The fuzz-

XEBCA

ifying a-closure of a set 4 < X [17], denoted by CI, € I(X),
is defined as CI,(4)(x) =1— N%(X — A4). If (X,7) and (Y,0)
are two fuzzifying topological spaces and fe Y*, the unary
fuzzy predicate C, € 3(Y*), called fuzzifying o-continuity
[17], is given as Cy,(f) :==VB(Be€os— f(B)e1,). Let Q be
the class of all fuzzifying topological spaces. A unary fuzzy
predicate 75 € 3(L2), called fuzzifying o-Hausdorffness [22],
is given as follows:

T5(X, 1) = (Vx)(Vy)((x € X Ay € Y Ax##y) — (3B)(3C)(B
ENNCEN,ABNC=9)).

A unary fuzzy predicate I' € 3(Q), called fuzzifying compact-
ness [21], is given as follows:

(1) T(X,7) = (YR)KL(R,X) — (Bp)((p < ) A K(p,4)
®FF(p))).For K, K, (resp. < and FF) see ([15], Defini-
tion 4.4)(resp. ([15], Theorem 4.3) and ([21], Definition
1.1 and Lemma 1.1)).

(2) If A c X, then I'(4) :=I'(A4,7/A).

2. Fuzzifying a-irresolute mappings

The purpose of this section is to introduce and study the con-
cept of o-irresolute mappings in fuzzifying topological spaces.

Definition 2.1. Let (X,7) and (Y, 0) be two fuzzifying topolog-
ical spaces and let f € Y*. A unary fuzzy predicate I, € I(YY),
called fuzzifying a-irresoluteness, is given as follows:

L(f) == VB(B€ o, —f ' (B) €1,).

The following theorem generalize the well known result in
general topology which state that the concept a-continuous
mappings is strictly weaker than that of a-irresolute mappings
[23].

Theorem 2.1. Let (X,t) and (Y,a) be two fuzzifying topological
spaces and let f€ YX. Then

Efel,—fedC,.

Proof. From ([17], Theorem 3.3 (1) (a)) we have a(B) < g 4(B)
and the result holds. [

Lemma 2.1. Let (X,t), (Y,0) and (Z,v) be three fuzzifying
topological spaces and let f € Y* and g € Z*. Then

F L) = (Cu(g) — Culg o))

Proof. It suffices [L,(f)] < [Cu(g) = Culg 0 f)]. If [Cu(g)] < [C,
(g 0 f)], the results holds. If [Cy(g)] = [C.(g o /)], then

[C.@)—[CulgoNl= N min(L,1—v(V)+a,(s (V)

VeP(Z)

- A\ min(L1—v(M +5( (g (1)
VePr(Z)

<V @' M) - g (M)
VeP(Z)

Therefore

[Cu(g) = Culg o /)] = min(1, 1 —[Cu(g)] + [Culg o N)])
>\ min(1,1-0,(U) + (' (V)))

UeP(Y)
=[L()]. O

The above lemma is a generalization of the following well
known result in general topology ([31], Proposition 4).
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Corollary 2.1. If f:(X,t)—> (Y,0) is o-irresolute and
g:(Y,0) > (Z,v) is a-continuous, then go f:(X,t) = (Z,v) is
o-continuous.

Definition 2.2. Let (X,7) and (Y, 0) be two fuzzifying topolog-
ical spaces and let f € Y*. We define the unary fuzzy predicates
o € 3(YY), where k = 1,..., 5, as follows:

(1) f €w; =VB(BEF, — f7(B) € F}), where F} and F
are the fuzzifying o-closed subsets of X and Y,
respectively;

(2)f€w2 VxvU UeNi, —f'(U)eN),  where
N*" and N*' are the famlly of fuzzifying o- nelghborhood
systems of X and Y, respectively;

3) few:VxVU(UeN}L)—>3V(f(V)gU—> VeN;‘X));
(@) f € 0u = A (F(CIE(4) € CLLT(4)):
(5) f € ws =VB(CL(f~'(B)) C /™ (CL}(B))).

Theorem 2.2. Ffel, —fecw, k=1,...,5.
Proof.

(a) We will prove that ke I, & f€ w;.

[few]= B/P\Y min (1,1 — F/(B) + FX(r'(B)))
= :/P\(Y)min (1,1 = 0,(Y = B) + w(f"'(Y — B)))
= E/{)min(Ll—ax(Y—B)—ﬁ—rx(X—f“(B)))
= BE/P(j min (1,1 - a,(U) + 7,(f'(V))) = [f € L].

UeP(Y)

(b) We will prove that Efel, <—>f6 w,. First, we prove
that [f € wv] > [fe Ll If N%,(U) < N7 (f'(U)), then
min(1,1 — ( (U)—i—N} (f ( ) =1=[fel)]
Suppose N7, (U) > N} (f (U)). It is clear that, if
f(x)EAcU thenxef (4) cf'(U). Then

. g \/ 0y (A) - \/ (B)

N (D) =N (F1(U)) =

flx)eacu xeBCf (V)
<\ oad)- \/ ni)
flx)edcU flx)edCU
<\ (@) - (4))
flx)edcU
So L= NGO+ NE(U) = A (1= ou(A)+
o ' flx)edcU

7,(f"1(A4))). Therefore
min(ll N2L(U) + N2 (Y )))
> /\ min(1, 1 — 6,(4) + 1,(f 1 (4)))

flx)eACU
> A min(l,1 - o,(V) + o0 (V) = [Fe L.
VeP(Y)
Hence A A min(l,1-Ny, (U)+N“ (F'(U))) = [fe L,].Second, we

XEX UeP(Y)

prove that [f'€ I,] > [f € w,]. From Corollary 4.1 [17] we have

[fer]= /\ min(1,1-0,(U)+( (V)
UeP(Y)
> A min (1,1 N N (U)+ Nf.X(f'(U)))
ver(y) fev seF (V)

> A min(l,l— N N

UeP(Y) )

U)+ Ni‘“W‘(U)))
xef~1(U)

>N\ N\ min(l,l—Nj(f;)(U)+N;*w‘(U))):[fewz}.

XEXUeP(Y)

(c) We prove that [f € w,] = [f € w3]. Since (V) < U implies
V <! (U), then from Theorem 4.2 (2) [17] we have

Femsl= A\ A mm<11 N+ Nﬁ_*(V)))
VeP(X)f(V)CU

XEXUEP(Y)
) =lrem).

2/\ /\ mm(ll N \)(U)+N (Y

xeXUeP(X)

(d) We will prove that [f'€ w4] =
[f € w4] < [f € ws]. Since for any fuzzy set A we have
[f~'(f(4)) D 4] = 1. Then for any B e P(Y), we have
[F'(F(CE(F(B)) 2 CE(f'(B)]=1. Also, since
(B Bl =1, then [CL(/(f~(B)) C CI!(B)] =
1. From Lemma 1.2 (2) [15], we obtain

[CL(r (B) S/ (CL (B))] cr i (c ()

cricL g (8))

e B e (i (8)-

[f € ws]. First, we prove

Hence

[fews)= N [CE((B)Csf(CL(B)]

BEP(Y)

> N\ Lo B) cch(ir!(8)]

BeP(Y)

> A [Acra)ccria))]

AeP(X)

= [fE (,04].

Second, for each 4 € P(X), there exists B € P(Y) such that

fl4) = B and f~(B) 2 A. Hence from Lemma 1.2 (1) [15] we

have

[few]= J\ [ACL(4)CCL(f(4))]

AEP(X)

> N\ ACEW@) S ()]

AEP(X)

> N\ [ctaycs

AeP(X)

(€L (f(4)))]

> N\ [eEos)ercn o)

BeP(Y),B=f(4)

> A [CE('(B)C

BeP(Y)

1 (CL(B))]

= [f'E (1)5].

(e) We want to prove that Ff € w, < f € ws.
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[fews]:BE/P}H[le(f"(B))Qf”(CIZ(B))]
BG/P\Y‘E/\Xmm@ 17(1, N (X1 (B)) +1- N7, (Y= B))
B/{}y/g\xmm(l,l (Y=B)+ N7 (1 (Y= B)))
:Ue/,\(y)x/é\xmiﬂ(l»lfNi‘<,\.><U>+Ni*<f*<U)>)ZVewz]. 0

3. Fuzzifying a-compact spaces

Definition 3.1. A fuzzifying topological space (X, 1) is said to
be fuzzifying a-topological space if 7,(4 N B) = 1,(A) A 1,(B).

In a topological space (X, 1), a family ‘R of subsets of X is
said to be a-covering of X if and only if R covers X and
R C a(X), where a(X) is the class of all a-sets in X. We gener-
alize this notion to the fuzzifying setting in the following
definition:

Definition 32. A binary fuzzy predicate
K, € 3(3(P(X)) x P(X)), called fuzzifying o-open covering,
is given as K, (M, 4) := K(R,4) ® (RC1,).

In classical topology, a space (X, t) is a-compact if and only
if every a-covering of X has a finite subcover. Also, a subset 4
of a space (X,7) is said to be a-compact if and only if (4,7,,) is
a-compact, where 7,4 denotes the induced topology on 4. The
following definition generalize these notions.

Definition 3.3. Let Q be the class of all fuzzifying topological
spaces. A unary fuzzy predicate I, € 3(Q), called fuzzifying a-
compactness, is given as follows:

(1) (X,‘C) € Fx =
X) @ FF(p)));
(2) If Ac X, then I',(A) :=T'y(A,7/4).

(VR) (Ko (R, X) —

(Fp)((p < R) AK(p,

Lemma 3.1. E K, (R, 4) — K, (R, 4).

Proof. Since Ft c 7, (see [17, Theorem 3.3 (1) (a)]), then we
have [RC1] <[RC71,). Therefore, [K,(R,4)] < [K, (R,
A). O

Since in general topology every a-compact space is compact
([24], Remark 3.1), we have the following theorem in fuzzifying
topology.

Theorem 3.1. F(X,7)el,—> (X,7)€el.

Proof. From Lemma 3.1 the proof is immediate. O

The following theorem generalize the notions which state
that:

(1) A subset 4 of a topological space (X, t) is a-compact rel-
ative to (X, 1) if and only if every cover of 4 by a-open
sets of (X, ) has a finite subcover.

(2) A subset 4 of a topological space (X, t) is a-compact rel-
ative to (X,7) if and only if it is compact in (X, 7).

Theorem 3.2. For any fuzzifying topological space (X,t) and
A < X we have

(D) F I(A) < (YR)(KL(R,4) = (Fp) (9
FF(p))),where K, is related to 1.
(2) I'y(4) = T'(A,).

<SR AK(p, )@

Proof. For any R € 3(J(X)), we set R € 3(3(4)) defined as

R(ANB)=NR(B),BCX. Then KW A=A VRO =
xeAd xeC
AV RB)=A V RB)=K(R,4), because xec A4
x€A xeC=ANB xeAd xeB
and x € B if and only if x € 4 N B. Therefore
W/, = A\ min(l,1-%(C)+1,/,(C)
cc4
= /\ min (1,1 -V s»+ V ‘ca(B))
cc4 C=AnBBCX C=AnBBCX
> A min(1,1 — R(B) + 1,(B))

CCA,C=ANBBCX

> A min(1,1-R(B) +1,(B)) = [RCx,].

For any o<, we define ¢ € I(P(X)) as ¢(B)=
{g(B) gtfergwfse. Then ¢ <R, FF(¢') = FF(p) and
K(¢/,4) = K(p.4). Furthermore, we have
[I.(4) © K, (R, 4)] < [[(4) @ K (R, 4)]

< (YR (KR, 4) — Cp)((p

< R) AK(p, 4) ® FF(p)))] @ [K,(R, 4)]

< [K(R,4) — (3p)((p

< R) A K(p, 4) @ FF(p))] @ [K,(R, 4)]

<[Bp)((p < R) A K(p, 4) @ FF(p))]

< (@)

<R)AK(p, 4) ® FF(p))]

< [GB)((B < R) AK(B, A) @ FF())]

Then I',(A) < [K,(R, 4)] — [3B)((f < R) AK(B,4) @ FF(B))],

where K,(R,4) = [K(R,4) ® (RC1,/,)]. Therefore

I,(4) < (K. (R, 4) — (3B)((B < R) AK(B, 4) @ FF(p))]
ReI(P(X))

= [(VR)(K (R, 4) — (3B)((B < R) AK(B, A) @ FF()))].

Conversely, for any R € J(P(4)), if [RC,/,]= A min(l,
BCA

1= R(B) +1./,(B) =
BC4, V(0=

B=ANC,CCX
there exists Cz < X such that CyN A4 = B and 1,(Cg) > A+
R(B)—1—1L Now, we define ReJI(P(X)) as R(C) =
max (0, 4+ R(B) -1 - 1) Then [RC1,] =1 and

A, then for any neN and
7,/ 4(B) > A+ R(B)—1-1 and
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KR 4) =N\ '\ RC) = \\RCs)

x€AxeCCX XEAxeB

> /\\/<z+m(3)717%)

xeAxeB
1 1
= AVRB) +i-1--=KR,A) +i-1--.
xeAxeB n n

Also, we have
K,(R,4) = [K(R,4) ® (RC1,)] = [K(R, 4)]

> max (O,K(ER,A) +21-1 —1)
n

1

> max(0,K(R, 4) +1—1) — .
1
= max(07 K(“RaA) + [“RQ TDC/A] - l) 7;

— KW, A)® [(RC /] _%:1(“(91,/1)_%.

For any p < N, we set ' € J(P(A4)) as ¢'(B) = p(Cp).BC A.
Then ¢’ < R, FF(p') = FF(p) and K(p',4A) = K(p,A).
Therefore

[(YR) (K (R, 4) — (Fp)((p < R) A K(p, 4) @ FF(p))]

o

Fp)((p < R) A K(p, 4) © FF(p))]

@ (K9, A)] 1 < [(YR)(K.(%, 4)

l

< M) A K(p, A) ® FF(p))]
P < R) AK(p, 4)
<R AK(Y, A)
(B<R)AK(B, A)

Let n — co. We obtain
[(VR)(K.(R, 4) — (Fp)((p
< R) A K(p, 4) @ FF(p)))] @ [K, (R, 4)]
< [EB(B<R) NK(B,A) ® FF(B))].
Then
[(VR) (KL (R, 4) — Fp)((p < R) A K(p, 4) @ FF(p))]
< [K(R,4) — (3B)((B
< W) AK(B,A) @ FF(B))]

< N KR4

ReI(P(X))
— (3B)((B < R) NK(B, A) ® FF(B))]
= I,(A).
(2) Obvious. [

The following definition is given in [21].

Definition 3.4. Let X be a set. A unary fuzzy predicate

I € 3(3(P(X))), called fuzzy finite intersection property, is

given as follows:

JIR) = (VB)((B < R) AFF(B) — (3x)(VB)((B € B)

— (x € B))).

In a topological space (X, 1), the following are equivalent:

(1) X is a-compact;

(2) Each family of a-closed sets in X has the finite intersec-
tion property;

(3) Each family of a-closed sets in X whose intersection is a
subset of an a-set B contains a finite subfamily whose
intersection is a subset of B.

We extend this notion in the following theorem:

Theorem 3.3. Let (X,t) be a fuzzifying topological space.

m = (VR)((R € I(P(X))) A(RCF,) @/1(R)
— (Ix)(VA)(AeR—x€A));

m = (YR)(IB)((RCF,) A (BE1,)) @ (Vp)

((péfﬁ)®FF(@)Hﬂ(ﬂpr)> —m(ﬂmgB)).
Then I, (X,1)m;, i = 1, 2.
Proof.

(a) We prove I',(X,1) = [n;]. For any R € J(P(X)), we set
R(X —4) = R(4). Then

RCr]= A min(l,1 - R(A) +1,(4))

AcP(X)

= A min(l,1 = R(X — 4) + F,(X — 4))
X—A€P(X)

=[RCF,
FF(R) =1- \{5€[0,1]: F(R,)}
=1-N\{0€0,1]: F(RG)} = FF(R)
and
B <R = p(M) < R(M) <= (X - M)

<RX-M) = <R
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Therefore
Iy(X,7) = [(VR)

(K (R, X)
— (Fp)((p <

R) A K(p, X) @ FF(p)))]
C1,) ® KR, X)
Fp)((p < ‘R) N K(p, X) @ FF(p)))]
— (K(R, X)
K(p, X) © FF(p))))]
— ((Vx)(3A) (A € RAx € A)
K(n X) © FF())))]
— ((Vx)(3A) (A € RAx € A)
)AK(ﬁ X) @ FF(f))))]
2) — (Vx)(34) (A € RAX € A)
) /\FF(l?) ® K(p, X))l
Y(3FA) (A eRAXx€E A
® (Vx)(IB)(BEP° A x € B))]
CCF, = (=((3B)(B < R AFF(B)
(B€ p°Ax€B))
) HA)(A € RAx e A))))]
(% — (I(R°)
— ﬂ((Vx)(HA)(A € RAx € A)))
(R CF,) @ fI(R)
X)(VA)(4 € R* — x € 4))]

(b) We prove [n;] = [m,]. Let X — B€ P(X). For any
R € I(P(X)).

(RCF)A(BeT,)]=[(RCF,)A(X—BeF,)]
= /\ min(1,1-R(4)+F

AeP(X)

2(4)) NFo(X = B)

= /\ min(1,1-R(4)+F,(4))

AEP(X)

A\ min(1,1-[4€{X—B}]+F,(4))

AeP(X)

= A\ min(1,1=[(RU{X = B})(4)]+F,(4))
AcP(X)

=[(RU{X-B})CF,].

let p=p\{X—-B}e

A#=X — B

Therefore, for any f e J3(P(X)),

sew). o= {§ 4B e o
pULX — B} > B, [FF(p)] = [FF(B)], [p < 9] = [ < (RU
{X — B})] and
(Vo) ((p < M) @ FF(p) — (3x)(VA) (4 € (pU{X = B}) — (x € 4))]

—/\mm<1 1—[FF(p ]+\/ /\ (pU{X—B})(4)

o< XEXAEP(X)
min(1l,1—[FF(B)]
ﬁ<(Ru{X B})
#V A ()= A =AU B,

XeXAeP(X,

Furthermore, we have

m® [(RCF.)A(Bew) @ (Y) (o

=m@[RU{X-B}CF,)®

<W@ FF(p) —~(ecs))]
(Vo) (p<R)®FF(p)

— (3 (VA) (A€ (pU{X ~ B)) —x € A))]

—m ®[(RU{X— B} CF,) 0 A(RU{X— B})]

<[(@)(VA) (A € (RU{X — B}) = x € )] [ (ﬂmcg)]
Therefore
m< N VRCFABern)® (Vo) ((p < R) @ FF(p)

ReJ(P(X)BC X

“~((wes)) -

Conversely

(e -

Mm@ [(RCF,) @ IR)] =m @ [(R\ {B}) U{B}) CF,
® [[I(R\{B}) U{B})]
=me[(RWCF)A(X-Ber,)
@ (Vo) ((p < ') @ FF(p)

— (3x)(V4)(4 € (p U {B})
—x € A)))
=me[(RWCF)A(X-Ber,)
®(Yp)((p < R') @ FF(p)

- (eer-9)|
< [ﬁ(ﬂm/cxfB)]

= [@)(vA)((4 € (R U{B})
(x € 4))] = [(Fx)(VA)(4 € R
(x e

A))]-

l i

Therefore

m< N\ (RCF)RR)—
ReI(P(X))

(Ix)(VA)(AER— (xeA))|=n. O

4. Some properties of fuzzifying a-compact spaces

Theorem 4.1. For any fuzzifying topological space (X,t) and
AcCX,

(D) ENL@X 1)®4eF, — I,(4);
@ F (X, 1) ®4€F, — I(4);
B) ET,(X,1)®A4 €F — I,(4);
(4) ET,(X,7)®4 €F — I'(4).

Proof.

(1) For any R e 3(P(4)),
oo | R(B) ifBCA,
R(B) = {O otherwise.

0,1]: FRp)}=1—-A{B<€[0,1]: F(

we define R € I(P(X)) as
Then FF(M) =1 - A{B €

Ry)} = FF(R)
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and Then
A (1-Ti(B) - (( A (1_m<3>>>A< A (1_m<3>)>> LXDSF A SMERLJeMW =Y A (-5
xeXx¢BCX xeX xXZBCA x¢BGA
_ W W < [(RCF,/ ] RA(R) — (1—‘3(3))>
xex <\~¢_BQA(1 SR(BD) /\x\e/X<v¢/B\§A(l iR(B») \'REQM))( 'V\E//"vééé/‘
- ( u—mmv A
xEX \x¢BC A

= < > \/(/\ (1-R(B )))
xeA \x¢BCA x¢A \x¢BC A

If x ¢ A4, then for any x' € A we have

N 0=%B)= \(1-RB)< A (1-R(B)).
¢BC A BCA xI¢BC A
Therefore
VA a=5®)=\/ A\ (1-%(B)),
xeXx¢BC X xX€Ax¢BC A

[1(R)] = [(VB)((B<R) AFF(B) —
:/\min(ll FFR+\ N\ (- mg)))

B<® XEXXEBC X

7/\m1n<11 —FFB)+\/ N\ (1- ‘RB))>

p<R xeAx¢BC A

= [fI()].

(3x)(VB)((BER) — (x€ B)))]

We want to prove F,(4)®

(04)
e reA

A Fi(4
Fu(4) ® [RCF./,]
_max( + A\ min(1,1— % >+F1/A<B>>—1>
< /\<1—sR<B>>+<ng A)+F/(B) 1)

< A\ (1= R(B)) + (Fu(4) AFu/ 4(B))

;) (see[17, Theorem 3.2]). Thus

= (1—‘3(3))+<Fa(/1)/\ V Fa(B/)>

= j/c\:u ~ R(B)) + . \B/B/ X(Fx(A’) NF(B)
< B/_\A(l —R(B)) + /m _\/ ,C (F.(4 N B))

< /g\ (1 - R(B)) + im(A;B h

- B/\Amln(l7 1~ R(B) +F.(B))

< B/\A min(1,1 — R(B) + F,(B))

- e

Furthermore, from Theorem 3.3 we have

I,(X, 1) @F,(4) @ [RCF,/,J&/I(R)
<L nDeMCFlega®<\/ N\ (1-R(B)

XEXx¢BC A
-V A 0

xEAXx¢BC A

[RCF,/,]<[RCF,]. In fact,

(2) From (1) above and Theorem 3.1, the result holds.
(3) From Theorem 3.3 [17] we have
[4 € F] < [4 € F,]. Then we obtain

I,(X, 1)@ A€F] < [I,(X,1)®@A4€F,] <TI,(A).
(4) From (3) above and Theorem 3.1 the result holds. [

EFCF, or

As a corollary of the above theorem we have the following
well known theorem for classical topological spaces (see [25],
Corollary 3.5).

Theorem 4.2. Every a-closed subset of an a-compact space is o -
compact.

Theorem 4.3. Let (X,t) and (Y,6) be any two fuzzifying topo-
logical spaces and f € Y~ is surjection. Then

E (X, 1) © Cu(f) — T(f(X))

Proof. (1) For fe 3(P(Y)), we define R e I(P(X)) as

R(A4) =" (B)(4) = B(f(4)). Then K(R,X) = é\x \E/AQR(A) -
A Vo=V FB= AV BE)=KENX)

and some calculations lead to

[BC ol @[C.(N)] = B/C\Ymln (1,1 = B(B) + o(B))
®Bé\ymin (1,1 — o(B) 4+ 7,(f " (B)))
= r;lax(O, B/\ymin (1,1 — B(B) + a(B))
+Bé\ymir_1(1,1 —a(B) +,((B)) - 1)
< B/C\ymax(o,min (1,1 — B(B) + o(B))

+min (1,1 — a(B) + 1,(f ' (B))) — 1)
< A\ min (1,1 - B(B) + w.(f ' (B)))

BCY
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For any p< N, we set pe I(P(Y)) defined as
p(f(4)) =flp)(f(4)) = p(4),ACX.  Then p(f(4)) =f(p)
(114)) <SR =AF (B)((A)) < PUTA)) FF(g) =1~ \
{0 €00,1]: Flpg)} =1-A{6€[0,1]: F(/(p)y)} = FF(f(p) <
FF(p) and K(p./IX)= A VeB) = AV p4)=>

yef(X) yeB YEf(X) yeB=/(4)
AV opd)= A\ V pd)=Kp,X).
YEfX) 11 ()ea veX xed
Furthermore
[I(X, 1)) @ [C. ()] @ [K,(B,/1X))]
= [I(X, 9] @ [G()] @ [K(B.AX)] @ [pC
< LX) @ [(RC ] © [K(R, X))
= [I(X, )] @ [K(R, X)]
< [Gp)((p < R) A K(p, X) @ FF(p))]
< [Fp)((p < R) A K(D,./(X)) ® FF(p))]
< [@F)((¢" < R) AK(9', /(X)) @ FF(¢'))],
where K/ is related to o. Therefore
[F(X, 0] @ [CL()] < KL(BAX)) — (3 (¢ < R) AK( X))
®FF(p))\ﬁ 3{><X>>(K;(ﬂ7 (X))
— (3 (9" SR)AK(9' SIX) @ FF(e)))
=[r(fx))). O

Theorem 4.4. Let (X,t) and (Y,6) be any two fuzzifying topo-
logical space and fe Y~ is surjection. Then EI,(X,1)®
L(f) = Tu(f(X)).

Proof. From the proof of Theorem 4.3 we have for any
Be 3(P(Y)) we define R € I(P(X)) as R(A4) =/"(B)(4) =
B(f(4)). Then K(%,X) = K(B.AX)) and [BCa,] @ [L(/)] <
[RCr1,). For any p <R, we set pec I(P(Y)) defined as

P(fA4)) =flp)(f(4)) = p(4),ACX and we have FF(p) <
FF(p), K(p, /(X)) = K(p,X). Therefore

[F(X, 7] @ [L(N] @ [K,(B./(X))]

= X9l @ L) @ [K(B.AX))] @ [fCal
S LX) @ RO @ [K(R, X))

= (X, 7)) @ [Ky(R, X))

[Ge)((p < R) A K(p, X) @ FF(p))]

[Ge)((p <9‘)AK(pf(X))®FF(p))}

[(F)(¢" < B) A K($.S1X)) @ FF(e))],

where K/ is related to ¢. Therefore

[I(X, 1)) @ [L(f)] < K (B./(X))
— (3)((" < B) N K(

<, nf (K (B.00)

— (3 ((¢" < B) NK(¢', (X)) ® FF(()))
= [L(X))]. O

As a corollary of the above two theorems we have the fol-
lowing theorem [24].

N

NN

@\ S1X) ® FF(e'))

Theorem 4.5. Let (X,t), (Y,0) be two topological spaces and

f:(X,1) > (Y,0) be a surjective mapping. If f is a-continuous

(resp. a-irresolute) and X is a-compact, then Y is compact (resp.
o-compact).

Theorem 4.6. Let (X,t) be any fuzzifying a-topological space
and A, Bc X. Then

(D) T3(X, 1) @ (I,(A) AT, (B)) AANB = pE"T5(X,7) — (V)
@ANU et ) A(VET)NACU)ABCYIANUNYV =¢));

2) T5(X, 1) @ I,(A)E"T5(X, 1) — A€ F,, where @Y
means that [¢@] > 0 implies [W] = 1 (see [21], Defini-
tion 3.1]).

Proof.

(1) Assume AN B = ¢ and T5(X, 1) =t. Let x € 4. For any
yeB and A<t we have \/{1,(P)A1(Q):x€P,
yeQ,PNO=9¢}=V{n(P)A1,(Q):xePCU,yeQ

= v {moyavm = A Vo)
Uunrv=¢ x#y UnV=¢

AN;(V)} = T5(X, 1) =t > Z, i.e., there exist P),0, such
that xeP,y€0,,P,NQ,=¢ and 1,(P) > A1,
(Qy) > 4. Set p(Q,) = 1(0Q,) for yeB. Since [f

c1,] = 1, we have

[K.(B,B)]=[K(B,B)] = A/ B(C) = \B(Q,) = Nwu(Q,) > 4.

yeByeC yeB YEB

On the other hand, Since [T5(X,1) ® (I',(A4) A T'w(B))] >0,
T5(X,1) + (Tu(A)AT,(B) —1>0 or 1 —t < I'y(A)AT,(B)

< I'(A). From Theorem 3.2 we have for any 4 € (1 — I',(A).1),

it holds that 1-A<T,(4)<1-[K, (B, B)]+ V{K(p,
p<p

B ® FF(p)} < 1 — A+ \/ {K(p, B)] ® FF(p)}. ie. \ {K(p,

p<p p<p
B) ® FF(p)} >0 and there exists @< f such that
K(p,B) + FF(p) — 1 > 0, ie., 1 — FF(p) < K(p,B). Then,
N {0:F(po)} < K(p,B). Now, there exists 0; such that
0, < K(p,B) and F(gp, ). Since o<, we may write
©o, = {le,,..,Qy”}. We put U,={P,N...OP, } V.=
{0, n...n QJ,”} and have V.2 B U.NV,=d,1,(U;) =
T,(Py,) A ... A1,(P,,) > A because (X, 1) is fuzzifying a-topo-
logical space. Also, 7,(V.) = 1,(Q, ) A... A1,(Q, ) > 4. In
fact, A V p(D) = K(p,B) > 0,, and for any y € B there ex-

YEB yeD

ists D such that y € D and p(D) > 0,,D € g, . Similarly, if

A€l = [ (A) AT (B),1), then we can find x,...,x,€ 4

with U,=U,U...UU,, 2 A4. By putting Vo="V,nN...

nv,, we obtain V, o B,U, NV, = ¢ and

AUENUet,)ANVET)ANACU ABCYV)ANUNYV
=¢)) = 1(Us) Ata(V5)

> min 7,(Uy,) A _rrllin (V) > A
n i=1,..,n
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Finally, we let 1 — ¢ and complete the proof.
(2) Assume [T5(X,7) ® I',(4)] > 0. Then for any x € X — 4
we have from (1) above that

\/ \/{rx ) A Ty

V):xe U ACV,UNV

XeUC X—A
= ¢} = [I3(X,7)].
Since 7,(A4) = A N%(A4) (see [17], Corollary 4.1), then we have
that xed
R =nX-4)= A Mx-a= A \ =

xeX—A4

> [13(X,7)). O

xeX—AxeUCX—-A4

As a corollary of the above theorem we have the following
result in general topology.

Theorem 4.7.

(1) For any disjoint a-compact subsets A and B of an o-Haus-
dorff space X, there exist disjoint a-open sets U and V
such that Ac U and Bc V.

(2) Every a-compact subset of a-Hausdorff space is o-closed.

Definition 4.1. Let (X,7) and (Y,0) be two fuzzifying topologi-
cal spaces. A unary fuzzy predicate Q, € J(Y*), called fuzzify-
ing a-closedness, is given as follows:

0,(/) == VB(BEF) — f(B) €F)),

where F} and F} are the fuzzy families of t, g-a-closed in X and
Y, respectively.

Theorem 4.8. Let (X,t) be a fuzzifying topological space
(Y,a) be a fuzzifying a-topological space and fe Y~. Then
F (X 1) @ T5(Y,0) @ L(f) — 0,(f).

Proof. For any A4 c X, we have the following:

(i) From Theorem 4.1 we have [I',(X, 1) ® F} (4)] < I',(4);

() L) = A min(1,1-0,(U)+5/,(7,)" (V)

UeP(Y)

= A min(1,1-,(U) +1./,(40/ (V)
UeP(Y)

= A\ min[Ll-a@)+ \/ B
UeP(Y) Anf~1(U)=Bn4

> A min (1,1 - 0,(0) +5( (V)
UeP(Y)

= L().

(iii) From Theorem 4.4, we have

I, (f(4)).

[I(A4) @ LA ] <

O.R. Sayed
(iv) From Theorem 4.6 (2) we have T5(Y,0)®
T (f(A)E™T%(Y,0) — f(4) € F', which implies E

TXY,0) ® [,(f(4)) — f(4) € F.By combining (i)—(iv)
we have
[F.(X,7) @ T5(Y,0) ® L()] < [(FY(4) = T(4) ® L(fi1)
® T5(Y,0)] < [(FY(4) — (I,(A4))
@ L(fi1)) @ T5(Y,0)]
< [FX(4) = L) © T3
[FX(4) = FY(f(4))]
< N (i) — Fl(4)])

ACx

=0, U

5(Y, a)]

As a crisp setting from the above theorem we have

Theorem 4.9. An a-irresolute map from o-compact space to o-
Hausdorff space is a-closed.

5. Conclusion

The present paper investigates topological notions when these
are planted into the framework of Ying’s fuzzifying topologi-
cal spaces (in semantic method of continuous valued-logic).
It continue various investigations into fuzzy topology in a
legitimate way and extend some fundamental results in general
topology to fuzzifying topology. An important virtue of our
approach (in which we follow Ying) is that we define topolog-
ical notions as fuzzy predicates (by formulae of ukasiewicz fuz-
zy logic) and prove the validity of fuzzy implications (or
equivalences). Unlike the (more wide-spread) style of defining
notions in fuzzy mathematics as crisp predicates of fuzzy sets,
fuzzy predicates of fuzzy sets provide a more genuine fuzzifica-
tion; furthermore the theorems in the form of valid fuzzy
implications are more general than the corresponding theo-
rems on crisp predicates of fuzzy sets. The main contributions
of the paper are to study a-compact spaces in fuzzifying topol-
ogy and the behavior of a-compact spaces under various types
of mappings. There are some problems for further study:

(1) What is the justification for fuzzifying a-compactness in
the setting of (2, L) topologies.

(2) Obviously, fuzzifying topological spaces in [13] form a
fuzzy category. Perhaps, this will become a motivation
for further study of the fuzzy category.

(3) It would be interesting to give examples and results con-
sidering sums, hereditary and productivity, etc.
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