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Abstract. In this paper, we introduce topological notions defined by means of β-open sets when these

are planted into the framework of Ying’s fuzzifying topological spaces (by  Lukasiewicz logic in [0, 1]).

We introduce T β0 −, T
β
1 −, T

β
2 − (β- Hausdorff)-, T β3 (β-regular)- and T β4 (β-normal)-separation axioms.

Furthermore, the Rβ0− and Rβ1− separation axioms are studied and their relations with the T β1 − and

T β2 − separation axioms are introduced. Moreover, we clarify the relations of these axioms with each

other as well as the relations with other fuzzifying separation axioms.
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1. Introduction and Preliminaries

In the last few years fuzzy topology, as an important research field in fuzzy set theory,

has been developed into a quite mature discipline [7-9, 13-14, 23]. In contrast to classical

topology, fuzzy topology is endowed with richer structure, to a certain extent, which is

manifested with different ways to generalize certain classical concepts. So far, according

to Ref. [8], the kind of topologies defined by Chang [4] and Goguen [5] is called the

topologies of fuzzy subsets, and further is naturally called L-topological spaces if a lattice

L of membership values has been chosen. Loosely speaking, a topology of fuzzy subsets
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(resp. an L-topological space) is a family τ of fuzzy subsets (resp. L-fuzzy subsets) of

nonempty set X, and τ satisfies the basic conditions of classical topologies [11]. On the

other hand, Höhle in [6] proposed the terminology L-fuzzy topology to be an L-valued

mapping on the traditional powerset P (X) of X. The authors in [10, 23] defined an L-fuzzy

topology to be an L-valued mapping on the L-powerset LX of X.

In 1952, Rosser and Turquette [20] proposed emphatically the following problem: If

there are many-valued theories beyond the level of predicates calculus, then what are the

detail of such theories ? As an attempt to give a partial answer to this problem in the

case of point set topology, Ying in 1991 [24-25] used a semantical method of continuous-

valued logic to develop systematically fuzzifying topology. Briefly speaking, a fuzzifying

topology on a set X assigns each crisp subset of X to a certain degree of being open,

other than being definitely open or not. In fact, fuzzifying topologies are a special case

of the L-fuzzy topologies in [10, 19] since all the t-norms on I are included as a special

class of tensor products in these paper. Ying uses one particular tensor product, namely

 Lukasiewicz conjunction. Thus his fuzzifying topologies are a special class of all the I-

fuzzy topologies considered in the categorical frameworks [10, 19]. Roughly speaking, the

semantical analysis approach transforms formal statements of interest, which are usually

expressed as implication formulas in logical language, into some inequalities in the truth

value set by truth valuation rules, and then these inequalities are demonstrated in an

algebraic way and the semantic validity of conclusions is thus established. So far, there

has been significant research on fuzzifying topologies [1-12, 17-18, 21]. For example, Shen

[21] introduced and studied T0−, T1−, T2 (Hausdorff)-, T3(regular)- and T4(normal)-

separation axioms in fuzzifying topology. In [12], the concepts of the R0− and R1−

separation axioms in fuzzifying topology were added and their relations with the T1− and

T2− separation axioms, were studied. Also, in [1] the concepts of fuzzifying β-open set and

fuzzifying β-continuity were introduced and studied. In classical topology , β-separation

axioms have been studied in [2, 15-16, 22]. As well as, they have been studied in fuzzy

topology in [3]. In the present paper, we explore the problem proposed by Rosser and

Turquette [20] in fuzzy β-separation axioms.
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A basic structure of the paper is as follows. First, we offer some definitions and results

which will be needed in this paper. Afterwards, in Section 2, in the framework of fuzzifying

topology, the concept of β-separation axioms T β0 −, T β1 −, T β2 (β-Hausdorff)-, T β3 (β-

regular)- and T β4 (β-normal) are discussed. In Section 3, on the bases of fuzzifying topology

the Rβ
0− and Rβ

1− separation axioms are introduced and their relations with the T β1 − and

T β2 − separation axioms are studied. Furthermore , we give the relations of these axioms

with each other as well as the relations with other fuzzifying separation axioms. Finally,

in a conclusion, we summarize the main results obtained and raise some related problems

for further study. Thus we fill a gap in the existing literature on fuzzifying topology. We

will use the terminologies and notations in [1, 12, 21, 24, 25] without any explanation. We

will use the symbol ⊗ instead of the second ”AND” operation ∧
·

as dot is hardly visible.

This mean that [β] ≤ [ϕ→ ψ]⇔ [β]⊗ [ϕ] ≤ [ψ].

A fuzzifying topology on a set X [6, 24] is a mapping τ ∈ =(P (X)) such that:

(1) τ(X) = 1, τ(φ) = 1;

(2) for any A,B, τ(A ∩B) ≥ τ(A) ∧ τ(B);

(3) for any {Aλ : λ ∈ Λ}, τ
( ⋃
λ∈Λ

Aλ

)
≥
∧
λ∈Λ

τ (Aλ) .

The family of all fuzzifying β-open sets [1], denoted by τβ ∈ =(P (X)), is defined as

A ∈ τβ := ∀x(x ∈ A→ x ∈ Cl(Int(Cl(A)))), i. e., τβ(A) =
∧
x∈A

Cl(Int(Cl(A)))(x)

The family of all fuzzifying β-closed sets [1], denoted by zβ ∈ =(P (X)), is defined as

A ∈ zβ := X − A ∈ τβ. The fuzzifying β-neighborhood system of a point x ∈ X [1] is

denoted by Nβ
x ∈ =(P (X)) and defined as Nβ

x (A) =
∨

x∈B⊆A
τβ(B).The fuzzifying β-closure

of a set A ⊆ X [1], denoted by Clβ ∈ =(X), is defined as Clβ(A)(x) = 1−Nβ
x (X − A).

Let (X, τ) be a fuzzifying topological space. The binary fuzzy predicates K,H,M ∈

=(X ×X), V ∈ =(X × P (X)) and W ∈ =(P (X)× P (X)) [12] are defined as follows:

(1) K(x, y) := ∃A((A ∈ Nx ∧ y /∈ A) ∨ (A ∈ Ny ∧ x /∈ A));

(2) H(x, y) := ∃B∃C((B ∈ Nx ∧ y /∈ B) ∧ (C ∈ Ny ∧ x /∈ C));

(3) M(x, y) := ∃B∃C(B ∈ Nx ∧ C ∈ Ny ∧B ∩ C ≡ ∅);

(4) V (x,D) := ∃A∃B(A ∈ Nx ∧B ∈ τ ∧D ⊆ B ∧ A ∩B ≡ ∅);
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(5) W (A,B) := ∃G∃H(G ∈ τ ∧H ∈ τ ∧ A ⊆ G ∧B ⊆ H ∧G ∩H ≡ ∅).

Let Ω be the class of all fuzzifying topological spaces. The unary fuzzy predicates Ti ∈

=(Ω), i = 0, 1, 2, 3, 4 [21] (see the rewritten form in [12]) and Ri ∈ =(Ω), i = 0, 1 [12] are

defined as follows:

(1) (X, τ) ∈ T0 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ K(x, y);

(2) (X, τ) ∈ T1 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ H(x, y);

(3) (X, τ) ∈ T2 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→M(x, y);

(4) (X, τ) ∈ T3 := ∀x∀D(x ∈ X ∧D ∈ F ∧ x /∈ D) −→ V (x,D);

(5) (X, τ) ∈ T4 := ∀A∀B(A ∈ F ∧B ∈ F ∧ A ∩B = ∅) −→ W (A,B);

(6) (X, τ) ∈ R0 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ (K(x, y) −→ H(x, y));

(7) (X, τ) ∈ R1 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ (K(x, y) −→M(x, y)).

2. Fuzzifying β- separation axioms and their equivalents

For simplicity we give the following definition.

Definition 2.1. Let (X, τ) be a fuzzifying topological space. The binary fuzzy predicates

Kβ, Hβ,Mβ ∈ =(X × X), V β ∈ =(X × P (X)) and W β ∈ =(P (X) × P (X)) are defined

as follows:

(1) Kβ(x, y) := ∃A((A ∈ Nβ
x ∧ y /∈ A) ∨ (A ∈ Nβ

y ∧ x /∈ A));

(2) Hβ(x, y) := ∃B∃C((B ∈ Nβ
x ∧ y /∈ B) ∧ (C ∈ Nβ

y ∧ x /∈ C));

(3) Mβ(x, y) := ∃B∃C(B ∈ Nβ
x ∧ C ∈ Nβ

y ∧B ∩ C ≡ ∅);

(4) V β(x,D) := ∃A∃B(A ∈ Nβ
x ∧B ∈ τβ ∧D ⊆ B ∧ A ∩B ≡ ∅);

(5) W β(A,B) := ∃G∃H(G ∈ τβ ∧H ∈ τβ ∧ A ⊆ G ∧B ⊆ H ∧G ∩H ≡ ∅).

Definition 2.2. Let Ω be the class of all fuzzifying topological spaces. The unary fuzzy

predicates T βi ∈ =(Ω), i = 0, 1, 2, 3, 4 and Rβ
i ∈ =(Ω), i = 0, 1 are defined as follows:

(1) (X, τ) ∈ T β0 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ Kβ(x, y);

(2) (X, τ) ∈ T β1 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ Hβ(x, y);

(3) (X, τ) ∈ T β2 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→Mβ(x, y);

(4) (X, τ) ∈ T β3 := ∀x∀D(x ∈ X ∧D ∈ F ∧ x /∈ D) −→ V β(x,D);

(5) (X, τ) ∈ T β4 := ∀A∀B(A ∈ F ∧B ∈ F ∧ A ∩B = ∅) −→ W β(A,B);



β- SEPARATION AXIOMS BASED ON  LUKASIEWICZ LOGIC 5

(6) (X, τ) ∈ T β
′

3 := ∀x∀D(x ∈ X ∧D ∈ Fβ ∧ x /∈ D) −→ V (x,D);

(7) (X, τ) ∈ T β
′

4 := ∀A∀B(A ∈ Fβ ∧B ∈ Fβ ∧ A ∩B = ∅) −→ W (A,B);

(8) (X, τ) ∈ Rβ
0 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ (Kβ(x, y) −→ Hβ(x, y));

(9) (X, τ) ∈ Rβ
1 := ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y) −→ (Kβ(x, y) −→Mβ(x, y)).

Theorem 2.3.

Let (X, τ) be a fuzzifying topological space. Then we have

|= (X, τ) ∈ T β0 ←→ ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y −→ (¬(x ∈ Clβ({y})) ∨ ¬(y ∈

Clβ({x})))).

Proof. Since for any x,A,B, |= A ⊆ B → (A ∈ Nβ
x → B ∈ Nβ

x ) (see [1, Theorem 4.2

(2)]), then we have

[(X, τ) ∈ T β0 ] =
∧
x 6=y

max(
∨
y/∈A

Nβ
x (A),

∨
x/∈A

Nβ
y (A))

=
∧
x 6=y

max(Nβ
x (X − {y}), Nβ

y (X − {x}))

=
∧
x 6=y

max(1− Clβ({y})(x), 1− Clβ({x})(y))

=
∧
x 6=y

(¬(Clβ({y})(x)) ∨ ¬(Clβ({x})(y)))

= [∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y −→ (¬(x ∈ Clβ({y})) ∨ ¬(y ∈ Clβ({x}))))].

Theorem 2.4.

For any fuzzifying topological space (X, τ) we have

|= ∀x({x} ∈ Fβ)↔ (X, τ) ∈ T β1 .

Proof. Since τβ(A) =
∧
x∈A

Nβ
x (A) (Corollary 4.1 in [1]), then for any x1, x2 with x1 6= x2,

we have

[∀x({x} ∈ Fβ)] =
∧
x∈X

Fβ({x}) =
∧
x∈X

τβ(X − {x}) ≤
∧
x∈X

∧
y∈X−{x}

Nβ
y (X − {x})

≤
∧

y∈X−{x2}

Nβ
y (X − {x2}) ≤ Nβ

x1
(X − {x2}) =

∨
x2 /∈A

Nβ
x1

(A).
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Similarly, we have, [∀x({x} ∈ Fβ)] ≤
∨

x1 /∈B
Nβ
x2

(B). Then

[∀x({x} ∈ Fβ)] ≤
∧

x1 6=x2

min(
∨
x2 /∈A

Nβ
x1

(A),
∨
x1 /∈B

Nβ
x2

(B))

=
∧

x1 6=x2

∨
x1 /∈B, x2 /∈A

min(Nβ
x1

(A), Nβ
x2

(B))

= [(X, τ) ∈ T β1 ].

On the other hand

[(X, τ) ∈ T β1 ] =
∧

x1 6=x2

min(
∨
x2 /∈A

Nβ
x1

(A),
∨
x1 /∈B

Nβ
x2

(B))

=
∧

x1 6=x2

min(Nβ
x1

(X − {x2}), Nβ
x2

(X − {x1}))

≤
∧

x1 6=x2

Nβ
x1

(X − {x2}) =
∧
x2∈X

∧
x1∈X−{x2}

Nβ
x1

(X − {x2})

=
∧
x2∈X

τβ(X − {x2}) =
∧
x∈X

τβ(X − {x})

= [∀x({x} ∈ Fβ)].

Therefore [∀x({x} ∈ Fβ)] = [(X, τ) ∈ T β1 ].

Definition 2.5.

Let (X, τ) be a fuzzifying topological space. The fuzzifying β-derived set Dβ(A) of A

is defined as follows: x ∈ Dβ(A) := ∀B(B ∈ Nβ
x → B ∩ (A− {x}) 6= φ).

Lemma 2.6.

Dβ(A)(x) = 1−Nβ
x ((X − A) ∪ {x}).

Proof.

From Theorem 4.2 (2) [1] we have Dβ(A)(x) = 1−
∨

B∩(A−{x})=φ
Nβ
x (B) = 1−Nβ

x ((X −

A) ∪ {x}).

Theorem 2.7.

For any finite set A ⊆ X, |= T β1 (X, τ)→ Dβ(A) ≡ φ.

Proof.
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From Theorem 4.2 (2) [1] we have∧
y∈X−A

Nβ
y ((X − A) ∪ {y}) ≥

∧
y∈X−A

Nβ
y (X − A) =

∧
y∈X−A

Nβ
y (
⋂
x∈A

(X − {x})

≥
∧

y∈X−A

∧
x∈A

Nβ
y (X − {x}) ≥

∧
x 6=y

Nβ
y (X − {x}).

Also∧
y∈A

Nβ
y ((X − A) ∪ {y}) =

∧
y∈A

Nβ
y (X − (A− {y})) =

∧
y∈A

Nβ
y (

⋂
x∈A−{y}

(X − {x})

≥
∧
y∈A

∧
x∈A−{y}

Nβ
y (X − {x}) ≥

∧
x6=y

Nβ
y (X − {x}).

Therefore

[Dβ(A) ≡ φ] =
∧
x∈X

Nβ
x ((X − A) ∪ {x})

= min(
∧

y∈X−A

Nβ
y ((X − A) ∪ {y}),

∧
y∈A

Nβ
y ((X − A) ∪ {y}))

≥
∧
x 6=y

Nβ
y (X − {x}) =

∧
x∈X

∧
x∈X−{y}

Nβ
y (X − {x})

=
∧
x∈X

τβ(X − {x}) =
∧
x∈X

Fβ({x}) = T β1 (X, τ).

Definition 2.8.

The fuzzifying β-local basis ββx of x is a function from P (X) into I = [0, 1] satisfying

the following conditions:

(1) |= ββx ⊆ Nβ
x , and (2) |= A ∈ Nβ

x −→ ∃B(B ∈ ββx ∧ x ∈ B ⊆ A).

Lemma 2.9.

|= A ∈ Nβ
x ←→ ∃B(B ∈ ββx ∧ x ∈ B ⊆ A).

Proof.

From condition (1) in Definition 2.8 and Theorem 4.2 (2) in [1] we have Nβ
x (A) ≥

Nβ
x (B) ≥ ββx (B) for each B ∈ P (X) such that x ∈ B ⊆ A. So Nβ

x (A) ≥
∨

x∈B⊆A
ββx (B).

From condition (2) in Definition 2.8 we have Nβ
x (A) ≤

∨
x∈B⊆A

ββx (B). Hence Nβ
x (A) =∨

x∈B⊆A
ββx (B).
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Theorem 2.10.

If ββx is a fuzzifying β-local basis of x, then

|= (X, τ) ∈ T β1 ←→ ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y −→ ∃A(A ∈ ββx ∧ y /∈ A)).

Proof. For any x, y with x 6= y,
∨
y/∈A

ββx (A) ≤
∨
y/∈A

Nβ
x (A),

∨
x/∈B

ββy (B) ≤
∨
x/∈B

Nβ
y (B). So

min(
∨
y/∈A

ββx (A),
∨
x/∈B

ββy (B)) ≤ min(
∨
y/∈A

Nβ
x (A),

∨
x/∈B

Nβ
y (B)) =

∨
y/∈A,x/∈B

min(Nβ
x (A), Nβ

y (B)),

i.e.,
∧
x 6=y

∨
y/∈A

ββx (A) ≤
∧
x 6=y

∨
y/∈A,x/∈B

min(Nβ
x (A), Nβ

y (B)) = [(X, τ) ∈ T β1 ]. On the other

hand, for any B with x ∈ B ⊆ X−{y} we have y /∈ B. So
∨
y/∈A

ββx (A) ≥ ββx (B). According

to Definition 2.4 we have
∨
y/∈A

ββx (A) ≥
∨

x∈B⊆X−{y}
ββx (B) = Nβ

x (X−{y}). Furthermore, from

Corollary 4.1 [1] we have
∧
x 6=y

∨
y/∈A

ββx (A) ≥
∧
x 6=y

Nx(X −{y}) =
∧
y∈X

∧
x∈X−{y}

Nx(X −{y}) =∧
y∈X

τβ(X − {y}) =
∧
y∈X

Fβ({y}) = [(X, τ) ∈ T β1 ].

Theorem 2.11.

If ββx is a fuzzifying β-local basis of x, then

|= (X, τ) ∈ T β2 ←→ ∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y −→ ∃B(B ∈ ββx ∧ y ∈ ¬(Clβ(B)))).

Proof.

[∀x∀y(x ∈ X ∧ y ∈ X ∧ x 6= y −→ ∃B(B ∈ ββx ∧ y ∈ ¬(Clβ(B))))]

=
∧
x 6=y

∨
B∈P (X)

min(ββx (B),¬(1−Nβ
y (X −B)))

=
∧
x 6=y

∨
B∈P (X)

min(ββx (B), Nβ
y (X −B))

=
∧
x 6=y

∨
B∈P (X)

∨
y∈C⊆X−B

min(ββx (B), ββy (C))

=
∧
x 6=y

∨
B∩C=∅

∨
x∈D⊆B, y∈E⊆C

min(ββx (D), ββy (E))

=
∧
x 6=y

∨
B∩C=∅

min(
∨

x∈D⊆B

ββx (D),
∨

y∈E⊆C

ββy (E))

=
∧
x 6=y

∨
B∩C=∅

min(Nβ
x (B), Nβ

y (C)) = [(X, τ) ∈ T β2 ].

Definition 2.12.
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The binary fuzzy predicate Bβ ∈ =(N(X)×X), is defined as SBβx := ∀A(A ∈ Nβ
x −→

S ⊂∼ A), where N(X) is the set of all nets of X, [S Bβ x] stands for the degree to which S

β-converges to x and ” ⊂∼ ” is the binary crisp predicates ”almost in ”.

Theorem 2.13.

Let (X, τ) be a fuzzifying topological space and S ∈ N(X).

|= (X, τ) ∈ T β2 ←→ ∀S∀x∀y((S ⊆ X)∧(x ∈ X)∧(y ∈ X)∧(SBβx)∧(SBβy) −→ x = y).

Proof.

[(X, τ) ∈ T β2 ] =
∧
x 6=y

∨
A∩B=∅

(Nβ
x (A) ∧Nβ

y (B)),

[∀S∀x∀y((S ⊆ X) ∧ (x ∈ X) ∧ (y ∈ X) ∧ (S Bβ x) ∧ (S Bβ y) −→ x = y)]

=
∧
x 6=y

∧
S⊆X

(
∨

S ⊂∼ A

Nβ
x (A) ∨

∨
S ⊂∼ B

Nβ
y (B)) =

∧
x 6=y

∧
S⊆X

∨
S ⊂∼ A

∨
S ⊂∼ B

(Nβ
x (A) ∨Nβ

y (B)).

(1) If A ∩ B = ∅, then for any S ∈ N(X), we have S ⊂∼ A or S ⊂∼ B. Therefore, we

obtain Nβ
x (A) ∧Nβ

y (B) ≤
∨

S ⊂∼ A

Nβ
x (A) or Nβ

x (A) ∧Nβ
y (B) ≤

∨
S ⊂∼ B

Nβ
x (B).

Consequently,
∨

A∩B=∅
(Nβ

x (A) ∧Nβ
y (B)) ≤

∧
S⊆X

(
∨

S ⊂∼ A

Nβ
x (A) ∨

∨
S ⊂∼ B

Nβ
y (B)), and

[(X, τ) ∈ T β2 ] ≤ [∀S∀x∀y((S ⊆ X) ∧ (x ∈ X) ∧ (y ∈ X) ∧ (S Bβ x) ∧ (S Bβ y)→ x = y)].

(2) First, for any x, y with x 6= y, if
∨

A∩B=∅
(Nβ

x (A) ∧ Nβ
y (B)) < t, then Nβ

x (A) < t

or Nβ
y (B) < t provided A ∩ B = ∅, i.e., A ∩ B 6= ∅ when A ∈ (Nβ

x )t and B ∈ (Nβ
y )t.

Now, set a net S∗ : (Nβ
x )t × (Nβ

y )t −→ X, (A,B) 7−→ x(A,B) ∈ A ∩ B. Then for any

A ∈ (Nβ
x )t, B ∈ (Nβ

y )t, we have S∗⊂∼ A and S∗⊂∼ B. Therefore, if S∗⊂∼ A and S∗⊂∼ B, then

A /∈ (Nβ
x )t, B /∈ (Nβ

y )t, i.e., Nβ
x (A) ∨ Nβ

y (B)) < t. Consequently
∨

S∗⊂∼ A

∨
S∗⊂∼ B

(Nβ
x (A) ∨

Nβ
y (B)) ≤ t. Moreover

∧
S⊆X

∨
S ⊂∼ A

∨
S ⊂∼ B

(Nβ
x (A) ∨Nβ

y (B)) ≤ t.

Second, for any positive integer i, there exists xi, yi with xi 6= yi, and

∨
A∩B=∅

(Nβ
xi

(A) ∧Nβ
yi

(B)) < [(X, τ) ∈ T β2 ] + 1/i,

and hence

∧
S⊆X

∨
S ⊂∼ A

∨
S ⊂∼ B

(Nβ
xi

(A) ∨Nβ
yi

(B)) < [(X, τ) ∈ T β2 ] + 1/i.
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So we have

[∀S∀x∀y((S ⊆ X) ∧ (x ∈ X) ∧ (y ∈ X) ∧ (S Bβ x) ∧ (S Bβ y) −→ x = y)]

=
∧
x 6=y

∧
S⊆X

∨
S ⊂∼ A

∨
S ⊂∼ B

(Nβ
x (A) ∨Nβ

y (B)) ≤ [(X, τ) ∈ T β2 ].

Lemma 2.14.

Let (X, τ) be a fuzzifying topological space.

(1) If D ⊆ B, then
∨

A∩B=∅
Nβ
x (A) =

∨
A∩B=∅, D⊆B

Nβ
x (A),

(2)
∨

A∩B=∅

∧
y∈D

Nβ
y (X − A) =

∨
A∩B=∅, D⊆B

τβ(B).

Proof.

(1) Since D ⊆ B then

∨
A∩B=∅

Nβ
x (A) =

∨
A∩B=∅

Nβ
x (A) ∧ [D ⊆ B] =

∨
A∩B=∅, D⊆B

Nβ
x (A).

(2) Let y ∈ D and A ∩B = ∅. Then

∨
A∩B=∅, D⊆B

τβ(B) =
∨

A∩B=∅, D⊆B

τβ(B) ∧ [y ∈ D]

=
∨

y∈D⊆B⊆X−A

τβ(B) =
∨

y∈B⊆X−A

τβ(B)

= Nβ
y (X − A) =

∧
y∈D

Nβ
y (X − A)

=
∨

A∩B=∅

∧
y∈D

Nβ
y (X − A). �

Definition 2.15.

Let (X, τ) be a fuzzifying topological space.

βT
(1)
3 (X, τ) := ∀x∀D(x ∈ X ∧D ∈ F ∧ x /∈ D −→ ∃A(A ∈ Nβ

x ∧ (D ⊆ X −Clβ(A)))).

Theorem 2.16.

|= (X, τ) ∈ T β3 ←→ (X, τ) ∈ βT (1)
3 .

Proof.
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βT
(1)
3 (X, τ) =

∧
x/∈D

min(1, 1− τ(X −D) +
∨

A∈P (X)

min(Nβ
x (A),

∧
y∈D

(1− Clβ(A)(y))))

=
∧
x/∈D

min(1, 1− τ(X −D) +
∨

A∈P (X)

min(Nβ
x (A),

∧
y∈D

Nβ
y (X − A)))

and T β3 (X, τ) =
∧
x/∈D

min(1, 1−τ(X−D)+
∨

A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B))).

So, the result holds if we prove that∨
A∈P (X)

min(Nβ
x (A),

∧
y∈D

Nβ
y (X − A)) =

∨
A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B)) (∗)

It is clear that, on the left-hand side of (∗) in the case of A ∩D 6= ∅ there exists y ∈ X

such that y ∈ D and y /∈ X − A. So,
∧
y∈D

Nβ
y (X − A) = 0 and thus (∗) becomes

∨
A∈P (X), A∩B=∅

min(Nβ
x (A),

∧
y∈D

Nβ
y (X − A)) =

∨
A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B)),

which is obtained from Lemma 2.14.

Definition 2.17.

Let (X, τ) be a fuzzifying topological space.

βT
(2)
3 (X, τ) := ∀x∀B(x ∈ B ∧B ∈ τ −→ ∃A(A ∈ Nβ

x ∧ Clβ(A) ⊆ B)).

Theorem 2.18.

|= (X, τ) ∈ T β3 ←→ (X, τ) ∈ βT (2)
3 .

Proof. From Theorem 2.16 we have

T β3 (X, τ) =
∧
x/∈D

min(1, 1− τ(X −D) +
∨

A∈P (X)

min(Nβ
x (A),

∧
y∈D

Nβ
y (X − A))).

Now,

βT
(2)
3 (X, τ) =

∧
x∈B

min(1, 1− τ(B) +
∨

A∈P (X)

min(Nβ
x (A),

∧
y∈X−B

(1− Clβ(A)(y))))

=
∧
x∈B

min(1, 1− τ(B) +
∨

A∈P (X)

min(Nβ
x (A),

∧
y∈X−B

(1− (1−Nβ
y (X − A)))))

=
∧
x∈B

min(1, 1− τ(B) +
∨

A∈P (X)

min(Nβ
x (A),

∧
y∈X−B

Nβ
y (X − A))).
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Put B = X −D we have

βT
(2)
3 (X, τ) =

∧
x/∈D

min(1, 1− τ(X −D) +
∨

A∈P (X)

min(Nβ
x (A),

∧
y∈D

Nβ
y (X − A)))

= T β3 (X, τ).

Definition 2.19.

Let ϕ be a subbase of τ then

βT
(3)
3 (X, τ) := ∀x∀D(x ∈ D ∧D ∈ ϕ −→ ∃B(B ∈ Nβ

x ∧ Clβ(B) ⊆ D)).

Theorem 2.20.

|= (X, τ) ∈ T β3 ←→ (X, τ) ∈ βT (3)
3 .

Proof.Since [ϕ ⊆ τ ] = 1, then from Theorems 2.16 we have

βT
(3)
3 (X, τ) ≥ βT

(2)
3 (X, τ) = T β3 (X, τ).

So, it suffices to prove that βT
(3)
3 (X, τ) ≤ βT

(2)
3 (X, τ) and this is obtained if we prove for

any x ∈ A,

min(1, 1− τ(A) +
∨

B∈P (X)

min(Nβ
x (B),

∧
y∈X−A

Nβ
y (X −B))) ≥ βT

(3)
3 (X, τ).

Set βT
(3)
3 (X, τ) = δ. Then for any x ∈ X and any Dλi ∈ P (X), x ∈ Dλi , λi ∈ Iλ (Iλ

denotes a finite index set), λ ∈ Λ,
⋃
λ∈Λ

⋂
λi∈Iλ

Dλi = A we have

1− ϕ(Dλi) +
∨

B∈P (X)

min(Nβ
x (B),

∧
y∈X−Dλi

Nβ
y (X −B)) ≥ δ > δ − ε,

where ε is any positive number. Thus

∨
B∈P (X)

min(Nβ
x (B),

∧
y∈X−Dλi

Nβ
y (X −B)) > ϕ(Dλi)− 1 + δ − ε.
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Set γλi = {B : B ⊆ Dλi}. From the completely distributive law we have

∧
λi∈Iλ

∨
B∈P (X)

min(Nβ
x (B) ,

∧
y∈X−Dλi

Nβ
y (X −B))

=
∨

f∈Π{γλi :λi∈Iλ}

∧
λi∈Iλ

min(Nβ
x (f(λi)),

∧
y∈X−Dλi

Nβ
y (X − f(λi)))

=
∨

f∈Π{γλi :λi∈Iλ}

min(
∧
λi∈Iλ

Nβ
x (f(λi)),

∧
λi∈Iλ

∧
y∈X−Dλi

Nβ
y (X − f(λi)))

=
∨

f∈Π{γλi :λi∈Iλ}

min(
∧
λi∈Iλ

Nβ
x (f(λi)),

∧
y∈ ∪

λi∈Iλ
X−Dλi

Nβ
y (X − f(λi)))

=
∨

B∈P (X)

min(
∧
λi∈Iλ

Nβ
x (B),

∧
y∈ ∪

λi∈Iλ
X−Dλi

Nβ
y (X −B))

=
∨

B∈P (X)

min(Nβ
x (B),

∧
y∈ ∪

λi∈Iλ
X−Dλi

Nβ
y (X −B)),

where B = f(λi).

Similarly, we can prove

∧
λ∈Λ

∨
B∈P (X)

min(Nβ
x (B),

∧
y∈ ∪

λi∈Iλ
X−Dλi

Nβ
y (X −B)) =

∨
B∈P (X)

min(Nβ
x (B),

∧
y∈ ∪

λ∈Λ
∪

λi∈Iλ
X−Dλi

Nβ
y (X −B))

≤
∨

B∈P (X)

min(Nβ
x (B),

∧
y∈ ∩

λ∈Λ
∪

λi∈Iλ
X−Dλi

Nβ
y (X −B))

≤
∨

B∈P (X)

min(Nβ
x (B),

∧
y∈X−A

Nβ
y (X −B)),

so we have

∨
B∈P (X)

min(Nβ
x (B),

∧
y∈X−A

Nβ
y (X −B)) ≥

∧
λ∈Λ

∧
λi∈Iλ

∨
B∈P (X)

min(Nβ
x (B),

∧
y∈X−Dλi

Nβ
y (X −B))

≥
∧
λ∈Λ

∧
λi∈Iλ

ϕ(Dλi)− 1 + δ − ε.

For any Iλ and Λ that satisfy
⋃
λ∈Λ

⋂
λi∈Iλ

Dλi = A the above inequality is true. So,

∨
B∈P (X)

min(Nβ
x (B),

∧
y∈X−A

Nβ
y (X −B)) ≥

∨
∪λ∈ΛDλ=A

∧
λ∈Λ

∨
∩λi∈IλDλi=Dλ

∧
λi∈Iλ

ϕ(Dλi)− 1 + δ − ε

= τ(A)− 1 + δ − ε.
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i.e., min(1, 1−τ(A)+
∨

B∈P (X)

min(Nβ
x (B),

∧
y∈X−A

Nβ
y (X−B))) ≥ δ−ε.

Because ε is any arbitrary positive number, when ε −→ 0 we have

βT
(2)
3 (X, τ) ≥ δ = βT

(3)
3 (X, τ). So, |= (X, τ) ∈ T β3 ←→ (X, τ) ∈ βT (3)

3 .

Definition 2.21.

Let (X, τ) be any fuzzifying topological space.

(1) β′T
(1)
3 (X, τ) := ∀x∀D(x ∈ X ∧D ∈ Fβ ∧x /∈ D −→ ∃A(A ∈ Nx∧ (D ⊆ X−Cl(A))));

(2) β′T
(2)
3 (X, τ) := ∀x∀B(x ∈ B ∧B ∈ τβ −→ ∃A(A ∈ Nx ∧ Cl(A) ⊆ B));

(3) βT
(1)
4 (X, τ) := ∀A∀B(A ∈ τ∧B ∈ F ∧A∩B ≡ ∅ → ∃G(G ∈ τ∧A ⊆ G∧Clβ(G)∩B ≡

φ));

(4) βT
(2)
4 (X, τ) := ∀A∀B(A ∈ F ∧B ∈ τ ∧A ⊆ B → ∃G(G ∈ τ ∧A ⊆ G∧Clβ(G) ⊆ B));

(5) β′T
(1)
4 (X, τ) := ∀A∀B(A ∈ τ∧B ∈ Fβ∧A∩B ≡ ∅ → ∃G(G ∈ τ∧A ⊆ G∧Cl(G)∩B ≡

φ));

(6) β′T
(2)
4 (X, τ) := ∀A∀B(A ∈ F ∧B ∈ τβ ∧A ⊆ B → ∃G(G ∈ τ ∧A ⊆ G∧Cl(G) ⊆ B)).

By a similar proof of Theorem 2.16 and 2.18 we have the following theorem.

Theorem 2.22.

Let (X, τ) be a fuzzifying topological space.

(1) |= (X, τ) ∈ T β
′

3 ←→ (X, τ) ∈ β′T (i)
3 ;

(2) |= (X, τ) ∈ T β4 ←→ (X, τ) ∈ βT (i)
4 ;

(3) |= (X, τ) ∈ T β
′

4 ←→ (X, τ) ∈ β′T (i)
4 , where i = 1, 2.

3. Relation among fuzzifying separation axioms

Lemma 3.1.

(1) |= K(x, y)→ Kβ(x, y),

(2) |= H(x, y)→ Hβ(x, y),

(3) |= M(x, y)→Mβ(x, y),

(4) |= V (x,D)→ V β(x,D),

(5) |= W (A,B)→ W β(A,B).
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Proof. Since |= τ ⊆ τβ, then Nx(A) ≤ Nβ
x (A) for any A ∈ P (X). Then the proof is

immediate.

Theorem 3.2.

|= (X, τ) ∈ Ti −→ (X, τ) ∈ T βi , where i = 0, 1, 2, 3, 4.

Proof. It is obtained from Lemma 3.1.

Theorem 3.3.

If T0(X, τ) = 1, then

(1) |= (X, τ) ∈ R0 −→ (X, τ) ∈ Rβ
0 ,

(2) |= (X, τ) ∈ R1 −→ (X, τ) ∈ Rβ
1 ,

Proof.Since T0(X, τ) = 1, then for each x, y ∈ X and x 6= y, we have [K(x, y)] = 1 and

so [Kβ(x, y)] = 1.

(1) Using Lemma 3.1 (1) and (2) we obtain

[(X, τ) ∈ R0] =
∧
x 6=y

[K(x, y)→ H(x, y)] ≤
∧
x 6=y

[K(x, y)→ Hβ(x, y)]

≤
∧
x 6=y

[Kβ(x, y)→ Hβ(x, y)] = Rβ
0 (X, τ).

(2) Using Lemma 3.1 (1) and (3) the proof is similar to (1).

Lemma 3.4.

(1) |= Mβ(x, y) −→ Hβ(x, y);

(2) |= Hβ(x, y) −→ Kβ(x, y);

(3) |= Mβ(x, y) −→ Kβ(x, y).

Proof. (1) Since {B,C ∈ P (X) : B ∩C ≡ ∅} ⊆ {B,C ∈ P (X) : y /∈ B and x /∈ C}, then

[Mβ(x, y)] =
∨

B∩C=∅
min(Nβ

x (B), Nβ
y (C)) ≤

∨
y/∈B, x/∈C

min(Nβ
x (B), Nβ

y (C)) = [Hβ(x, y)].

(2) [Kβ(x, y)] = max(
∨
y/∈A

Nβ
x (A),

∨
x/∈A

Nβ
y (A)) ≥

∨
y/∈A

Nβ
x (A) ≥

∨
y/∈A, x/∈B

(Nβ
x (A) ∧Nβ

y (B))

= [Hβ(x, y)].

(3) From (1) and (2) it is obvious.

Theorem 3.5.

Let (X, τ) be a fuzzifying topological space. Then we have

(1) |= (X, τ) ∈ T β1 −→ (X, τ) ∈ T β0 ;
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(2) |= (X, τ) ∈ T β2 −→ (X, τ) ∈ T β1 ;

(3) |= (X, τ) ∈ T β2 −→ (X, τ) ∈ T β0 .

Proof.The proof of (1) and (2) are obtained from Lemma 3.4 (2) and (1), respectively.

(3) From (1) and (2) above the result is obtained.

Theorem 3.6.

|= (X, τ) ∈ Rβ
1 −→ (X, τ) ∈ Rβ

0 .

Proof. From Lemma 3.4 (2), the proof is immediate.

Theorem 3.7.

For any fuzzifying topological space (X, τ) we have

(1) |= (X, τ) ∈ T β1 −→ (X, τ) ∈ Rβ
0 ;

(2) |= (X, τ) ∈ T β1 −→ (X, τ) ∈ Rβ
0 ∧ (X, τ) ∈ T β0 ;

(3) If T β0 (X, τ) = 1, then |= (X, τ) ∈ T β1 ←→ (X, τ) ∈ Rβ
0 ∧ (X, τ) ∈ T β0 .

Proof.

(1) T β1 (X, τ) =
∧
x 6=y[H

β(x, y)] ≤
∧
x 6=y[K

β(x, y) −→ Hβ(x, y)] = Rβ
0 (X, τ).

(2) It is obtained from (1) and from Theorem 3.5 (1).

(3) Since T β0 (X, τ) = 1, for every x, y ∈ X such that x 6= y, then we have [Kβ(x, y)] = 1.

Therefore

[(X, τ) ∈ Rβ
0 ∧ (X, τ) ∈ T β0 ] = [(X, τ) ∈ Rβ

0 ]

=
∧
x 6=y

min(1, 1− [Kβ(x, y)] + [Hβ(x, y)])

=
∧
x 6=y

[Hβ(x, y)] = T β1 (X, τ).

Theorem 3.8.

Let (X, τ) be a fuzzifying topological space.

(1) |= (X, τ) ∈ Rβ
0 ⊗ (X, τ) ∈ T β0 −→ (X, τ) ∈ T β1 , and

(2) If T β0 (X, τ) = 1, then |= (X, τ) ∈ Rβ
0 ⊗ (X, τ) ∈ T β0 ←→ (X, τ) ∈ T β1 .
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Proof.

(1) [(X, τ) ∈ Rβ
0 ⊗ (X, τ) ∈ T β0 ] = max(0, Rβ

0 (X, τ) + T β0 (X, τ)− 1)

= max(0,
∧
x 6=y

min(1, 1− [Kβ(x, y)] + [Hβ(x, y)]) +
∧
x 6=y

[Kβ(x, y)]− 1)

≤ max(0,
∧
x 6=y

{min(1, 1− [Kβ(x, y)] + [Hβ(x, y)]) + [Kβ(x, y)]} − 1)

=
∧
x 6=y

[Hβ(x, y)] = T β1 (X, τ).

(2)[(X, τ) ∈ Rβ
0 ⊗ (X, τ) ∈ T β0 ] = [(X, τ) ∈ Rβ

0 ]

=
∧
x 6=y

min(1, 1− [Kβ(x, y)] + [Hβ(x, y)])

=
∧
x 6=y

[Hβ(x, y)] = T β1 (X, τ),

because T β0 (X, τ) = 1, implies that for each x, y such that x 6= y we have [Kβ(x, y)] = 1.

Theorem 3.9. Let (X, τ) be a fuzzifying topological space.

(1) |= (X, τ) ∈ T β0 −→ ((X, τ) ∈ Rβ
0 −→ (X, τ) ∈ T β1 ), and

(2) |= (X, τ) ∈ Rβ
0 −→ ((X, τ) ∈ T β0 −→ (X, τ) ∈ T β1 ).

Proof.It obtained From Theorems 3.7 (1) and 3.8 (1) and the fact that [β] ≤ [ϕ→ ψ]⇔

[β]⊗ [ϕ] ≤ [ψ].

Theorem 3.10.

Let (X, τ) be a fuzzifying topological space.

(1) |= (X, τ) ∈ T β2 −→ (X, τ) ∈ Rβ
1 ;

(2) |= (X, τ) ∈ T β2 −→ (X, τ) ∈ Rβ
i ∧ (X, τ) ∈ T βi , where i = 0, 1;

(3) If T β0 (X, τ) = 1, then

(i) |= (X, τ) ∈ T β2 ←→ (X, τ) ∈ Rβ
1 ∧ (X, τ) ∈ T β0 .

(ii) |= (X, τ) ∈ T β2 ←→ (X, τ) ∈ Rβ
1 ∧ (X, τ) ∈ T β1 .

Proof.

It is similar to the proof of Theorem 3.7.

Theorem 3.11.
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Let (X, τ) be a fuzzifying topological space.

(1) |= (X, τ) ∈ Rβ
1 ⊗ (X, τ) ∈ T β0 −→ (X, τ) ∈ T β2 , and

(2) If T β0 (X, τ) = 1, then |= (X, τ) ∈ Rβ
1 ⊗ (X, τ) ∈ T β0 ←→ (X, τ) ∈ T β2 .

Proof.

It is similar to the proof of Theorem 3.8.

Theorem 3.12.

Let (X, τ) be a fuzzifying topological space.

(1) |= (X, τ) ∈ T β0 −→ ((X, τ) ∈ Rβ
1 −→ (X, τ) ∈ T β2 ), and

(2) |= (X, τ) ∈ Rβ
1 −→ ((X, τ) ∈ T β0 −→ (X, τ) ∈ T β2 ).

Proof.

It is similar to the proof of Theorem 3.9.

Theorem 3.13.

If T β0 (X, τ) = 1, then

(1) |= ((X, τ) ∈ T β0 −→ ((X, τ) ∈ Rβ
0 −→ (X, τ) ∈ T β1 )) ∧ ((X, τ) ∈ T β1 −→ ¬((X, τ) ∈

T β0 −→ ¬((X, τ) ∈ ββ0 )));

(2) |= ((X, τ) ∈ Rβ
0 −→ ((X, τ) ∈ T β0 −→ (X, τ) ∈ T β1 )) ∧ ((X, τ) ∈ T β1 −→ ¬((X, τ) ∈

T β0 −→ ¬((X, τ) ∈ ββ0 )));

(3) |= ((X, τ) ∈ T β0 −→ ((X, τ) ∈ Rβ
0 −→ (X, τ) ∈ T β1 )) ∧ ((X, τ) ∈ T β1 −→ ¬((X, τ) ∈

Rβ
0 −→ ¬((X, τ) ∈ T β0 )));

(4) |= ((X, τ) ∈ Rβ
0 −→ ((X, τ) ∈ T β0 −→ (X, τ) ∈ T β1 )) ∧ ((X, τ) ∈ T β1 −→ ¬((X, τ) ∈

Rβ
0 −→ ¬((X, τ) ∈ T β0 ))).

Proof. For simplicity we put, T β0 (X, τ) = β, Rβ
0 (X, τ) = β and T β1 (X, τ) = γ. Now,

applying Theorem 3.8 (2), the proof is obtained with some relations in fuzzy logic as
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follows:

(1) 1 = (β ⊗ β ←→ γ) = (β ⊗ β −→ γ) ∧ (γ −→ β ⊗ β)

= ¬((β ⊗ β)⊗ ¬γ) ∧ ¬(γ ⊗ ¬(β ⊗ β))

= ¬(β ⊗ ¬(¬(β ⊗ ¬γ))) ∧ ¬(γ ⊗ (β −→ ¬β))

= (β −→ ¬(β ⊗ ¬γ)) ∧ (γ −→ ¬(β −→ ¬β))

= (β −→ (β −→ γ) ∧ (γ −→ ¬(β −→ ¬β))),

since ⊗ is commutative one can have the proof of statements (2) - (4) in a similar way as

(1).

By a similar procedure to Theorem 3.13 one can have the following theorem.

Theorem 3.14.

If T β0 (X, τ) = 1, then

(1) |= ((X, τ) ∈ T β0 −→ ((X, τ) ∈ Rβ
1 −→ (X, τ) ∈ T β2 )) ∧

((X, τ) ∈ T β2 −→ ¬((X, τ) ∈ T β0 −→ ¬((X, τ) ∈ Rβ
1 )));

(2) |= ((X, τ) ∈ Rβ
1 −→ ((X, τ) ∈ T β0 −→ (X, τ) ∈ T β2 )) ∧ ((X, τ) ∈ T β2 −→ ¬((X, τ) ∈

T β0 −→ ¬((X, τ) ∈ ββ1 )));

(3) |= ((X, τ) ∈ T β0 −→ ((X, τ) ∈ Rβ
1 −→ (X, τ) ∈ T β2 )) ∧ ((X, τ) ∈ T β2 −→ ¬((X, τ) ∈

Rβ
1 −→ ¬((X, τ) ∈ T β0 )));

(4) |= ((X, τ) ∈ Rβ
1 −→ ((X, τ) ∈ T β0 −→ (X, τ) ∈ T β2 )) ∧ ((X, τ) ∈ T β2 −→ ¬((X, τ) ∈

Rβ
1 −→ ¬((X, τ) ∈ T β0 ))).

Theorem 3.16.

|= (X, τ) ∈ T β3 ⊗ (X, τ) ∈ T1 −→ (X, τ) ∈ T β2 .

Proof.

From Theorem 2.2 [26] we have, T1(X, τ) =
∧
y∈X

τ(X − {y}). Therefore

T β3 (X, τ) + T1(X, τ)

=
∧
x/∈D

min

(
1, 1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B))

)
+
∧
y∈X

τ(X − {y})
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≤
∧

x∈X, x 6=y

∧
y∈X

min

(
1, 1− τ(X − {y}) +

∨
A∩B=∅

min(Nβ
x (A), Nβ

y (B))

)
+
∧
y∈X

τ(X − {y})

=
∧

x∈X, x 6=y

( ∧
y∈X

min(1, 1− τ(X − {y}) +
∨

A∩B=∅

min(Nβ
x (A), Nβ

y (B))) +
∧
y∈X

τ(X − {y})
)

≤
∧

x∈X, x 6=y

∧
y∈X

(
min(1, 1− τ(X − {y}) +

∨
A∩B=∅

min(Nβ
x (A), Nβ

y (B))) + τ(X − {y})
)

≤
∧
x 6=y

(
1 +

∨
A∩B=∅

min(Nβ
x (A), Nβ

y (B))

)
= 1 +

∧
x 6=y

∨
A∩B=∅

min(Nβ
x (A), Nβ

y (B)) = 1 + T β2 (X, τ),

namely, T β2 (X, τ) ≥ T β3 (X, τ)+T1(X, τ)−1. Thus T β2 (X, τ) ≥ max(0, T β3 (X, τ)+T1(X, τ)−

1).

Theorem 3.17.

|= (X, τ) ∈ T β4 ⊗ (X, τ) ∈ T1 −→ (X, τ) ∈ T β3 .

Proof. It is equivalent to prove that T β3 (X, τ) ≥ T β4 (X, τ) + T1(X, τ)− 1. In fact,

T β4 (X, τ) + T1(X, τ)

=
∧

E∩D=∅

min

(
1, 1−min(τ(X − E), τ(X −D))

+
∨

A∩B=∅, E⊆A, D⊆B

min(τβ(A), τβ(B))

)
+
∧
z∈X

τ(X − {z})

≤
∧
x/∈D

min

(
1, 1−min(τ(X − {x}), τ(X −D))

+
∨

A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B))

)
+
∧
z∈X

τ(X − {z})

=
∧
x/∈D

min

(
1,max

(
1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B)), 1− τ(X − {x})
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+
∨

A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B))

))
+
∧
z∈X

τ(X − {z})

=
∧
x/∈D

max

(
min

(
1, 1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B))

)
,min

(
1, 1− τ(X − {x})

+
∨

A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B))

))
+
∧
z∈X

τ(X − {z})

≤
∧
x/∈D

max

(
min

(
1, 1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B))

)
+ τ(X − {x}),

min
(

1, 1− τ(X − {x}) +
∨

A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B))

)
+ τ(X − {x})

)

≤
∧
x/∈D

max

(
min

(
1, 1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B))

)
+ τ(X − {x}), 1

)

≤
∧
x/∈D

(
min

(
1, 1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B))

)
+ 1

)

=
∧
x/∈D

min

(
1, 1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(Nβ
x (A), τβ(B))

)
+ 1

= T β3 (X, τ) + 1.

By a similar procedures of Theorems 3.16 and 3.17 we have the following theorems

Theorem 3.18.

Let (X, τ) be a fuzzifying topological space.

(1) |= (X, τ) ∈ T β
′

3 ⊗ (X, τ) ∈ T β1 −→ (X, τ) ∈ T2.

(2) |= (X, τ) ∈ T β
′

4 ⊗ (X, τ) ∈ T β1 −→ (X, τ) ∈ T β
′

3 .

From the above discussion one can have the following diagram:

T β
′

3 ⊗ T
β
1 ← T β

′

4 ⊗ T
β
1

↓

↓ T β
′

3 ← T β
′

4

↓ ↓

T0 ← T1 ← T2 ← T3 ← T4

↓ ↓ ↓ ↓ ↓

T β0 ← T β1 ← T β2 ← T β3 ← T β4



22 O. R. SAYED∗

Conclusion: The present paper investigates topological notions when these are planted

into the framework of Ying’s fuzzifying topological spaces (in semantic method of contin-

uous valued-logic). It continue various investigations into fuzzy topology in a legitimate

way and extend some fundamental results in general topology to fuzzifying topology. An

important virtue of our approach (in which we follow Ying) is that we define topological

notions as fuzzy predicates (by formulae of  Lukasiewicz fuzzy logic) and prove the validity

of fuzzy implications (or equivalences). Unlike the (more wide-spread) style of defining

notions in fuzzy mathematics as crisp predicates of fuzzy sets, fuzzy predicates of fuzzy

sets provide a more genuine fuzzification; furthermore the theorems in the form of valid

fuzzy implications are more general than the corresponding theorems on crisp predicates

of fuzzy sets. The main contributions of the present paper are to study β-separation

axioms in fuzzifying topology and give the relations of these axioms with each other as

well as the relations with other fuzzifying separation axiom. The role or the meaning of

each theorem in the present paper is obtained from its generalization to a corresponding

theorem in crisp setting. For example: in crisp setting, a topological space (X, τ) is T β1

if and only if for each z ∈ X, z ∈ Fβ, where Fβ is the family of β-closed sets. This fact

can be rewritten as follows: the truth value of a topological space (X, τ) to be T β1 equal

the infimum of the truth values of its singletons to be β-closed, where the set of truth

values is {0, 1}. Now, is this theorem still valid in fuzzifying settings, i.e., if the set of

truth values is [0, 1]? The answer of this question is positive and is given in Theorem 2.4

above.

There are some problems for further study:

(1) What is the justification for fuzzifying β-separation axioms in the setting of (2, L)

topologies.

(2) Obviously, fuzzifying topological spaces in [19] form a fuzzy category. Perhaps, this

will become a motivation for further study of the fuzzy category.

(3) What is the justification for fuzzifying β-separation axioms in (M,L)-topologies etc.
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[9] U. Höhle, S. E. Rodabaugh, A. Ŝostak, (Eds.), Special Issue on Fuzzy Topology, Fuzzy Sets and

Systems, 73 (1995), 1-183.
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