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ABSTRACT. In the present paper, we introduced topological notions defined by
means of regular open sets when these are planted into the framework of Ying’s
fuzzifying topological spaces (in Lukasiewicz fuzzy logic). We used fuzzy logic to
introduce almost separation axioms TR0 -, TR1 -, TR2 (almost Hausdorff)-, TR3 (almost-
regular)- and TR4 (almost-normal). Furthermore, the RR0 - and RR1 -separation axioms
have been studied and their relations with the TR1 - and TR2 -separation axioms have
been introduced. Moreover, we gave the relations of these axioms with each other as
well as the relations with other fuzzifying separation axioms.
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1. Introduction and Preliminaries

Chang [1], Wong [2], Hutton [3], Lowen [4], Pu and Liu [5], and others have discussed various aspects
of fuzzy topology with crisp methods. Ying [6, 7] introduced fuzzifying topology and elementarily
developed fuzzy topology from a new direction with the semantic method of continuous valued logic.
In the framework of fuzzifying topology, Shen [8] introduced and studied T0− , T1− , T2 (Hausdorff)-,
T3 (regular)- and T4(normal)-separation axioms in fuzzifying topology.

In [9], the concepts of the R0− and R1− separation axioms in fuzzifying topology were added and
their relations with the T1− and T2− separation axioms, were studied, respectively. In [10, 11],
the authors introduced and studied the concepts of fuzzifying regular neighborhood structure of a
point, fuzzifying regular interior, fuzzifying regular closure, and fuzzifying regular convergence.

In the present paper, we introduce and study TR
0− , TR

1− , TR2 (almost Hausdorff)-, TR3 (almost-
regular)- and TR4 (almost-normal)-separation axioms in fuzzifying topology. Also, we introduce the
RR

0− and RR
1− separation axioms and study their relations with the TR

1− and TR
2− separation axioms,

respectively.

The contents of the paper are arranged as follows. First, in the framework of fuzzifying topology,
the concept of almost separation axioms TR

0− , TR
1− , TR2 (almost Hausdorff)-, TR3 (almost-regular)-

and TR4 (almost-normal)- have been discussed on the bases of fuzzifying topology. Furthermore,
the RR

0− and RR
1− separation axioms have been studied and their relations with the TR

1− and TR
2−

separation axioms have been introduced. In Section 3, we give the relations of these axioms with
each other as well as the relations with other fuzzifying separation axioms. In the last section, a
conclusion is given. Thus we fill a gap in the existing literature on fuzzifying topology. We will use
terminologies and notations in [9, 8, 6, 7, 10, 11] without any explanation. We will use the symbol
⊗ instead of the second “AND” operation “∧. ” as dot is hardly visible. This means that

[α]≤ [ϕ→ψ]⇔ [α]⊗ [ϕ]≤ [ψ].
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A fuzzifying topology on a set X [6] is a function τ ∈=(P (X)) such that:

(1) τ(X) = τ(∅) = 1;
(2) for any A,B ∈ P (X), τ(A∩B)≥ τ(A)∧ τ(B);
(3) for any {Aλ ∈ P (X) : λ∈Λ}, τ(

⋃
λ∈Λ

Aλ)≥
∧
λ∈Λ

τ(Aλ).

The family of all fuzzifying regular open sets [10], denoted by τR ∈ =(P (X)), is defined as A ∈
τR :=A≡ Int(Cl(A)), i.e.,

[A∈ τR] = min (
∧
x∈A

Int(Cl(A)(x)),
∧

x∈X−A

(1− Int(Cl(A)(x)))).

The family of all fuzzifying regular closed sets [10], denoted by FR ∈=(P (X)), is defined as FR(A) =
τR(X −A). Let x ∈X. The fuzzifying regular neighborhood system of x [10], denoted by NR

x ∈
=(P (X)), is defined as A ∈ NR

x := ∃B((B ∈ τR) ∧ (x ∈ B ⊆ A)), i.e., NR
x (A) =

∨
x∈B⊆A

τR(B). The

fuzzifying regular closure [10] of a set A⊆X, denoted by ClR(A)∈=(X), is defined as ClR(A)(x) =
1−NR

x (X −A). The binary fuzzy predicates BR ∈=(N(X)×X) [11], is defined as:

SBR x := ∀A(A∈NR
x −→ S ⊂∼ A),

where [SBR x] stands for the degree to which S regular converges to x and ” ⊂∼ ” is the binary crisp
predicates ” almost in ”.

2. Fuzzifying almost separation axioms and their equivalents

For simplicity we give the following definition.

Definition 2.1. Let (X,τ) be a fuzzifying topological space. The binary fuzzy predicates
KR,HR,MR ∈=(X ×X), V R ∈=(X ×P (X)) and WR ∈=(P (X)×P (X)) are defined as follows:

(1) KR(x, y) := ∃A((A∈NR
x ∧ y /∈A)∨ (A∈NR

y ∧x /∈A));
(2) HR(x, y) := ∃B∃C((B ∈NR

x ∧ y /∈B)∧ (C ∈NR
y ∧x /∈C));

(3) MR(x, y) := ∃B∃C(B ∈NR
x ∧C ∈NR

y ∧B ∩C ≡ ∅);
(4) V R(x,D) := ∃A∃B(A∈NR

x ∧B ∈ τR ∧D⊆B ∧A∩B ≡ ∅);
(5) WR(A,B) := ∃G∃H(G∈ τR ∧H ∈ τR ∧A⊆G∧B ⊆H ∧G∩H ≡ ∅).

Definition 2.2. Let Ω be the class of all fuzzifying topological spaces. The unary fuzzy predicates
almost-Ti ∈=(Ω), denoted by TRi , i= 0,1,2,3,4 and almost-Ri ∈=(Ω), denoted by RR

i , i= 0,1 are
defined as follows:

(1) (X,τ)∈ TR0 := ∀x∀y(x∈X ∧ y ∈X ∧x 6= y)−→KR(x, y);
(2) (X,τ)∈ TR1 := ∀x∀y(x∈X ∧ y ∈X ∧x 6= y)−→HR(x, y);
(3) (X,τ)∈ TR2 := ∀x∀y(x∈X ∧ y ∈X ∧x 6= y)−→MR(x, y);
(4) (X,τ)∈ TR3 := ∀x∀D(x∈X ∧D ∈ F ∧x /∈D)−→ V R(x,D);
(5) (X,τ)∈ TR4 := ∀A∀B(A∈ F ∧B ∈ F ∧A∩B = ∅)−→WR(A,B);
(6) (X,τ)∈RR

0 := ∀x∀y(x∈X ∧ y ∈X ∧x 6= y)−→ (KR(x, y)−→HR(x, y));
(7) (X,τ)∈RR

1 := ∀x∀y(x∈X ∧ y ∈X ∧x 6= y)−→ (KR(x, y)−→MR(x, y)).

Remark 2.3. In crisp setting, one can have:

(1) |= (X,τ)∈ TRi −→ (X,τ)∈ Ti, where i= 0,1,2,3,4 and
(2) |= (X,τ)∈RR

i −→ (X,τ)∈Ri, where i= 0,1.

But these statements may not be true in general in fuzzifying topology as shown by the following
example.
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Example 2.4. Let X = {a, b, c} and τ be a fuzzifying topology on X defined as τ(X) = τ(∅) = 1,
τ({a}) = τ({a, b}) = 1

8
, τ({b}) = 1

3
, and τ({c}) = τ({a, c}) = τ({b, c}) = 1

4
. Then one can have that:

(1) [(X,τ)∈ TR0 ] = 1
3
> 1

4
= [(X,τ)∈ T0];

(2) [(X,τ)∈ TR1 ] = 1
4
> 1

8
= [(X,τ)∈ T1];

(3) [(X,τ)∈ TR2 ] = 1
4
> 1

8
= [(X,τ)∈ T2];

(4) [(X,τ)∈ TR3 ] = 22
24
> 21

24
= [(X,τ)∈ T3];

(5) [(X,τ)∈ TR4 ] = 22
24
> 21

24
= [(X,τ)∈ T4];

(6) [(X,τ)∈RR
0 ] = 22

24
> 21

24
= [(X,τ)∈R0];

(7) [(X,τ)∈RR
1 ] = 22

24
> 21

24
= [(X,τ)∈R1].

Lemma 2.5. (1) |=MR(x, y)−→HR(x, y);
(2) |=HR(x, y)−→KR(x, y);
(3) |=MR(x, y)−→KR(x, y).

Proof. (1) Since {B,C ∈ P (X) :B ∩C ≡ ∅}⊆ {B,C ∈ P (X) : y /∈B ∧x /∈C}, then

[MR(x, y)] =
∨

B∩C=∅

min(NR
x (B),NR

y (C))≤
∨

y/∈B, x/∈C

min(NR
x (B),NR

y (C)) = [HR(x, y)].

(2) [KR(x, y)] = max(
∨
y/∈A

NR
x (A),

∨
x/∈A

NR
y (A))≥

∨
y/∈A

NR
x (A)≥

∨
y/∈A, x/∈B

(NR
x (A)∧NR

y (B)) = [HR(x, y)].

(3) From (1) and (2) it is obvious.
�

Theorem 2.6. (1) |= (X,τ)∈ TR1 −→ (X,τ)∈ TR0 ;
(2) |= (X,τ)∈ TR2 −→ (X,τ)∈ TR1 ;
(3) |= (X,τ)∈ TR2 −→ (X,τ)∈ TR0 .

Proof. The proof of (1) and (2) are obtained from Lemma 2.5 (2) and (1), respectively.

(3) From (1) and (2) above, the result is obtained.
�

Theorem 2.7.

|= (X,τ)∈ TR0 ←→∀x∀y(x∈X ∧ y ∈X ∧x 6= y−→ (¬(x∈ClR({y}))∨¬(y ∈ClR({x})))).

Proof. Since for any x,A,B, |=A⊆B→ (A ∈NR
x →B ∈NR

x ) (see [10], Theorem 4.2 (2)), then
we have

[(X,τ)∈ TR0 ] =
∧
x 6=y

max(
∨
y/∈A

NR
x (A),

∨
x/∈A

NR
y (A))

=
∧
x 6=y

max(NR
x (X −{y}),NR

y (X −{x}))

=
∧
x 6=y

max(1−ClR({y})(x),1−ClR({x})(y))

=
∧
x 6=y

(¬(ClR({y})(x))∨¬(ClR({x})(y)))

= [∀x∀y(x∈X ∧ y ∈X ∧x 6= y−→ (¬(x∈ClR({y}))∨¬(y ∈ClR({x}))))].

�
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Remark 2.8. In crisp setting, one can have |= (X,τ)∈ TR1 −→∀x({x} ∈ FR)
But this statement may not be true in general in fuzzifying topology as illustrated by the following
example.

Example 2.9. Let (X,τ) be the fuzzifying topological space defined in Example 2.4. Then one
can have that

[(X,τ)∈ TR1 ] =
1

4
>

1

8
= [∀x({x} ∈ FR)].

Theorem 2.10. For any fuzzifying topological space (X,τ),

|= ∀x({x} ∈ FR)−→ (X,τ)∈ TR1 .

Proof. Since τR(A)≤
∧
x∈AN

R
x (A) (see [11], Theorem 3.3), then for any x1, x2, x1 6= x2, we have

[∀x({x} ∈ FR)] =
∧
x∈X

FR({x}) =
∧
x∈X

τR(X −{x})≤
∧
x∈X

∧
y∈X−{x}

NR
y (X −{x})

≤
∧

y∈X−{x2}

NR
y (X −{x2})≤NR

x1
(X −{x2}) =

∨
x2 /∈A

NR
x1

(A).

Similarly, we have, [∀x({x} ∈ FR)]≤
∨

x1 /∈B
NR
x2

(B). Then,

[∀x({x} ∈ FR)] ≤
∧

x1 6=x2

min(
∨
x2 /∈A

NR
x1

(A),
∨
x1 /∈B

NR
x2

(B))

=
∧

x1 6=x2

∨
x1 /∈B, x2 /∈A

min(NR
x1

(A),NR
x2

(B)) = [(X,τ)∈ TR1 ].

�

Theorem 2.11.

|= (X,τ)∈ TR2 ←→∀S∀x∀y((S ⊆X)∧ (x∈X)∧ (y ∈X)∧ (SBR x)∧ (SBR y)−→ x= y).

Proof. [(X,τ)∈ TR2 ] =
∧
x 6=y
∨
A∩B=∅(N

R
x (A)∧NR

y (B)),
[∀S∀x∀y((S ⊆X)∧ (x∈X)∧ (y ∈X)∧ (SBR x)∧ (SBR y)−→ x= y)]
=
∧
x 6=y
∧
S⊆X(

∨
S 6⊂∼ AN

R
x (A)∨

∨
S 6⊂∼ BN

R
y (B)) =

∧
x6=y
∧
S⊆X

∨
S 6⊂∼ A

∨
S 6⊂∼ B(NR

x (A)∨NR
y (B)).

(1) If A∩B = ∅, then for any S, we have S 6⊂∼ A or S 6⊂∼ B, and

NR
x (A)∧NR

y (B)≤
∨
S 6⊂∼ A

NR
x (A) or NR

x (A)∧NR
y (B)≤

∨
S 6⊂∼ B

NR
x (B).

Consequently
∨

A∩B=∅

(NR
x (A)∧NR

y (B))≤
∧
S⊆X

(
∨
S 6⊂∼ A

NR
x (A)∨

∨
S 6⊂∼ B

NR
y (B)).

Also,

[(X,τ)∈ TR2 ]≤ [∀S∀x∀y((S ⊆X)∧ (x∈X)∧ (y ∈X)∧ (SBR x)∧ (SBR y)−→ x= y)].

(2) First, for any x, y with x 6= y, if
∨

A∩B=∅
(NR

x (A) ∧NR
y (B)) < t, then NR

x (A) < t or NR
y (B) < t

provided A∩B = ∅, i.e., A∩B 6= ∅ when A ∈ (NR
x )t and B ∈ (NR

y )t. Now, set a net S∗ : (NR
x )t ×
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(NR
y )t −→X, (A,B) 7−→ x(A,B) ∈A∩B. Then for any A ∈ (NR

x )t, B ∈ (NR
y )t, we have S∗⊂∼ A and

S∗⊂∼ B. Therefore, if S∗ 6⊂∼ A and S∗ 6⊂∼ B, then A /∈ (NR
x )t, B /∈ (NR

y )t, i.e., NR
x (A)∨NR

y (B))< t. Then∨
S∗ 6⊂∼ A

∨
S∗ 6⊂∼ B

(NR
x (A)∨NR

y (B))≤ t. Moreover,
∧
S⊆X

∨
S 6⊂∼ A

∨
S 6⊂∼ B

(NR
x (A)∨NR

y (B))≤ t.

Second, for any positive integer i, there exists xi, yi with xi 6= yi, and∨
A∩B=∅

(NR
xi

(A)∧NR
yi

(B))< [(X,τ)∈ TR2 ] + 1/i,

and hence
∧
S⊆X

∨
S 6⊂∼ A

∨
S 6⊂∼ B

(NR
xi

(A)∨NR
yi

(B))< [(X,τ)∈ TR2 ] + 1/i.

So we have

[∀S∀x∀y((S ⊆X)∧ (x∈X)∧ (y ∈X)∧ (SBR x)∧ (SBR y)−→ x= y)]

=
∧
x 6=y

∧
S⊆X

∨
S 6⊂∼ A

∨
S 6⊂∼ B

(NR
x (A)∨NR

y (B))≤ [(X,τ)∈ TR2 ].

�

Definition 2.12. The fuzzifying regular-local base βRx of x is a function from P (X) into I = [0,1]
satisfying the following conditions:

(1) |= βRx ⊆NR
x , and

(2) |=A∈NR
x −→∃B(B ∈ βRx ∧x∈B ⊆A).

Lemma 2.13.
|=A∈NR

x ←→∃B(B ∈ βRx ∧x∈B ⊆A).

Proof. From condition (1) in Definition 2.12 and Theorem 2.23 (3) of [10] we have, NR
x (A) ≥

NR
x (B)≥ βRx (B) for each B ∈ P (X) such that x∈B ⊆A. So,NR

x (A)≥
∨

x∈B⊆A
βRx (B). From condition

(2) in Definition 2.12 we have NR
x (A)≤

∨
x∈B⊆A

βRx (B). Hence NR
x (A) =

∨
x∈B⊆A

βRx (B).

�

Theorem 2.14. If βRx is a fuzzifying regular-local basis of x, then

|= (X,τ)∈ TR2 ←→∀x∀y(x∈X ∧ y ∈X ∧x 6= y−→∃B(B ∈ βRx ∧ y ∈¬(ClR(B)))).

Proof. From Lemma 2.13 we have:

[∀x∀y(x∈X ∧ y ∈X ∧x 6= y−→∃B(B ∈ βRx ∧ y ∈¬(ClR(B))))]

=
∧
x 6=y

∨
B∈P (X)

min(βRx (B),¬(1−NR
y (X −B)))

=
∧
x 6=y

∨
B∈P (X)

min(βRx (B),NR
y (X −B))

=
∧
x 6=y

∨
B∈P (X)

∨
y∈C⊆X−B

min(βRx (B), βRy (C))

=
∧
x 6=y

∨
B∩C=∅

∨
x∈D⊆B, y∈E⊆C

min(βRx (D), βRy (E))

=
∧
x 6=y

∨
B∩C=∅

min(
∨

x∈D⊆B

βRx (D),
∨

y∈E⊆C

βRy (E))

=
∧
x 6=y

∨
B∩C=∅

min(NR
x (B),NR

y (C)) = [(X,τ)∈ TR2 ].
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�

Theorem 2.15. |= (X,τ)∈RR
1 −→ (X,τ)∈RR

0 .

Proof. From Lemma 2.5 (1), the proof is immediate.
�

Theorem 2.16. (1) |= (X,τ)∈ TR1 −→ (X,τ)∈RR
0 ;

(2) |= (X,τ)∈ TR1 −→ (X,τ)∈RR
0 ∧ (X,τ)∈ TR0 ;

(3) If TR0 (X,τ) = 1, then |= (X,τ)∈ TR1 ←→ (X,τ)∈RR
0 ∧ (X,τ)∈ TR0 .

Proof. (1) TR1 (X,τ) =
∧
x 6=y[H

R(x, y)]≤
∧
x 6=y[K

R(x, y)−→HR(x, y)] =RR
0 (X,τ).

(2) It is obtained from (1) and from Theorem 2.15 (1).

(3) Since TR0 (X,τ) = 1, for every x, y ∈ X such that x 6= y, then we have [KR(x, y)] = 1. Now,
[(X,τ)∈RR

0 ∧ (X,τ)∈ TR0 ] = [(X,τ)∈RR
0 ] =

∧
x 6=y min(1,1− [KR(x, y)] + [HR(x, y)])

=
∧
x 6=y[H

R(x, y)] = TR1 (X,τ).
�

Theorem 2.17. (1) |= (X,τ)∈RR
0 ⊗ (X,τ)∈ TR0 −→ (X,τ)∈ TR1 , and

(2) If TR0 (X,τ) = 1, then |= (X,τ)∈RR
0 ⊗ (X,τ)∈ TR0 ←→ (X,τ)∈ TR1 .

Proof.

(1) [(X,τ)∈RR
0 ⊗ (X,τ)∈ TR0 ]

= max(0,RR
0 (X,τ) +TR0 (X,τ)− 1)

= max(0,
∧
x 6=y

min(1,1− [KR(x, y)] + [HR(x, y)]) +
∧
x 6=y

[KR(x, y)]− 1)

≤max(0,
∧
x 6=y

min(1,1− [KR(x, y)] + [HR(x, y)]) + [KR(x, y)]− 1)

=
∧
x 6=y

[HR(x, y)] = TR1 (X,τ).

(2) [(X,τ)∈RR
0 ⊗ (X,τ)∈ TR0 ] = [(X,τ)∈RR

0 ]

=
∧
x 6=y

min(1,1− [KR(x, y)] + [HR(x, y)])

=
∧
x 6=y

[HR(x, y)] = TR1 (X,τ),

because, TR0 (X,τ) = 1, we have for each x, y such that x 6= y [KR(x, y)] = 1.
�

Theorem 2.18. (1) |= (X,τ)∈ TR0 −→ ((X,τ)∈RR
0 −→ (X,τ)∈ TR1 ), and

(2) |= (X,τ)∈RR
0 −→ ((X,τ)∈ TR0 −→ (X,τ)∈ TR1 ).

Proof. From Theorem 2.16 (1) and Theorem 2.17 (1) we have

(1) [(X,τ)∈ TR0 −→ ((X,τ)∈RR
0 −→ (X,τ)∈ TR1 )]

= min(1,1− [(X,τ)∈ TR0 ] + min(1,1− [(X,τ)∈RR
0 ] + [(X,τ)∈ TR1 ]))

= min(1,1− [(X,τ)∈ TR0 ] + 1− [(X,τ)∈RR
0 ] + [(X,τ)∈ TR1 ])

= min(1,1− ([(X,τ)∈ TR0 ] + [(X,τ)∈RR
0 ]− 1) + [(X,τ)∈ TR1 ]) = 1.

(2) [(X,τ)∈RR
0 −→ ((X,τ)∈ TR0 −→ (X,τ)∈ TR1 )]

= min(1,1− ([(X,τ)∈ TR0 ] + [(X,τ)∈RR
0 ]− 1) + [(X,τ)∈ TR1 ]) = 1.
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�

Theorem 2.19. (1) |= (X,τ)∈ TR2 −→ (X,τ)∈RR
1 ;

(2) |= (X,τ)∈ TR2 −→ (X,τ)∈RR
1 ∧ (X,τ)∈ TR0 ;

(3) If TR0 (X,τ) = 1, then |= (X,τ)∈ TR2 ←→ (X,τ)∈RR
1 ∧ (X,τ)∈ TR0 .

Proof. (1) The proof is similar to that of Theorem 2.16 (1).

(2) It is obtained from (1) above and Theorem 2.6 (3).

(3) The proof is similar to that of Theorem 2.16 (3).
�

Theorem 2.20. (1) |= (X,τ)∈RR
1 ⊗ (X,τ)∈ TR0 −→ (X,τ)∈ TR2 , and

(2) If TR0 (X,τ) = 1, then |= (X,τ)∈RR
1 ⊗ (X,τ)∈ TR0 ←→ (X,τ)∈ TR2 .

Proof. The proof is similar to that of Theorem 2.17 (1) and (2), respectively.
�

Theorem 2.21. (1) |= (X,τ)∈ TR0 −→ ((X,τ)∈RR
1 −→ (X,τ)∈ TR2 ), and

(2) |= (X,τ)∈RR
1 −→ ((X,τ)∈ TR0 −→ (X,τ)∈ TR2 ).

Proof. The proof is similar to that of Theorem 2.18 (1) and (2), respectively.
�

Theorem 2.22. If TR0 (X,τ) = 1, then:

(1) |= ((X,τ) ∈ TR0 −→ ((X,τ) ∈ RR
0 −→ (X,τ) ∈ TR1 )) ∧ ((X,τ) ∈ TR1 −→ ¬((X,τ) ∈ TR0 −→

¬((X,τ)∈RR
0 )));

(2) |= ((X,τ) ∈ RR
0 −→ ((X,τ) ∈ TR0 −→ (X,τ) ∈ TR1 )) ∧ ((X,τ) ∈ TR1 −→ ¬((X,τ) ∈ TR0 −→

¬((X,τ)∈RR
0 )));

(3) |= ((X,τ) ∈ TR0 −→ ((X,τ) ∈ RR
0 −→ (X,τ) ∈ TR1 )) ∧ ((X,τ) ∈ TR1 −→ ¬((X,τ) ∈ RR

0 −→
¬((X,τ)∈ TR0 )));

(4) |= ((X,τ) ∈ RR
0 −→ ((X,τ) ∈ TR0 −→ (X,τ) ∈ TR1 )) ∧ ((X,τ) ∈ TR1 −→ ¬((X,τ) ∈ RR

0 −→
¬((X,τ)∈ TR0 ))).

Proof. For simplicity we put, TR0 (X,τ) = α, RR
0 (X,τ) = β and TR1 (X,τ) = γ. Now, applying

Theorem 2.17 (2), the proof is obtained with some relations in fuzzy logic as follows:

(1)

1 = (α⊗β←→ γ) = (α⊗β −→ γ)∧ (γ −→ α⊗β)
=¬((α⊗β)⊗¬γ)∧¬(γ⊗¬(α⊗β))
=¬(α⊗¬(¬(β⊗¬γ)))∧¬(γ⊗ (α−→¬β))
= (α−→¬(β⊗¬γ))∧ (γ −→¬(α−→¬β))
= (α−→ (β −→ γ)∧ (γ −→¬(α−→¬β))),

since ⊗ is commutative one can have the proof of statements (2) - (4) in a similar way as (1).

By a similar procedure to Theorem 2.22 one can have the following theorem.
�

Theorem 2.23. If TR0 (X,τ) = 1, then:

(1) |= ((X,τ) ∈ TR0 −→ ((X,τ) ∈ RR
1 −→ (X,τ) ∈ TR2 )) ∧ ((X,τ) ∈ TR2 −→ ¬((X,τ) ∈ TR0 −→

¬((X,τ)∈RR
1 )));

(2) |= ((X,τ) ∈ RR
1 −→ ((X,τ) ∈ TR0 −→ (X,τ) ∈ TR2 )) ∧ ((X,τ) ∈ TR2 −→ ¬((X,τ) ∈ TR0 −→

¬((X,τ)∈RR
1 )));
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(3) |= ((X,τ) ∈ TR0 −→ ((X,τ) ∈ RR
1 −→ (X,τ) ∈ TR2 )) ∧ ((X,τ) ∈ TR2 −→ ¬((X,τ) ∈ RR

1 −→
¬((X,τ)∈ TR0 )));

(4) |= ((X,τ) ∈ RR
1 −→ ((X,τ) ∈ TR0 −→ (X,τ) ∈ TR2 )) ∧ ((X,τ) ∈ TR2 −→ ¬((X,τ) ∈ RR

1 −→
¬((X,τ)∈ TR0 ))).

Lemma 2.24. (1) If D⊆B, then
∨

A∩B=∅
NR
x (A) =

∨
A∩B=∅, D⊆B

NR
x (A),

(2)
∨

A∩B=∅

∧
y∈D

NR
y (X −A) =

∨
A∩B=∅, D⊆B

τR(B).

Proof. (1) Since D⊆B, then:∨
A∩B=∅

NR
x (A) =

∨
A∩B=∅

NR
x (A)∧ [D⊆B] =

∨
A∩B=∅, D⊆B

NR
x (A).

(2) Let y ∈D and A∩B = ∅. Then,∨
A∩B=∅, D⊆B

τR(B) =
∨

A∩B=∅, D⊆B

τR(B)∧ [y ∈D]

=
∨

y∈D⊆B⊆X−A

τR(B) =
∨

y∈B⊆X−A

τR(B)

=NR
y (X −A) =

∧
y∈D

NR
y (X −A)

=
∨

A∩B=∅

∧
y∈D

NR
y (X −A).

�

Definition 2.25.

RT
(1)
3 (X,τ) := ∀x∀D(x∈X ∧D ∈ F ∧x /∈D−→∃A(A∈NR

x ∧ (D⊆X −ClR(A)))).

Theorem 2.26. |= (X,τ)∈ TR3 ←→ (X,τ)∈RT (1)
3 .

Proof. Now, we have

RT
(1)
3 (X,τ) =

∧
x/∈D

min(1,1− τ(X −D) +
∨

A∈P (X)

min(NR
x (A),

∧
y∈D

(1−ClR(A)(y))))

=
∧
x/∈D

min(1,1− τ(X −D) +
∨

A∈P (X)

min(NR
x (A),

∧
y∈D

NR
y (X −A)))

and TR3 (X,τ) =
∧
x/∈D

min(1,1− τ(X −D) +
∨

A∩B=∅, D⊆B

min(NR
x (A), τR(B))).

So, the result holds if we prove that∨
A∈P (X)

min(NR
x (A),

∧
y∈D

NR
y (X −A)) =

∨
A∩B=∅, D⊆B

min(NR
x (A), τR(B)) (∗)

It is clear that, on the left-hand side of (∗) in the case of A∩D 6= ∅ there exists y ∈X such that
y ∈D and y /∈X −A. So,

∧
y∈D

NR
y (X −A) = 0 and thus (∗) becomes

∨
A∈P (X), A∩B=∅

min(NR
x (A),

∧
y∈D

NR
y (X −A)) =

∨
A∩B=∅, D⊆B

min(NR
x (A), τR(B)),

which is obtained from Lemma 2.24.
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�

Definition 2.27.

RT
(2)
3 (X,τ) := ∀x∀B(x∈B ∧B ∈ τ −→∃A(A∈NR

x ∧ClR(A)⊆B)).

Theorem 2.28. |= (X,τ)∈ TR3 ←→ (X,τ)∈RT (2)
3 .

Proof. From Theorem 2.26, we have

TR3 (X,τ) =
∧
x/∈D

min(1,1− τ(X −D) +
∨

A∈P (X)

min(NR
x (A),

∧
y∈D

NR
y (X −A))).

Now,

RT
(2)
3 (X,τ) =

∧
x∈B

min(1,1− τ(B) +
∨

A∈P (X)

min(NR
x (A),

∧
y∈X−B

(1−ClR(A)(y))))

=
∧
x∈B

min(1,1− τ(B) +
∨

A∈P (X)

min(NR
x (A),

∧
y∈X−B

(1− (1−NR
y (X −A)))))

=
∧
x∈B

min(1,1− τ(B) +
∨

A∈P (X)

min(NR
x (A),

∧
y∈X−B

NR
y (X −A))).

Now, put B =X −D, we have

RT
(2)
3 (X,τ) =

∧
x/∈D

min(1,1− τ(X −D) +
∨

A∈P (X)

min(NR
x (A),

∧
y∈D

NR
y (X −A)))

= TR3 (X,τ).

�

Definition 2.29. Let ϕ be a subbase of τ , then:

RT
(3)
3 (X,τ) := ∀x∀D(x∈D∧D ∈ϕ−→∃B(B ∈NR

x ∧ClR(B)⊆D)).

Theorem 2.30. |= (X,τ)∈ TR3 ←→ (X,τ)∈RT (3)
3 .

Proof. Since [ϕ⊆ τ ] = 1, and with regard to Theorems 2.26 and 2.28 we have

RT
(3)
3 (X,τ)≥RT (2)

3 (X,τ) = TR3 (X,τ).

So, it suffices to prove that RT
(3)
3 (X,τ) ≤ RT (2)

3 (X,τ) and this is obtained if we prove for any
x∈A,

min(1,1− τ(A) +
∨

B∈P (X)

min(NR
x (B),

∧
y∈X−A

NR
y (X −B)))≥RT (3)

3 (X,τ).

Set RT
(3)
3 (X,τ) = δ. then, for any x ∈X and any Dλi ∈ P (X), λi ∈ Iλ (Iλ denotes a finite index

set), λ∈Λ,
⋃
λ∈Λ

⋂
λi∈Iλ

Dλi =A we have,

1−ϕ(Dλi) +
∨

B∈P (X)

min(NR
x (B),

∧
y∈X−Dλi

NR
y (X −B))≥ δ > δ− ε,
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where ε is any positive number. Thus,∨
B∈P (X)

min(NR
x (B),

∧
y∈X−Dλi

NR
y (X −B))>ϕ(Dλi)− 1 + δ− ε.

Set γλi = {B :B ⊆Dλi}. Then, from the completely distributive law we have∧
λi∈Iλ

∨
B∈P (X)

min(NR
x (B),

∧
y∈X−Dλi

NR
y (X −B))

=
∨

f∈Π{γλi :λi∈Iλ}

∧
λi∈Iλ

min(NR
x (f(λi)),

∧
y∈X−Dλi

NR
y (X − f(λi)))

=
∨

f∈Π{γλi :λi∈Iλ}

min(
∧
λi∈Iλ

NR
x (f(λi)),

∧
λi∈Iλ

∧
y∈X−Dλi

NR
y (X − f(λi)))

=
∨

f∈Π{γλi :λi∈Iλ}

min(
∧
λi∈Iλ

NR
x (f(λi)),

∧
y∈ ∪
λi∈Iλ

X−Dλi

NR
y (X − f(λi)))

=
∨

B∈P (X)

min(
∧
λi∈Iλ

NR
x (B),

∧
y∈ ∪
λi∈Iλ

X−Dλi

NR
y (X −B))

=
∨

B∈P (X)

min(NR
x (B),

∧
y∈ ∪
λi∈Iλ

X−Dλi

NR
y (X −B)),

where B = f(λi).
Similarly, we can prove ∧

λ∈Λ

∨
B∈P (X)

min(NR
x (B),

∧
y∈ ∪
λi∈Iλ

X−Dλi

NR
y (X −B))

=
∨

B∈P (X)

min(NR
x (B),

∧
y∈ ∪
λ∈Λ

∪
λi∈Iλ

X−Dλi

NR
y (X −B))

≤
∨

B∈P (X)

min(NR
x (B),

∧
y∈ ∩
λ∈Λ

∪
λi∈Iλ

X−Dλi

NR
y (X −B))

≤
∨

B∈P (X)

min(NR
x (B),

∧
y∈X−A

NR
y (X −B)),

so we have ∨
B∈P (X)

min(NR
x (B),

∧
y∈X−A

NR
y (X −B))

≥
∧
λ∈Λ

∧
λi∈Iλ

∨
B∈P (X)

min(NR
x (B),

∧
y∈X−Dλi

NR
y (X −B))

≥
∧
λ∈Λ

∧
λi∈Iλ

ϕ(Dλi)− 1 + δ− ε.

For any Iλ and Λ that satisfy
⋃
λ∈Λ

⋂
λi∈Iλ

Dλi =A the above inequality is true. So,

∨
B∈P (X)

min(NR
x (B),

∧
y∈X−A

NR
y (X −B))

≥
∨

∪λ∈ΛDλ=A

∧
λ∈Λ

∨
∩λi∈IλDλi=Dλ

∧
λi∈Iλ

ϕ(Dλi)− 1 + δ− ε

= τ(A)− 1 + δ− ε.



O. R. Sayed and A. K. Mousa: Almost Separation Axioms in Fuzzifying Topology
56 Journal of Advanced Studies in Topology 4(4), pp. 46–58, c© 2013 Modern Science Publishers

i.e., min(1,1− τ(A) +
∨

B∈P (X)

min(NR
x (B),

∧
y∈X−A

NR
y (X −B)))≥ δ− ε.

Because ε is any arbitrary positive number, when ε−→ 0 we have RT
(2)
3 (X,τ)≥ δ =RT

(3)
3 (X,τ).

So, |= (X,τ)∈ TR3 ←→ (X,τ)∈RT (3)
3 .

�

Definition 2.31. Let (X,τ) be any fuzzifying topological space.

(1) RT
(1)
4 (X,τ) := ∀A∀B(A∈ τ ∧B ∈ F ∧A∩B ≡ ∅−→∃G(G∈ τ ∧A⊆G∧B ⊆X −ClR(G))),

and
(2) RT

(2)
4 (X,τ) := ∀A∀B(A∈ F ∧B ∈ τ ∧A⊆B −→∃G(G∈ τ ∧A⊆G∧ClR(G)⊆B)).

Theorem 2.32. |= (X,τ)∈ TR4 ←→ (X,τ)∈RT (i)
4 , where i= 1,2.

Proof. The proof is similar to that of Theorems 2.26 and 2.28.
�

3. Relation among fuzzifying separation axioms

Lemma 3.1. For any α,β ∈ I, we have (1∧ (1−α+β)) +α≤ 1 +β.

Theorem 3.2. |= (X,τ)∈ TR3 ⊗ (X,τ)∈ T1 −→ (X,τ)∈ TR2 .

Proof. From Theorem 2.2 [8] we have, T1(X,τ) =
∧
y∈X

τ(X − {y}) and applying Lemma 3.1 we

have,

TR3 (X,τ) +T1(X,τ)

=
∧
x/∈D

min

(
1,1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(NR
x (A), τR(B))

)
+
∧
y∈X

τ(X −{y})

≤
∧

x∈X, x6=y

∧
y∈X

min

(
1,1− τ(X −{y}) +

∨
A∩B=∅

min(NR
x (A),NR

y (B))

)
+
∧
y∈X

τ(X −{y})

=
∧

x∈X, x6=y

( ∧
y∈X

min(1,1− τ(X −{y}) +
∨

A∩B=∅

min(NR
x (A),NR

y (B))) +
∧
y∈X

τ(X −{y})
)

≤
∧

x∈X, x6=y

∧
y∈X

(
min(1,1− τ(X −{y}) +

∨
A∩B=∅

min(NR
x (A),NR

y (B))) + τ(X −{y})
)

≤
∧
x 6=y

(
1 +

∨
A∩B=∅

min(NR
x (A),NR

y (B))

)
= 1 +

∧
x 6=y

∨
A∩B=∅

min(NR
x (A),NR

y (B)) = 1 +TR2 (X,τ),

namely, TR2 (X,τ)≥ TR3 (X,τ) +T1(X,τ)− 1. Thus, TR2 (X,τ)≥max(0, TR3 (X,τ) +T1(X,τ)− 1).
�

Theorem 3.3. |= (X,τ)∈ TR4 ⊗ (X,τ)∈ T1 −→ (X,τ)∈ TR3 .

Proof. It is equivalent to prove that TR3 (X,τ)≥ TR4 (X,τ) +T1(X,τ)− 1. In fact,

TR4 (X,τ) +T1(X,τ) =
∧

E∩D=∅

min

(
1,1−min(τ(X −E), τ(X −D))

+
∨

A∩B=∅, E⊆A,D⊆B

min(τR(A), τR(B))

)
+
∧
z∈X

τ(X −{z})

≤
∧
x/∈D

min

(
1,1−min(τ(X −{x}), τ(X −D))
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+
∨

A∩B=∅, D⊆B

min(NR
x (A), τR(B))

)
+
∧
z∈X

τ(X −{z})

=
∧
x/∈D

min

(
1,max

(
1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(NR
x (A), τR(B)),1− τ(X −{x})

+
∨

A∩B=∅, D⊆B

min(NR
x (A), τR(B))

))
+
∧
z∈X

τ(X −{z})

=
∧
x/∈D

max

(
min

(
1,1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(NR
x (A), τR(B))

)
,min

(
1,1− τ(X −{x})

+
∨

A∩B=∅, D⊆B

min(NR
x (A), τR(B))

))
+
∧
z∈X

τ(X −{z})

≤
∧
x/∈D

max

(
min

(
1,1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(NR
x (A), τR(B))

)
+ τ(X −{x}),

min
(

1,1− τ(X −{x}) +
∨

A∩B=∅, D⊆B

min(NR
x (A), τR(B))

)
+ τ(X −{x})

)
≤
∧
x/∈D

max

(
min

(
1,1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(NR
x (A), τR(B))

)
+ τ(X −{x}),1

)
≤
∧
x/∈D

(
min

(
1,1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(NR
x (A), τR(B))

)
+ 1

)
=
∧
x/∈D

min

(
1,1− τ(X −D) +

∨
A∩B=∅, D⊆B

min(NR
x (A), τR(B))

)
+ 1

= TR3 (X,τ) + 1.

�

4. Conclusion

This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topolo-
gies) introduced by Ying [6]. It extend some fundamental results in general topology to fuzzifying
topology.
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