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Abstract

The concepts of �-continuity and c�-continuity are considered and studied in fuzzifying topology and by making use
of these concepts, some decompositions of fuzzy continuity are introduced. It is proved that the family of all �-sets in
fuzzifying topology may not be a fuzzifying topology. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In [4], Ying introduced the concept of fuzzifying topology with the semantic method of continuous-valued
logic. All the conventions in [4–6] are good in this paper. In general topology, Njastad [7] introduced the
concept of �-sets and in [3] the concept of �-continuity is studied. It is worth mentioning that these concepts
are introduced in fuzzy topology by Singal and Rajvanshi [9]. In [8], the concept of D(c; �)-continuity is
introduced which will be renamed also in the present paper as c�-continuity. In the present paper, we extend
and study the concepts of �-continuity and c�-continuity in fuzzifying topology and by making use of them
some decompositions of fuzzy continuity are introduced. A counterexample is given to prove that the family of
all �-open sets need not be a fuzzifying topology which contradicts a well-known result in crisp setting. Finally,
the concept of c�-neighborhood system is presented and a fuzzifying topology induced by it is introduced.

2. Preliminaries

For the fuzzy logical and the corresponding set theoretical notations we refer to [4,5]. We note that the set of
truth values is the unit interval and we do often not distinguish the connectives and their truth value functions
and state strictly our results on formalization as Ying does. For the de�nitions and results in fuzzifying
topology which are used in the sequel we refer to [4–6].
We now give some de�nitions and results are introduced in [2] which are useful in the rest of the present

paper.
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De�nition 2.1. For any Ã ∈F(X ),

|= (Ã )◦ ≡X ∼ (X ∼ Ã ):

Lemma 2.1. If [Ã ⊆ B̃] = 1; then
(1) |= �̃A ⊆ �̃B;
(2) |= (Ã )◦ ⊆ (B̃)◦.

Lemma 2.2. Let (X; �) be a fuzzifying topological space. For any Ã ; B̃;
(1) |= X ◦ ≡X ;
(2) |= (Ã )◦ ⊆ Ã ;
(3) |= (Ã ∩ B̃)◦ ≡ (Ã )◦ ∩ (B̃)◦;
(4) |= (Ã )◦ ◦ ⊇ (Ã )◦.

One can add the following lemma

Lemma 2.3. Let (X; �) be a fuzzifying topological space. For any Ã ∈F(X );
(1) |= X ∼ (Ã )◦−◦ ≡ (X ∼ Ã )−◦−;
(2) if [Ã ⊆ B̃] = 1; then |= (Ã )◦−◦ ⊆ (B̃)◦−◦.

3. Fuzzifying �-open sets and fuzzifying c�-open sets

De�nition 3.1. Let (X; �) be a fuzzifying topological space.
(1) The family of fuzzifying �- (resp. c�-) open sets is denoted by �� (resp. c��)∈F(P(X )) and de�ned as

follows:

A∈ �� :=∀x(x∈A→ x∈A◦−◦) (resp: A∈ c�� :=∀x(x∈A∩A◦−◦ → x∈A◦)):
(2) The family of fuzzifying �- (resp. c�-) closed sets is denoted by �F (resp. c�F)∈F(P(X )) and de�ned

as follows:

A∈ �F (resp: c�F) :=X ∼A∈ �� (resp: c��):

Lemma 3.1. For any �; �; 
; �∈ I;
(1− �+ �)∧ (1− 
+ �)61− (�∧ 
) + (�∧ �):

Lemma 3.2. For any A∈P(X );
|= A◦ ⊆A◦−◦:

Proof. From Theorem 5:3 [7] we have [A◦ ⊆A◦−] = 1 and from Lemma 2.1(2), [A◦◦ ⊆A◦−◦] = 1. Since from
Lemma 2.2 we have [A◦◦ ≡A◦] = 1; the result holds.

Theorem 3.1. Let (X; �) be a fuzzifying topological space. Then
(1) (a) ��(X )= 1; ��(∅)= 1;

(b) for any {A� : �∈�}; ��(
⋃
�∈� A�)¿

∧
�∈� ��(A�);

(2) (a) c��(X )= 1; c��(�)= 1;
(b) c��(A∩B)¿c��(A)∧ c��(B).



F.H. Khedr et al. / Fuzzy Sets and Systems 116 (2000) 325–337 327

Proof. The proof of (a) in (1) and (a) in (2) are straightforward.
(1) (b) From Lemma 2.3, |= A◦−◦

� ⊆ (⋃�∈� A�)◦−◦. So,

��

( ⋃
�∈�

A�

)
= inf

x∈∪�∈�A�

( ⋃
�∈�

A�

)◦−◦
(x)= inf

�∈�
inf
x∈A�

( ⋃
�∈�

A�

)◦−◦
(x)

¿ inf
�∈�

inf
x∈A�

A◦−◦
� (x) =

∧
�∈�

��(A�):

(2) (b) Applying Lemmas 2.2 (3), 2.3 (2) and 3.1 we have

c��(A)∧ c��(B) = inf
x∈A
(1− A◦−◦(x) + A◦(x))∧ inf

x∈B
(1− B◦−◦(x) + B◦(x))

6 inf
x∈A∩B

((1− A◦−◦(x) + A◦(x)) ∧ (1− B◦−◦(x) + B◦(x)))

6 inf
x∈A∩B

(1− (A◦−◦ ∩B◦−◦)(x) + (A◦ ∩B◦)(x))

6 inf
x∈A∩B

(1− (A∩B)◦−◦(x) + (A∩B)◦(x))

= c��(A∩B):

From Theorem 3.1, we can have the following theorem

Theorem 3.2. Let (X; �) be a fuzzifying topological space. Then
(1) (a) �F(X )= 1; �F(∅)= 1;

(b) �F(
⋂
�∈� A�)¿

∧
�∈� �F(A�);

(2) (a) c�F(X )= 1; c�F(∅)= 1;
(b) c�F(A∪B)¿c�F(A)∧ c�F(B).

Theorem 3.3. Let (X; �) be a fuzzifying topological space. Then
(1) (a) |= �⊆ ��;

(b) |= �⊆ c��;
(2) (a) |= F ⊆ �F ;

(b) |= F ⊆ c�F .

Proof. From Theorem 2:2(3) [8] and Lemma 3.2, we have
(1) (a) [A∈ �] = [A⊆A◦]6[A⊆A◦−◦] = [A∈ ��].

(b) [A∈ �] = [A⊆A◦]6[A∩A◦−◦ ⊆A◦] = [A∈ c��].
(2) The proof is obtained from (1).

Remark 3.1. In crisp setting, i.e., if the underlying fuzzifying topology is the ordinary topology, one can
have
(1) |= (A∈ ��∧A∈ c��)→A∈ �;
(2) |= (A∈ ��∧B∈ ��)→A∩B∈ ��.

But these statements may not be true in general in fuzzifying topology as illustrated by the following
counterexample.
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Counterexample 3.1. Let X = {a; b; c} and let � be a fuzzifying topology on X de�ned as follows:

�(X )= �(�)= �({a})= �({a; c})= 1; �({b})= �({a; b})= 0 and �({c})= �({b; c}) = 1
8 :

One can have that
(1) ��({a; b}) = 7

8 ; c��({a; b})= 1
8 and hence, ��({a; b})∧ c��({a; b})= 7

8 ∧ 1
8 =

1
8 
 0= �({a; b}) and

(2) ��({a; b})= 7
8 ; ��({b; c})= 1

8 and ��({b})= 0 and hence ��({a; b})∧ ��({b; c})= 1
8
 0= ��({b})

= ��({a; b}∩{b; c}).
Theorem 3.4. Let (X; �) be a fuzzifying topological space.
(1) |= A∈ �→ (A∈ ��∧A∈ c��);
(2) If [A∈ ��] = 1 or [A∈ c��] = 1; then |= A∈ �↔ (A∈ ��∧A∈ c��).
Proof. (1) Obtained from Theorem 3.3 (1).
(2) If [A∈ ��] = 1, then for each x∈A; A◦−◦(x)= 1 and so for each x∈A; 1 − A◦−◦(x) + A◦(x)=A◦(x).

Thus, from Lemma 3.2, |= A◦ ⊆A◦−◦ and so we have, [A∈ ��]∧ [A∈ c��] = [A∈ c��] = [A∈ �]. If [A∈ c��] = 1
then for each x∈A; 1−A◦−◦(x)+A◦(x)= 1 and so for each x∈A, we have A◦−◦(x)=A◦(x). Thus [A∈ ��]∧
[A∈ c��] = [A∈ ��] = [A∈ �].
Theorem 3.5. Let (X; �) be a fuzzifying topological space. Then

|= (A∈ ��∧: A∈ c��)→A∈ �:

Proof.

��(A)∧: c��(A) = inf
x∈A
A◦−◦(x)∧: inf

x∈A
(1− A◦−◦(x) + A◦(x))

= max
(
0; inf
x∈A

A◦−◦(x) + inf
x∈A
(1− A◦−◦(x) + A◦(x))− 1

)
6 inf

x∈A
A◦(x)= [A∈ �]:

4. Fuzzifying �- (resp. c�-) neighborhood structure of a point

De�nition 4.1. Let x∈X . The �- (resp. c�-) neighborhood of x is denoted by �Nx (resp. c�Nx)∈F(P(X ))
and de�ned as

�Nx(A)= sup
x∈B⊆ A

��(B)

(
resp: c�Nx(A)= sup

x∈B⊆ A
c��(B)

)
:

Theorem 4.1. (1) |= A∈ ��↔∀x(x∈A→∃B(B∈ ��∧ x∈B⊆A));
(2) |= A∈ ��↔∀x(x∈A→∃B(B∈ �Nx ∧B⊆A)).

Proof. (1) Now,

[∀x(x∈A→∃B(B∈ ��∧ x∈B⊆A))]= inf
x∈A

sup
x∈B⊆ A

��(B):

It is clear that inf x∈A supx∈B⊆ A ��(B)¿��(A). On the other hand, let �x = {B: x∈B⊆A}. Then, for any
f∈ ∏x∈A �x we have

⋃
x∈A f(x)=A and so ��(A)= ��(

⋃
x∈A f(x))¿ inf x∈A ��(f(x)). Thus,

��(A)¿ sup
f∈�x∈A�x

inf
x∈A
��(f(x))= inf

x∈A
sup

x∈B⊆ A
��(B):
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(2) From (1) we have

[∀x(x∈A→∃B(B∈ �Nx ∧B⊆A))] = inf
x∈A

sup
B⊆ A

�Nx(B)

= inf
x∈A

sup
B⊆ A

sup
x∈C⊆ B

��(C)

= inf
x∈A

sup
x∈C⊆ A

��(C)= [A∈ ��]:

Corollary 4.1. inf x∈A �Nx(A) = ��(A).

Theorem 4.2. The mapping �N :X →FN (P(X )); x 7→ �Nx where FN (P(X )) is the set of all normal fuzzy
subsets of P(X ) has the following properties:
(1) for any x; A; |= A∈ �Nx→ x∈A;
(2) for any x; A; B; |= A⊆B→ (A∈ �Nx→B∈ �Nx);
(3) for any x; A; |= A∈ �Nx→∃H (H ∈ �Nx ∧H ⊆A∧∀y(y∈H→H ∈ �Ny)).

Proof. One can easily have that for each x∈X; �Nx(X )= 1, i.e. each �Nx is normal.
(1) If �Nx(A)= 0, the result holds. Suppose �Nx(A)¿0, then supx∈H ⊆ A ��(H)¿0 and so there exists H◦

such that x∈H◦ ⊆A. Thus [x∈A] = 1¿�Nx(A).
(2) Immediate.

(3) [∃H (H ∈ �Nx ∧H ⊆A∧∀y(y∈H→H ∈ �Ny))]

= sup
H ⊆ A

(
�Nx(H)∧ inf

y∈H
�Ny(H)

)

= sup
H ⊆ A

(�Nx(H)∧ ��(H))

= sup
H ⊆ A

��(H)¿ sup
x∈H ⊆ A

��(H)= [A∈ �Nx]:

Theorem 4.3. The mapping c�N :X →FN (P(X )); x 7→ c�Nx; where FN (P(X )); is the set of all normal fuzzy
subsets of P(X ) has the following properties:
(1) for any x; A; |= A∈ c�Nx→ x∈A;
(2) for any x; A; B; |= A⊆B→ (A∈ c�Nx→B∈ c�Nx);
(3) for any x; A; B; |= A∈ c�Nx ∧B∈ c�Nx→A∩B∈ c�Nx.
Conversely; if a mapping c�N satis�es (2) and (3); then c�N assigns a fuzzifying topology on X; denoted

by �c�N ∈F(P(X )) and de�ned as

A∈ �c�N :=∀x(x∈A→A∈ c�Nx):

Proof. It is clear that each c�Nx is normal.
The proof of (1) and (2) are similar to the corresponding results in Theorem 4.2.
(3) From Theorem 3.1(2)(b) we have

[A∩B∈ c�Nx] = sup
x∈H ⊆ A∩B

c��(H) = sup
x∈H1 ⊆ A; x∈H2 ⊆ B

c��(H1 ∩H2)

¿ sup
x∈H1 ⊆ A; x∈H2 ⊆ B

(c��(H1)∧ c��(H2)) = sup
x∈H1 ⊆ A

c��(H1)∧ sup
x∈H2 ⊆ B

c��(H2)

= c�Nx(A)∧ c�Nx(B):
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Conversely, we need to prove that �c�N = inf x∈A c�Nx(A) is a fuzzifying topology. From Theorem 3.2 [7]
and since �c�N satis�es properties (2) and (3), �c�N is a fuzzifying topology.

Theorem 4.4. Let (X; �) be a fuzzifying topological space. Then |= c��⊆ �c�N .

Proof. Let B∈P(X ); �c�N (B)= inf x∈B c�Nx(B)= inf x∈B supx∈A⊆ B c��(A)¿c��(B).

5. �- (resp. c�-) closure and �- (resp. c�-) interior

De�nition 5.1. (1) The �- (resp. c�-) closure of A is denoted by �−cl (resp. c�−cl)∈F(P(X )) and de�ned
as follows:

�− cl(A)(x)= inf
x 6∈B⊇ A

(1− �F(B)) (resp: c�− cl(A)(x)= inf
x 6∈B⊇ A

(1− c�F(B))):

(2) The �- (resp. c�-) interior of A is denoted by �− int(A) (resp. c�− int(A))∈F(P(X )) and de�ned
as follows:

�− int(A)(x)= �Nx(A) (resp: c�− int(A)(x)= c�Nx(A)):

Theorem 5.1.
(1) (a) �− cl(A)(x)= 1− �Nx(X ∼A);

(b) |= �− cl(�)≡∅;
(c) |= A⊆ �− cl(A);
(d) |= x∈ �− cl(A)↔∀B(B∈ �Nx→A∩B 6= ∅);
(e) |= A≡ �− cl(A)↔A∈ �F ;
(f) |= B ≡̇ �− cl(A)→B∈ �F:

(2) (a) c�− cl(A)(x)= 1− c�Nx(X ∼A);
(b) |= c�− cl(∅)≡∅;
(c) |= A⊆ c�− cl(A);
(d) |= x∈ c�− cl(A)↔∀B(B∈ c�Nx→A∩B 6= ∅);
(e) |= A≡ c�− cl(A)↔A∈F�c�N ;
(f) |= B ≡̇ c�− cl(A)→B∈F�c�N :

Proof. (1) (a)

�− cl(A)(x) = inf
x 6∈B⊇ A

(1− �F(B))= inf
x∈X∼B⊆ X∼A

(1− ��(X ∼B))
= 1− sup

x∈X∼B⊆ X∼A
��(X ∼B)= 1− �Nx(X ∼A);

(b) �− cl(∅)(x)= 1− �Nx(X ∼∅)= 0;
(c) It is clear that for any A∈P(X ) and any x∈X , if x 6∈A, then �Nx(A)= 0. If x∈A, then �− cl(A)(x)=

1− �Nx(X ∼A)= 1− 0=1. Then [A⊆ �− cl(A)]= 1.
(d) [∀B(B∈ �Nx→A∩B 6= ∅)]= inf B⊆ X∼A(1− �Nx(B))= 1− �Nx(X ∼A)= [x∈ �− cl(A)].
(e) From Corollary 4:1 and from (a), (c) above we have

[A≡ �− cl(A)] = inf
x∈X∼A

(1− (�− cl(A))(x))
= inf
x∈X∼A

�Nx(X ∼A)= ��(X ∼A)= [A∈ �F]:
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(f) If [A⊆B] = 0, then [B ≡̇ �− cl(A)]= 0. Now, we suppose [A⊆B] = 1, and have, [B⊆ �− cl(A)]= 1−
supx∈B∼A �Nx(X ∼A), [�− cl(A)⊆B] = inf x∈X∼B �Nx(X ∼A). So, [B ≡̇ �− cl(A)]=max(0; inf x∈X∼B �Nx
(X∼A)− supx∈B∼A �Nx(X ∼A)). If [B ≡̇ �− cl(A)]¿t, then inf x∈X∼B �Nx(X ∼A)¿t+ supx∈B∼A �Nx(X ∼A).
For any x∈X ∼B, supx∈C⊆ X∼A ��(C)¿t+supx∈B∼A �Nx(X ∼A), i.e., there exists Cx such that x∈Cx ⊆X ∼A
and ��(Cx)¿t + supx∈B∼A �Nx(X ∼A). Now we want to prove that Cx ⊆X ∼B. If not, then there exists
x′ ∈B∼A with x′ ∈Cx. Hence, we obtain supx∈B∼A �Nx(X ∼A)¿�Nx′(X ∼A)¿��(Cx)¿t + supx∈B∼A
�Nx(X ∼A), a contradiction. Therefore, �F(B)= ��(X ∼B)= inf x∈X∼B �Nx(X ∼B)¿ inf x∈X∼B ��(Cx)¿t +
supx∈B∼A �Nx(X ∼A)¿t. Since t is arbitrary, it holds that [B ≡̇ �− cl(A)]6[B∈ �F].
(2) The proof is similar to (1).

Theorem 5.2. For any x; A; B;
(1) (a) |= �− int(A)≡X ∼ �− cl(X ∼A);

(b) |= �− int(X )≡X ;
(c) |= �− int(A)⊆A;
(d) |= B ≡̇ �− int(A)→B∈ ��;
(e) |= B∈ ��∧B⊆A→B⊆ �− int(A);
(f) |= A≡ �− int(A)↔A∈ ��;

(2) (a) |= c�− int(A)≡X ∼ c�− cl(X ∼A);
(b) |= c�− int(X )≡X ;
(c) |= c�− int(A)⊆A;
(d) |= B ≡̇ c�− int(A)→B∈ �c�N ;
(e) |= B∈ �c�N ∧B⊆A→B⊆ c�− int(A);
(f) |= A≡ c�− int(A)↔A∈ �c�N .

Proof. (1) (a) From Theorem 5.1(a) �−cl(X ∼A)(x)= 1−�Nx(A)= 1−(�− int(A))(x). Then, [�− int(A)≡
X ∼ �− cl(X ∼A)]= 1.
(b) and (c) are obtained from (a) above and from Theorem 5.1(1)(b) and (1)(c).
(d) From (a) above and from Theorem 5.1(1)(f) we have

[B ≡̇ �− int(A)]= [X ∼B ≡̇ �− cl(X ∼A)]6[X ∼B∈ �F] = [B∈ ��]:

(e) If [B⊆A] = 0, then the result holds. If [B⊆A] = 1, then we have that [B⊆ � − int(A)]= inf x∈B(� −
int(A))(x)= inf x∈B �Nx(A)¿ inf x∈B �Nx(B)= ��(B)= [B∈ ��∧B⊆A].
(f) From Corollary 4:1, we have

[A ≡ �− int(A)] =min(inf
x∈A
(�− int(A))(x); inf

x∈X∼A
(1− (�− int(A))(x))

= inf
x∈A
(�− int(A))(x)= inf

x∈A
�Nx(A)= ��(A)= [A∈ ��]:

(2) The proof is similar to (1).

6. �-Continuous functions and c�-continuous functions

De�nition 6.1. Let (X; �); (Y; U ) be two fuzzifying topological spaces.
(1) A unary fuzzy predicate �C ∈F(YX ) called fuzzy �-continuity, is given as

�C(f) :=∀u(u∈U→f−1(u)∈ ��):
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(2) A unary fuzzy predicate c�C ∈F(YX ) called fuzzy c�-continuity, is given as

c�C(f) :=∀u(u∈U→f−1(u)∈ c��):

De�nition 6.2. Let (X; �); (Y; U ) be two fuzzifying topological spaces. For any f∈YX , we de�ne the unary
fuzzy predicates �Hj; c�Hj ∈F(YX ) where j=1; 2; : : : ; 5 as follows:
(1) (a) �H1(f) :=∀B(B∈FY →f−1(B)∈ �FX ); (b) c�H1(f) :=∀B(B∈FY →f−1(B)∈ c�FX ),
where FY is the family of closed subsets of Y ; and �FX and c�FX are the families of �-closed and c�-closed
subsets of X , respectively.
(2) (a) �H2(f) :=∀x∀u(u∈NYf(x)→f−1(u)∈ �NXx ); (b) c�H2(f) :=∀x∀u(u∈NYf(x)→f−1(u)∈ c�NXx ),
where NY is the neighborhood system of Y ; and �NX and c�NX are the �-neighborhood and c�-neighborhood
systems of X , respectively.
(3) (a) �H3(f) :=∀x∀u(u∈NYf(x)→∃�(f(�)⊆ u→ �∈ �NXx )); (b) c�H3(f) :=∀x∀u(u∈NYf(x)→∃�(f(�)⊆
u→�∈ c�NXx ));
(4) (a) �H4(f) :=∀A(f(�− clX (A))⊆ clY (f(A))); (b) c�H4(f) :=∀A(f(c�− clX (A))⊆ clY (f(A)));
(5) (a) �H5(f) :=∀B(�−clX (f−1(B))⊆f−1(clY (B))); (b) c�H5(f) :=∀B(c�−clX (f−1(B))⊆f−1(clY (B))).

Theorem 6.1. (1) |= f∈ �C↔f∈ �Hj; j=1; 2; 3; 4; 5;
(2) |= f∈ c�C↔f∈ c�H1.

Proof. We will prove (1) only since the proof of (2) is similar to the corresponding result in (1)(a). We
prove that |= f∈ �C ↔ f∈ �H1:

[f∈ �H1] = inf
B∈P(Y )

min(1; 1− FY (B) + �FX (f−1(B)))

= inf
B∈P(Y )

min(1; 1− U (Y ∼B) + ��(X ∼f−1(B)))

= inf
B∈P(Y )

min(1; 1− U (Y ∼B) + ��(f−1(Y ∼B)))

= inf
u∈P(Y )

min(1; 1− U (u) + ��(f−1(u)))

= [f∈ �C]:

(b) We want to prove that |= f∈ �C ↔ f∈ �H2.
First, we prove that �H2(f)¿�C(f). If NYf(x)(u)6�N

X
x (f

−1(u)) the result holds. Suppose NYf(x)(u)¿
�NXx (f

−1(u)). It is clear that, if f(x) ∈ A⊆ u, then x∈f−1(A)⊆f−1(u). Then,

NYf(x)(u)− �NXx (f−1(u)) = sup
f(x)∈A⊆ u

U (A)− sup
x∈B⊆f−1(u)

��(B)

6 sup
f(x)∈A⊆ u

U (A)− sup
f(x)∈A⊆ u

��(f−1(A))

6 sup
f(x)∈A⊆ u

(U (A)− ��(f−1(A))):

So,

1− NYf(x)(u) + �NXx (f−1(u))¿ inf
f(x)∈A⊆ u

(1− U (A) + ��(f−1(A)))



F.H. Khedr et al. / Fuzzy Sets and Systems 116 (2000) 325–337 333

and, thus,

min(1; 1− NYf(x)(u) + �NXx (f−1(u)))¿ inf
f(x)∈A⊆U

min(1; 1− U (A) + ��(f−1(A)))

¿ inf
�∈P(Y )

min(1; 1− U (�) + ��(f−1(�)))= �C(f):

Hence,

inf
x∈X

inf
u∈P(Y )

min(1; 1− NYf(x)(u) + �NXx (f−1(u)))¿[f∈ �C]:

Secondly, we prove that �C(f)¿�H2(f). From Corollary 4:1, we have

�C(f) = inf
u∈P(Y )

min(1; 1− U (u) + ��(f−1(u)))

¿ inf
u∈P(Y )

min
(
1; 1− inf

f(x)∈u
NYf(x)(u) + inf

x∈f−1(u)
�NXx (f

−1(u))
)

= inf
u∈P(Y )

min
(
1; 1− inf

x∈f−1(u)
NYf(x)(u) + inf

x∈f−1(u)
�NXx (f

−1(u))
)

¿ inf
x∈X

inf
u∈P(Y )

min(1; 1− NYf(x)(u) + �NXx (f−1(u)))= �H2(f):

(c) We prove that |= f∈ �H2 ↔ f∈ �H3. From Theorem 4.2(2) we have

�H3(f) = inf
x∈X

inf
u∈P(Y )

min

(
1; 1− NYf(x)(u) + sup

�∈P(X );f(�)⊆ u
�NXx (�)

)

= inf
x∈X

inf
u∈P(Y )

min(1; 1− NYf(x)(u) + �NXx (f−1(u)))= �H2(f):

(d) We prove that |= f∈ �H4 ↔ f∈ �H5.
First, for any B∈P(Y ) one can deduce that [f−1(f(� − clX (f−1(B))))⊇ � − clX (f−1(B))]= 1;

[clY (f(f−1(B)))⊆ clY (B)]= 1 and [f−1(clY (f(f−1(B))))⊆f−1(clY (B))]= 1. Then from Lemma 1.2(2)
[9] we have

[�− clX (f−1(B))⊆f−1(clY (B))]¿ [f−1(f(�− clX (f−1(B))))⊆f−1(clY (B))]

¿ [f−1(f(�− clX (f−1(B))))⊆f−1(clY (f(f−1(B))))]

¿ [f(�− clX (f−1(B)))⊆ clY (f(f−1(B))))]:

Therefore,

�H5(f) = inf
B∈P(Y )

[�− clX (f−1(B))⊆f−1(clY (B))]

¿ inf
B∈P(Y )

[f−1(f(�− clX (f−1(B))))⊆f−1(clY (B))]

¿ inf
B∈P(Y )

[f−1(f(�− clX (f−1(B))))⊆f−1(clY (f(f−1(B))))]

¿ inf
B∈P(Y )

[f(�− clX (f−1(B)))⊆ clY (f(f−1(B)))]

¿ inf
A∈P(X )

[f(�− clX (A))⊆ clY (f(A))] = �H4(f):
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Secondly, for each A∈P(X ), there exists B ∈ P(Y ) such that f(A) = B and f−1(B)⊇A. Hence,
[�− clX (f−1(B))⊆f−1(clY (B))]6 [�− clX (A))⊆f−1(clY (f(A)))]

6 [f(�− clX (A))⊆f(f−1(clY (f(A))))]

6 [f(�− clX (A)⊆ clY (f(A))]:
Thus,

�H4(f) = inf
A∈P(X )

[�− clX (A)⊆f−1(clY (f(A))]¿ inf
B∈P(Y ); B=f(A)

[�− clX (f−1(B))⊆f−1(clY (B))]

¿ inf
B∈P(Y )

[�− clX (f−1(B))⊆f−1(clY (B))]= �H5(f):

(e) We want to prove that |= f∈ �H5↔f∈ �H2.
�H5(f) = [∀B(�− clX (f−1(B))⊆f−1(clY (B)))]

= inf
B∈P(Y )

inf
x∈X

min(1; 1− (1− �Nx(X ∼f−1(B))) + 1− Nf(x)(Y ∼ B))

= inf
B∈P(Y )

inf
x∈X

min(1; 1− Nf(x)(Y ∼B)) + �Nx(f−1(Y ∼ B)))

= inf
u∈P(Y )

inf
x∈X

min(1; 1− Nf(x)(u)) + �Nx(f−1(u)))= �H2(f):

Theorem 6.2. (1) |= f∈ c�H2↔f∈ c�Hj; j=3; 4; 5;
(2) |= f∈ c�C→f∈ c�H2:

Proof. (1) It is similiar to the proof of (c)–(e) in the proof of Theorem 6.1.
(2) It is similiar to the proof of the �rst part in (b) in Theorem 6.1.

Remark 6.1. In the following theorem we indicate the fuzzifying topologies with respect to which we eval-
uate the degree to which f is continuous or c�C-continuous. Thus; the symbols (�; U ) − C(f); (�c�N ; U ) −
C(f); (�; Uc�N )− c�C(f); etc:; will be understood.
Applying Theorem 3.4(1) and Theorem 4.4 one can deduce the following theorem.

Theorem 6.3. (1) |= f∈ (�; Uc�N )− C→f∈ (�; U )− C;
(2) |= f∈ (�; U )− c�C→f∈ (�c�N ; U )− C;
(3) |= f∈ (�; U )− C→f∈ (�; U )− c�C:

7. Decompositions of fuzzy continuity in fuzzifying topology

Theorem 7.1. Let (X; �); (Y; U ) be two fuzzifying topological spaces. Then for each f∈YX ; |= C(f)→
(�C(f) ∨ c�C(f)).

Proof. The proof is obtained from Theorem 3.3(1).

Remark 7.1. In crisp setting, i.e., if the underlying fuzzifying topology is the ordinary topology, one can
have |= �C(f)∧ c�C(f)→C(f).
But this statement may not be true in general in fuzzifying topology as illustrated by the following

counterexample.
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Counterexample 7.1. Let (X; �) be the fuzzifying topological space de�ned in Counterexample 3.1; consider
the identity function f from (X; �) onto (X; �) where � is a fuzzifying topology on X de�ned as follows:

�A=
{
1; A∈{X; ∅; {a; b}};
0; o:w:

Then 7
8 ∧ 1

8 = �C(f)∧ c�C(f)
 C(f)= 0.

Theorem 7.2. Let (X; �); (Y; U ) be two fuzzifying topological spaces and let f∈YX : Then |= C(f)→ (�C(f)
↔ c�C(f)):

Proof. [�C(f)→ c�C(f)]= min(1; 1 − �C(f) + c�C(f))¿�C(f)∧ c�C(f). Also, [c�C(f)→ �C(f)]=
min(1; 1 − c�C(f) + �C(f))¿c�C(f)∧ �C(f). Then from Theorem 7.1 we have c�C(f)∧ �C(f)¿C(f)
and so the result holds.

Theorem 7.3. Let (X; �); (Y; U ) be two fuzzifying topological spaces and let f∈YX . If [��(f−1(u))]= 1 or
[c��(f−1(u))]= 1 for each u∈P(Y ); then |= C(f)↔ (�C(f)∧ c�C(f)).

Proof. Now, we need to prove that C(f)= �C(f)∧ c�C(f). Applying Theorem 3.4(2) we have

�C(f)∧ c�C(f) = inf
u∈P(Y )

min(1; 1− U (u) + ��(f−1(u)))∧ inf
u∈P(Y )

min(1; 1− U (u) + c��(f−1(u)))

= inf
u∈P(Y )

min(1; (1− U (u) + ��(f−1(u)))∧ (1− U (u) + c��(f−1(u))))

= inf
u∈P(Y )

min(1; 1− U (u) + (��(f−1(u)))∧ c��(f−1(u)))

= inf
u∈P(Y )

min(1; 1− U (u) + �(f−1(u)))=C(f):

Theorem 7.4. Let (X; �); (Y; U ) be two fuzzifying topological spaces and let f∈Y x. Then;
(1) if [��(f−1(u))]= 1 for each u∈P(Y ); then

|= �C(f)→ (c�C(f)↔C(f));

(2) if [c��(f−1(u))] = 1 for each u∈P(Y ); then

|= c�C(f)→ (�C(f)↔C(f)):

Proof. (1) Since [��(f−1(u))]= 1 and so [f−1(u)⊆ (f−1(u))◦−◦] = 1; then [f−1(u)∩ (f−1(u))◦−◦

⊆ (f−1(u))◦] = [f−1(u)⊆ (f−1(u))◦]. Thus,

c�C(f) = inf
u∈P(Y )

min(1; 1− U (u) + c��(f−1(u)))

= inf
u∈P(Y )

min(1; 1− U (u) + [f−1(u)∩ (f−1(u))◦−◦ ⊆ (f−1(u))◦])

= inf
u∈P(Y )

min(1; 1− U (u) + [f−1(u)⊆ (f−1(u))◦])

= inf
u∈P(Y )

min(1; 1− U (u) + �(f−1(u)))=C(f):
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(2) Since [c��(f−1(u))]= 1 one can deduce that (f−1(u))◦−◦=(f−1(u))◦: So,

�C(f) = inf
u∈P(Y )

min(1; 1− U (u) + ��(f−1(u)))

= inf
u∈P(Y )

min(1; 1− U (u) + [f−1(u)⊆ (f−1(u)))◦−◦])

= inf
u∈P(Y )

min(1; 1− U (u) + [f−1(u)⊆ (f−1(u)))◦])

= inf
u∈P(Y )

min(1; 1− U (u) + �(f−1(u)))=C(f):

Theorem 7.5. Let (X; �); (Y; U ); (Z; V ) be three fuzzifying topological spaces. For any f∈YX ; g∈ZY ;
(1) |= �C(f)→ (C(g)→ �C(g ◦f));
(2) |= C(g)→ (�C(f)→ �C(g ◦f));
(3) |= c�C(f)→ (C(g)→ c�C(g ◦f));
(4) |= C(g)→ (c�C(f)→ c�C(g ◦f)):

Proof. (1) We need to prove that [�C(f)]6[C(g)→ �C(g ◦f)]. If [C(g)]6[�C(g ◦f)], the result holds, if
[c(g)]¿[�C(g ◦f)], then

[C(g)]− [�C(g ◦f)] = inf
�∈P(Z)

min(1; 1− V (�) + U (g−1(�)))

− inf
�∈P(Z)

min(1; 1− V (�) + ��((g ◦f)−1(�)))

6 sup
�∈P(Z)

(U (g−1(�))− ��((g ◦f)−1(�)))

6 sup
u∈P(Y )

(U (u)− ��(f−1(u))):

Therefore,

[C(g)→ �C(g ◦f)] = min(1; 1− [C(g)] + [�C(g ◦f)])
¿ inf

u∈P(Y )
min(1; 1− U (u) + ��(f−1(u)))= �C(f):

(2)

[C(g)→ (�C(f)→ �C(g ◦f))] = [@(C(g)∧:@(�C(f)→ �C(g ◦f)))]
= [@(C(g)∧:@@(�C(f)∧:@(�C(g ◦ f))))]
= [@(C(g)∧: �C(f)∧:@(�C(g ◦f)))]
= [@(�C(f)∧: C(g)∧:@�C(g ◦f))]
= [@(�C(f)∧:@@(C(g)∧:@(�C(g ◦f))))]
= [@(�C(f)∧:@(C(g)→ �C(g ◦f)))]
= [�C(f)→ (C(g)→ �C(g ◦f))]= 1:

The proofs of (3) and (4) are similar to (1) and (2), respectively.
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