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1. Introduction and Preliminaries

Chang [1], Wong [2], Hutton [3], Lowen [4], Pu and Liu [5], and others have discussed various aspects
of fuzzy topology with crisp methods. Ying [6, 7] introduced fuzzifying topology and elementarily
developed fuzzy topology from a new direction with the semantic method of continuous valued logic.
In the framework of fuzzifying topology, Shen [8] introduced and studied Ty-, T, -, T» (Hausdorff)-,
T3 (regular)- and T, (normal)-separation axioms in fuzzifying topology.

In [9], the concepts of the Ry- and R,- separation axioms in fuzzifying topology were added and
their relations with the 77— and T,- separation axioms, were studied, respectively. In [10, 11],
the authors introduced and studied the concepts of fuzzifying regular neighborhood structure of a
point, fuzzifying regular interior, fuzzifying regular closure, and fuzzifying regular convergence.
In the present paper, we introduce and study T;*, T2, T;* (almost Hausdorff)-, T3 (almost-
regular)- and T (almost-normal)-separation axioms in fuzzifying topology. Also, we introduce the
Rf and R separation axioms and study their relations with the T2 and T;% separation axioms,
respectively.

The contents of the paper are arranged as follows. First, in the framework of fuzzifying topology,
the concept of almost separation axioms T%, T*, T} (almost Hausdorff)-, T3* (almost-regular)-
and T (almost-normal)- have been discussed on the bases of fuzzifying topology. Furthermore,
the R and R separation axioms have been studied and their relations with the 72 and T}
separation axioms have been introduced. In Section 3, we give the relations of these axioms with
each other as well as the relations with other fuzzifying separation axioms. In the last section, a
conclusion is given. Thus we fill a gap in the existing literature on fuzzifying topology. We will use
terminologies and notations in [9, 8, 6, 7, 10, 11] without any explanation. We will use the symbol

® instead of the second “AND” operation “A” as dot is hardly visible. This means that
[o] <[ = 9] & [a] @ [p] < [¢].
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A fuzzifying topology on a set X [6] is a function 7 € (P (X)) such that:
(1) 7(X)=7(0) =1;
(2) for any A,Be€ P(X),7(ANB) > 1(A) A7(B);
(3) for any {Ay € P(X): A€ A}, (UA)\)> /\ T(Ay).

The family of all fuzz1fymg regular open sets [10] denoted by 7x € (P (X)), is defined as A €
Tr:=A=Int(Cl(A)), i

[Aerg]=min( /\ Int(Cl(A)(x)), N\ (1—Int(Cl(A)(x)))).

rEA zeX—A

The family of all fuzzifying regular closed sets [10], denoted by Fr € S(P(X)), is defined as Fr(A) =
Tr(X — A). Let x € X. The fuzzifying regular neighborhood system of z [10], denoted by N €
S(P(X)), is defined as A€ NE:=3B((B€Tp) A (x € BC A)), i.e., NE(A)= \/ 7r(B). The

z€BCA

fuzzifying regular closure [10] of a set A C X, denoted by Clz(A) € 3(X), is defined as Cly(A)(z) =
1— NE(X — A). The binary fuzzy predicates > € (N (X) x X) [11], is defined as:
Spfz:=VA(Ae NF — S¢<A),

where [S > z] stands for the degree to which S regular converges to z and ” < ” is the binary crisp
predicates 7 almost in ”

2. Fuzzifying almost separation axioms and their equivalents

For simplicity we give the following definition.

Definition 2.1. Let (X,7) be a fuzzifying topological space. The binary fuzzy predicates
KR HE MR eJ(X x X),VEeJ(X x P(X)) and W € 3(P(X) x P(X)) are defined as follows:

(1) K*¥(z,y):=3A((AeNFAy¢ A)V(Ae NFAz ¢ A));

(2) H¥(z,y):=3B3C((Be NN y¢ B)A(Ce NNz ¢ C));

(3) M*%(x,y):=3B3C(Be NFNCeNFABNC=0);

(4) VE(z,D):=3A3B(Ae NEABemADCBAANB=0);

(5) WH(A,B):=3GIH(GeTrNHeTRsNACGANBCHAGNH=0)

Definition 2.2. Let 2 be the class of all fuzzifying topological spaces. The unary fuzzy predicates
almost-T; € $(Q), denoted by TF,i=0,1,2,3,4 and almost-R; € (), denoted by R?,i=0,1 are
defined as follows:

(1) (X,7)eTf =VaVy(re X N\ye X ANx #y) — K-(x,
) (

)

Y);
X, 7)eTE:=VaVy(re X N\ye X Az #y) — HE x,y),

2 (X.7)

(3) (X,7)eTf =VaVy(re X N\ye X Ax#y) — ME(z,y);

(4) (X,7)eTR:=VaVD(z € X A\De F Az ¢ D) — VE(z ,D),

(5) (X,7) e TF:=VAYB(Ac FABeFAANB=0)—s WH(A, B);

(6) (X,7)€ R =VaVy(z e X Nye X Nz #y) — (K" (z,y) — H(z,y));
(7) (X,7)eRF:=VaVy(ze X Nye X Nz #y) — (K*(z,y) — ME(z,y)).

Remark 2.3. In crisp setting, one can have:
(1) E(X,7)eT! — (X,7) €T, where i =0,1,2,3,4 and
(2) E(X,7)€e R — (X,7) € R;, where i =0, 1.

But these statements may not be true in general in fuzzifying topology as shown by the following
example.
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Example 2.4. Let X {a,b,c} and 7 be a fuzzifying topology on X defined as 7(X) =7(0) =1,
7({a}) =7({a,b}) =%, 7({b}) = %, and 7({c}) =7({a,c}) =7({b,c}) = ;. Then one can have that:

(1) [(X,T)ETR]=§>i=[(XjT)€To]
(2) (X, 1) eTf]=1>5=[(X,7)eT];
(3) [(X,7) ey =1 >5=[X,7) € T;
4) [(X,7)eTy=2> 3 =[(X,7) e Ts];
(5) [(X,7) €T =33 >3 =[(X,7) € Tu;
(6) [(X,7) € Ryl =37 > 51 =[(X,7) € Rol;
(M) (X, 7)eRf|=5> 5 =X, 7)€ R\].
Lemma 2.5. (1) = M~%(x,y) — HE(z,y);

(2) EH (x,y) — K" (2,y);
(3) E M (z,y) — K'(z,y).

Proof. (1) Since {B,C € P(X):BNC =0} C{B,CeP(X):y¢ BAx ¢ C}, then

(M (zy)]=\/ min(NF(B),NJ(C)< \/ min(N(B),N;(C))=[H"(z,y)]-

) Yy ) Y
BNC=0 y¢B, x¢C

(2) (K™ (z,y)] =max(\/ NJ(4), \/ M) =\ NF )=\ (NJ(A)ANKB)) = [H (z,y)].

ygA zgA ygA y¢A,z¢B

(3) From (1) and (2) it is obvious.

U
Theorem 2.6. (1) E(X,7)eTl— (X,7)eTE,;
(2) E(X,7)eTy — (X, 7) €T
(3) E(X,m) ey — (X,7) €Ty
Proof. The proof of (1) and (2) are obtained from Lemma 2.5 (2) and (1), respectively.
(3) From (1) and (2) above, the result is obtained.
O

Theorem 2.7.

= (X, 7) €T «— VaVy(z € X Ay € X N #y — (=(z € Clr({y})) V ~(y € Clr({z}))))-

Proof. Since for any x,A,B,EACB— (A€ NI — Be NF) (see [10], Theorem 4.2 (2)), then
we have

(X, 7) e T = \ max(\/ NF(A4), \/ NJ(4))

Tty ygA a¢A

= /\ max(N(X —{y}), NJ' (X — {z}))
zF#Y

= N\ max(1 - Clr({y})(z),1- Cla({z})(y))
TF£Y

= A\ S(Cla({y})(@)) vV ~(Cla({z}) ()
TFY

= [Vavy(z e X Nye X Ne#y — (2(z € Clr({y})) V ~(y € Clr({2}))))]-
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Remark 2.8. In crisp setting, one can have = (X,7) € T} — Vz({x} € Fg)
But this statement may not be true in general in fuzzifying topology as illustrated by the following
example.

Example 2.9. Let (X,7) be the fuzzifying topological space defined in Example 2.4. Then one
can have that 1
(X,7)eTf = 1 > 3= Vz({z} € Fr)].
Theorem 2.10. For any fuzzifying topological space (X,7),
E=Vr({z} € Fr) — (X,7) € T

Proof. Since Tr(A) < \,ca NF(A) (see [11], Theorem 3.3), then for any 1, x3, 1 # x2, we have

Ve({z} € Fr)l = N\ Fa(feh) = \ (X —{zh < N\ N\ NIX—{z})

rzeX reX ze€X yeX—{z}
< A NIX—{m})<NE(X—{z.})=\/ N
yeX —{za} zo¢A

Similarly, we have, [Vz({z} € Fr)| < \ N[ (B). Then,

z1¢B

Vz({z} € Fr)] < A\ min(\/ NJ(4), \/ NEi(B))

z1#To zog A z1¢B
= A\ min(NE(A),NE(B)=[(X,7) e TH.

17T 1¢B, 2¢A

Theorem 2.11.

E(X,7)€TE = VSVaVy(SCX)N(z € X)A(y e X)A(SBR2)A(S>Ty) — z=1y).

Proof. [(X,7) € Ty") = A,y V anp—o (V' (A) A N(B)),
[VSVaVy((S C X) A (J:GX) (e X)N(S>E)AN(S>Ry) — z=1)]
/\z¢y/\scx(\/sg,4 ( )\/\/sgBNR( )) /\xyéy/\SCX\/S%A\/SQB( ( )\/NR(B))

(1) If AN B =10, then for any S, we have S Z A or S ¢ B, and

NFA)ANFB)< \/ NF(A) or NEF(A)ANJ(B)< \/ N(B
S% A S% B
Consequently \V (NFA)ANFB) < N\ (V N4 v\ NF(B))
ANB=0 SCX 59 A S¥B

Also,
(X, 7) eTF] < VSVaVy(SC X)A(z € X)A(y € X)A (SR a) A (SD>Ry) — z=1y)].

(2) First, for any x, y with z # vy, if A\lé (NF(A) ANNJ(B)) <t, then NJ(A) <t or NJ(B)<t
n
provided AN B =10, i.e., AN B # () when A € (NJ); and B € (N}}),. Now, set a net S*: (NJ); x



O. R. Sayed and A. K. Mousa: Almost Separation Axzioms in Fuzzifying Topology
50 Journal of Advanced Studies in Topology 4(4), pp. 46-58, © 2013 Modern Science Publishers

(NJ)e — X, (A,B) — x(a,5) € AN B. Then for any A€ (NJf),, B € (NJ);, we have S*< A and
$*< B. Therefore, if $*¢ A and S*¢ B, then A ¢ (N),, B ¢ (NF),, i.e., N¥(A)V NX(B)) < t. Then

V' V WFA) VN (B)) <t Moreover, N\ \/ \/ (NF(A)VN/(B))<t.

S*% A S*¢ B SCXg92ASYB
Second, for any positive integer i, there exists x;, y; with x; # y;, and

\/ (NE(A)ANI(B)) <[(X,7) € T +1/i,

ANB=0

and hence /\ \/ \/ (NI(A) VN (B)) <[(X,7) e T3]+ 1/i.
SCX 59 ASEB

So we have

[VSVavy((S C X) A (aceX) (e X)N(S>Ez)A(SD>Ry) — z=1y)]
=AAV V@R VN(B)<[(X,7)eTS].
v#ySCX 57 ASE B
O

Definition 2.12. The fuzzifying regular-local base 3% of z is a function from P(X) into I =[0,1]
satisfying the following conditions:

(1) | B2 C NE, and
(2) FAeNF—3B(Bepfinze BCA).
Lemma 2.13.
EAcNE«—3IBBeBEANzeBCA).

Proof. From condition (1) in Definition 2.12 and Theorem 2.23 (3) of [10] we have, NF(A) >
NE(B) > BR(B) for each B € P(X) such that z € BC A. So, NF(A)> \/ BE(B). From condition

r€EBCA

(2) in Definition 2.12 we have N¥(A)< \/ BH(B). Hence NF(A)= \ BE(B).
@€BCA

Theorem 2.14. If S is a fuzzifying regular-local basis of x, then

E(X,7)eTf +—VaVy(r e X N\y€E X Ax #y — IB(B € BE Ay € ~(Clr(B)))).

Proof. From Lemma 2.13 we have:

V:EVy(a:GX/\yGX/\m#yHEIB(BGﬁR/\yE (Clr(B))))]
“ A min8E(B),~(1- NF(X - B))
r#y BEP(X)

=/ \/ min(85(B),N}(X - B))

£y BEP(X)

“AV \/ min(8F(B),B(C))

r#y BEP(X) yeCCX—-B

AV OV i) BE)

r#y BNC=0 z€DCB,ycECC

=N\ \V min( \/ 8¥D), \/ BE

x#y BNC=0 reDCB yeECC
= A\ V min(V(B),NJ(C) = [(X.7) € T3].

xz#y BNC=(
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Theorem 2.15. = (X,7) € R — (X,7) € R{}.
Proof. From Lemma 2.5 (1), the proof is immediate.
Theorem 2.16. (1) = (X,7) e T — (X,7) € RE;

(2) E(X,7)eTf — (X,7) e RN (X,7) € T}
(3) f TH(X,7)=1, then £ (X,7)eTf+— (X,7)eRFN(X,T)eT.

Proof. (1) TY'(X,7) = Ny, [H™ (2, y)] < A, [K ™ (2, y) — H(2,y)] = Ry (X, 7).
(2) It is obtained from (1) and from Theorem 2.15 (1).

(3) Since T (X,7) =1, for every z,y € X such that z # y, then we have [K%(x
[(X,7) € R{ A (X, 7) € T3] = [(X,7) € R = A\, min(1, 1 = [K"(z,y)] + [H"(z,y)
= /\#y[HR(x,y)] = TlR(XaT)'

S
=

Theorem 2.17. (1) E(X,7)eRl® (X,7) e T — (X,7) € T, and
(2) ETH(X,7)=1, then = (X,7)eR{®(X,7)eTf+— (X,7)eTE.

Proof.

(1) [(X,7)eR{®(X,7)eTf

=max (0, RF(X,7) + TJ(X,7) — 1)

=max(0, A\ min(1,1— [K%(x,y)] + [H"(z,)]) + /\ [K"(z,9)] - 1)
TF#Y THY

<max(0, /\ min(1,1 - [K"(z,y)] + [H" (z,9)]) + [K"(z,y)] - 1)
TFY

= N\ [H (z,9)] =T{(X,7).

TFy

(2) [(X,7) € R{®(X,7) € Tf] =[(X,7) € Ry]
= A\ min(1,1— [K"(z,y)] + [H"(2,y)])
TAY
= \[H (z,y)] =T{(X,7),
TAY

because, T (X, 7) =1, we have for each z,y such that x #y [K%(z,y)] = 1.

Theorem 2.18. (1) E(X,7)eTf — ((X,7) e R} — (X,7) € T}?), and
(2) E(X,7)eREY — (X,7) e T — (X,7) € TF).

Proof. From Theorem 2.16 (1) and Theorem 2.17 (1) we have
1) [(X,7)eTf— (X,7)e R} — (X,7) €T
=min(1,1 - [(X,7) € TF] + min(1,1 - [(X,7) € R{] + [(X,7) € TF]))

=min(1,1-[(X,7) e TJ]+1-[(X,7) € RY] +[(X,7) € T}))
=min(1,1— ([(X,7) e T]+[(X,7) e R} - 1) +[(X,7) € T[]) = 1.

(2) [(X,7)eRE — (X,7)eTE — (X,7) € TF)]
=min(1,1 - ([(X,7) € TOR] +[(X,7) € Ré?‘] -+ [(X,7) € TlR]) =1.
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]
Theorem 2.19. (1) = (X,7)eTF — (X, 7)€ RE;
(2) E(X,7) €Ty — (X,7) € R{ A (X, 7) € Ty
(3) f TfH(X,7)=1, then | (X,7)eTy+— (X,7) € REAN(X,T) e TE.

Proof. (1) The proof is similar to that of Theorem 2.16 (1).
(2) It is obtained from (1) above and Theorem 2.6 (3).
(3) The proof is similar to that of Theorem 2.16 (3).
Theorem 2.20. (1) E(X,7)eRi® (X,7)e Tl — (X,7)€T¥, and
(2) f TR(X,7)=1, then E (X,7)e RE® (X,7)e T+ (X,7)€TE.
Proof. The proof is similar to that of Theorem 2.17 (1) and (2), respectively.
Theorem 2.21. (1) = (X,7)eTf — ((X,7) € R} — (X,7) € T}}), and
(2) E(X,7) e R — ((X,7) € Tj" — (X, 7) € T3).

Proof. The proof is similar to that of Theorem 2.18 (1) and (2), respectively.
U
Theorem 2.22. If TF(X,7) =1, then:

1) E((X,7)eTf — (X,7) e R — (X,7) e TE) AN (X,7) € TE — ~((X,7) e Tff —

B
™
=
2
Mm
iy
°%
l
=
2
m
I

ool
l
=
2
m
~
=
>
=
2
Mm
~

=
l
N
=
)
m
e
Sy
l

Proof. For simplicity we put, Tf(X,7) = o, R¥(X,7) = and T(X,7) = . Now, applying
Theorem 2.17 (2), the proof is obtained with some relations in fuzzy logic as follows:

(1)

l=(a@f+—=y)=(a@B—=7)A(y—a®p)
“((@®p)@-)A-(y®-(a®B))
=-(a@-(=(B@-")A-(y® (a— =p))
=(a—2(B-7)A(y — ~(a—=p))
=(a— (B—7)AN(y— ~(a—=8))),

since ® is commutative one can have the proof of statements (2) - (4) in a similar way as (1).

By a similar procedure to Theorem 2.22 one can have the following theorem.
O

Theorem 2.23. If T(X,7) =1, then:

1) E(X,7)eTf — (X,7) € RE — (X,7) e TE) A ((X,7) e TF — ~((X,7) e T} —
~((X,7) € R)));

2) E((X,7)eRF — (X,7) eTf — (X,7) e T AN ((X,7) e TF — ~((X,7) e Tff —
~((X,7) € RY)));
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B) E((X,7)eTf — (X,7) e RF — (X,7) e T AN((X,7) e TF — —=((X,7) € REF —
ﬁ(((Xa )GTR ));

4) E((X,7)e Rt — (X,7) e T — (X,7) e TH)) A ((X,7) € TF — —((X,7) € RF —
~((X,7) € TH)).
Lemma 2.24. (1) If DC B, then \/ NZEF(A)= \/  NE(A),
ANB=0 ANB=0, DCB
® Am\lé:(ﬂ é\DNyR(X —A4)= AmB:\@/ DCBTR(B)'
Proof. (1) Since D C B, then:
\/ Nf4)= \/ NR)A[DCB= \/ NR(A).
ANB=0 ANB=0 ANB=0, DCB

(2) Let y € D and AN B ={. Then,
V. m® =\ mBapeD

ANB=0, DCB ANB=(, DCB

yeDCBCX—-A yEBCX—-A
= NJ(X - A\ Nj(x - A)
yeD
V AN(x-4
ANB=0 yeD

Definition 2.25.
RTV(X,7):=Va¥D(x e X ADe F Az ¢ D —3A(Ae NFA(DC X —Clg(A)))).

Theorem 2.26. = (X,7) € T «— (X,7) € RT{".
Proof. Now, we have

RTM(X,7) = /\ min(1,1 —7(X — D)+ \/ min(NZ(A), /\(1*053(/1)(9))))

z¢D A€eP(X) y€ED
= A\ min(1,1-7(X-D)+ \/ min(N](4), /\ NJ(X - A)))
z¢D AeP(X) yeD

and  TH(X,7)= A min(l,1-7(X-D)+ \/ min(Nf(4),7x(B))).

@¢D ANB=0, DCB
So, the result holds if we prove that
\V min(VF(A), AN (X -A)=\/  min(NF(A),7x(B) (%)
A€EP(X) yeD ANB=0, DCB

It is clear that, on the left-hand side of (x) in the case of AN D # () there exists y € X such that
yeDandy¢ X —A. So, A\ NJ(X—A)=0 and thus (*) becomes

yeD
\V min(NF(A), A NF(X-A)=\/  min(N(4),7:(B)),
AeP(X), ANB=0 yeD ANB=0, DCB

which is obtained from Lemma 2.24.
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O
Definition 2.27.
RTYY(X,7):=VaVB(z € BABer— 3A(Ae NEACIR(A) C B)).
Theorem 2.28. = (X,7) € T «+— (X,7) € RT{”.
Proof. From Theorem 2.26, we have
TH(X,7)= N\ min(L,1-7(X -D)+ \/ min(NF(4), \ NF(X - A))).
xgD AEP(X) yeD
Now,
RT (X, 7) /\ min(1,1—7(B)+ \/ min(N(A), /\ (1-Clgr(A)(y))))
r€B A€eP(X) yeX—B
= Amin(1,1-7(B)+ \/ min(NF(4), N\ (1-(1-NHX-A)))
zeB AeP(X) yeX-B
= A min(L,1-7(B)+ \/ min(N}(4), A\ NF(X-A).

zeB AEP(X) yeX-B

Now, put B=X — D, we have
RT{(X,7) = \ min(1,1-7(X —D)+ \/ min(NF(A), A\ NJF(X - 4)))
xgD AEP(X) yeD
=THX, 7).
O

Definition 2.29. Let ¢ be a subbase of 7, then:

RT®(X,7):=VaVD(z € DAD € ¢ — 3B(B € NEAClg(B) C D)).

Theorem 2.30. = (X,7) € T «— (X,7) € RT{Y.
Proof. Since [ C 7] =1, and with regard to Theorems 2.26 and 2.28 we have
RTyY(X,7) > RTyY (X, 7) = T (X, 7).

So, it suffices to prove that RT\"(X,7) < RT:¥(X,7) and this is obtained if we prove for any
TEA,

min(1,1-7(4)+ \/ min(N(B), A\ NFX-B)))>RT (X, 7).

BeP(X) yeX—A

Set RT;B) (X,7) = 0. then, for any z € X and any D,, € P(X),\; € I, (I, denotes a finite index
set), \e A, U () Da, = A we have,

AEA N\ €Ty

1—p(Dy)+ \/ min(NF(B), A\ NI X-B)>5>d—¢

BeP(X) yEX—Dy,
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%)

where € is any positive number. Thus,

\/ min(NF(B), N\ NHX-B))>¢(D)-1+d6—c

BeP(X) yeEX—Dj,

Set v), ={B:BC D,,}. Then, from the completely distributive law we have

AV minVF(B), A Ni(X-B))

)\iEI)\ BEP(X) yEX—D)\_L_

=V A min(NE(FO), N\ NHX = F()
FEM{vn, s A €IN} Al yEX—Djy,

=/ min( A NGO, AN NX =)
FE{v, M€Y A€l A€y yeX —Dy,

=V min( A NGO, A\ N = F)
fEH{'yM_:)\ieI/\} N €Ty yeA_LéJI)\X—DM

= \/ min( A NFB), A NI(X-B)
BeP(X) NETy ve, U, X=Dy,

= 5N

= \/ min(N(B), A N}X-B)),

BeP(X) yeA_LEJI/\X—DAi

where B = f(\;).
Similarly, we can prove

A\ min(Nf(B N\ NHX-B)

A€A BeP(X) ue)\ U, X-Dy,

i€
— O\ mn(NAB), A NE(X-B)
BeP(X) yeALeJAxLlekfoAi
< \/ mn(NEB), A NF(X-B)
BepP(X) ye)\gA)\~gI>\X7D>‘i
< \/ min(NAB), A\ NE(X-B)),
BeP(X) yeX—A

so we have

\/ min(NF(B), N\ NJ(X-B))

BeP(X) yeX—A

>A AV min(Vi(B), A NiX-B)
AEA N;EDy BeP(X) yEX—DAZ_

> /\ /\ —14+0—¢
AEA NETy

For any I, and A that satisfy |J [) D\, = A the above inequality is true. So,
AEA N €Ty

\/ min(NF(B), \ NJ(X-B))

BeP(X) yeX—A

=V AV AeDy)-t4i—c

UxeaDax=A AeA m)\iEIADAi:DA AN ETy

=7(A)—1+0—ce¢
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ie, min(1,1-7(4)+ \/ min(NF(B), N\ NHX-B))=di—c

BeP(X) yeX—A

Because e is any arbitrary positive number, when € —» 0 we have RT\> (X,7)>d= RT (X,7).
So, = (X,7) e TR +— (X,7) € RT{Y.

]
Definition 2.31. Let (X, 7) be any fuzzifying topological space.

(1) RT{V(X,7):=VAYB(Ae TABEFAANB=0—3G(GeTANACGABCX —Clg(Q))),
and
(2) RTY(X,7):=VAVB(Ac FABeTANACB—3G(GeTANACGACIR(G)C B)).

Theorem 2.32. = (X,7) € TF «+— (X,7) € RT", where i =1,2.
Proof. The proof is similar to that of Theorems 2.26 and 2.28.

3. Relation among fuzzifying separation axioms

Lemma 3.1. For any o, 5 € I, we have (1A (1—a+p))+a<1+p.
Theorem 3.2. = (X,7) €Ty (X,7)eTy — (X,7) € TH.
Proof. From Theorem 2.2 [8] we have, T7(X,7) = A 7(X —{y}) and applying Lemma 3.1 we

yeX
have,

THX,7)+Ti(X,T)
= Amin(L1-7(X-D)+ \/ min(Nf(A),TR(B))) + A\ n(X = {y})

z¢ D ANB=0, DCB yeX

< A /\ min (1,1—7’(X—{y})+ \ min(Nf(A),Nf(B))> + A\ 7(X = {y})

zeX, z#y yeX ANB=0 yeX

S (/\min<1,1—7<x—{y}>+ \/ min<N§<A>,Nf<B>>>+/\T<X—{y}>)
r€X,zAy “yeX ANB=0 yex

< A /\(min<171—T<X—{y}>+ \/ min(N;*(A),Nf(B)))+T<X—{y}>)

zeX, rAyyeX ANB=0
<A1+ V min(Nf(A),Nf(B))> =1+ /\ 'V min(NJ(4),NJ(B)) =1+T/(X,7),
Ay ANB=0 r#y ANB=0
namely, T(X,7) > TH(X,7) + T1(X,7) — 1. Thus, T(X, 7) > max(0, T(X,7) + Ty (X,7) — 1).
O
Theorem 3.3. =(X,7)eTf® (X,7)eT, — (X,7) € T{.

Proof. Tt is equivalent to prove that T(X,7) > TH(X,7)+ T1(X,7) — 1. In fact,

THX,7)+Ti(X,7) = /\ min (1, 1 —min(7(X — E),7(X — D))
END=0

+ \ min(TR(A),TR(B))) + N\ n(X = {z})

ANB=0, ECA, DCB z€X

< /\ min (1, 1 —min(r(X —{z}),7(X — D))

x¢D
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Y. min(Nf(A>,m<B>>)+/\T<X—{z}>

ANB=0, DCB zeX

1, max (1 —r(X-D)+ \/ min(N(A),7x(B)),1 - (X —{z})
ANB=0, DCB
Vw8 ) + A X - (e
ANB=0, DCB zeX
min (1,1—T(X—D)+ \/ min(Nf(A),TR(B))),min (1,1—T(X—{x})

ANB=0, DCB

= min

8
LGS
&)

/N

_|_

I
=)

ax

5
n
g

VR

+

Vi) () ) A 7O )

ANB=0, DCB z€X

min(l,l—T(X—D)—l— \/  min(NF(A),7(B))) + (X —{z}),

ANB=0, DCB

N

< /\ max
x¢ D

ANB=0, DCB

)
min (1,1 X+ min(Nf(A),TR(B))) Fr(X — {g;})>
< /\ max (min (1,1—7'(X—D)—|— \/ mm(Nf(A),TR(B))) +T(X—{gc}),1>

x¢D ANB=0, DCB

< /\ (min (1,1—7'(X—D)—|— \/ min(Nf(A),TR(B))) —|—1>
x¢D ANB=(, DCB

= /\ min <1, 1-7(x-D)+ \/ min(Nf(A),TR(B))> +1
x¢D ANB=0, DCB

=THX,7)+1.

4. Conclusion

This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topolo-
gies) introduced by Ying [6]. It extend some fundamental results in general topology to fuzzifying
topology.
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