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1. Introduction and preliminaries

In the last few years fuzzy topology, as an important research
field in fuzzy set theory, has been developed into a quite ma-
ture discipline [3-8]. In contrast to classical topology, fuzzy
topology is endowed with richer structure, to a certain extent,
which is manifested with different ways to generalize certain
classical concepts. So far, according to Ref. [4], the kind of
topologies defined by Chang [9] and Goguen [10] is called
the topologies of fuzzy subsets, and further is naturally called
L -topological spaces if a lattice L of membership values has
been chosen. Loosely speaking, a topology of fuzzy subsets
(resp. an L -topological space) is a family t of fuzzy subsets
(resp. L -fuzzy subsets) of nonempty set X, and 7 satisfies the
basic conditions of classical topologies [11]. On the other hand,
Hohle in [12] proposed the terminology L-fuzzy topology to be
an L-valued mapping on the traditional powerset P(X) of X.
The authors in [6,7,13,14] defined an L-fuzzy topology to be
an L-valued mapping on the L-powerset L* of X.

*

Tel.: +20 1115242205.
E-mail addresses: o_sayed@aun.edu.eg, o_r_sayed@yahoo.com.

In 1952, Rosser and Turquette [15] proposed emphatically
the following problem: If there are many-valued theories be-
yond the level of predicates calculus, then what are the detail
of such theories ? As an attempt to give a partial answer to this
problem in the case of point set topology, Ying in 1991-1993
[2,16,17] used a semantical method of continuous-valued logic
to develop systematically fuzzifying topology. Briefly speaking,
a fuzzifying topology on a set X assigns each crisp subset of X
to a certain degree of being open, other than being definitely
open or not. Roughly speaking, the semantical analysis ap-
proach transforms formal statements of interest, which are
usually expressed as implication formulas in logical language,
into some inequalities in the truth value set by truth valuation
rules, and then these inequalities are demonstrated in an alge-
braic way and the semantic validity of conclusions is thus
established. There are already more than 100 papers in fuzzify-
ing topology published in the last two decades, I guess. But
only a few papers can properly use the semantic method intro-
duced in the original papers of Ying, which I strongly believe,
can provide more delicate characterization of fuzzifying topo-
logical structure. So far, there has been significant research on
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fuzzifying topologies [18-24]. For example, Ying [22] intro-
duced the concepts of compactness and established a general-
ization of Tychonoff’s theorem in the framework of fuzzifying
topology. In [24] the concept of local compactness in fuzzifying
topology is introduced and some of its properties are estab-
lished. In [18] the concepts of fuzzifying a-open set and fuzzify-
ing a-continuity were introduced and studied. Also, Sayed [21]
introduced some concepts of fuzzifying o-separation axioms
and clarified the relations of these axioms with each other as
well as the relations with other fuzzifying separation axioms.
Quite recently, Sayed in [1] used the finite intersection property
to give a characterization of fuzzifying a-compact spaces. In
classical topology , a-compact spaces and locally a-compact
spaces have been studied in [25,26]. In this paper, the concepts
of a-base and a-subbase of fuzzifying a-topology are intro-
duced. Other characterizations of fuzzifying a-compactness
are given, including characterizations in terms of nets and o-
subbase. Several characterizations of locally a-compactness
in the framework of fuzzifying topology are introduced and
the mapping theorems are obtained. Thus we fill a gap in the
existing literature on fuzzifying topology. We use the terminol-
ogies and notations in [1,2,16-18,21,22,24] without any expla-
nation. We note that the set of truth values is the unit interval
and we do often not distinguish the connectives and their truth
value functions and state strictly our results on formalization
as Ying does. We will use the symbol ® instead of the second
“AND” operation A as dot is hardly visible. This mean that
[€] <[ = Y] <= [¢] @[] < [Y]. All of the contributions in
general topology in this paper which are not referenced may
be original.

We now give some definitions and results which are useful
in the rest of the present paper. The family of all fuzzifying o-
open sets [18], denoted by 7, € I(P(X)), is defined as

A€, = Vx(x € A— x € nt(Cl(Int(A4)))), i. e., 1,(A4)
= N\ Int(Cl(Int(4)))(x).

xeAd
The family of all fuzzifying a-closed sets [18], denoted by
F. € 3(P(X)), is defined as 4 € F, := X — 4 € 1,. The fuzzify-
ing o-neighborhood system of a point x € X [18] is denoted by
N*'(or N) € 3(P(X)) and defined as N*(4) = \/ ,(B).
xeBCA

The fuzzifying o-closure of a set 4 c X [18], denoted by
Cl, € 3(X), is defined as Cl,(4)(x) =1 — Ni(X — A). If (X,7)
is a fuzzifying topological space and N(X) is the class of all nets
in X, then the binary fuzzy predicates >*, * € JI(N(X) x X)
[23] are defined as

Sb¥x =V A (A eN” - SéA) ,Soc*x =V A (A eN" = SEA) ,

oL

where “Sp%x”, S o *x”” stand for ““S a-converges to x”, “x is
an o-accumulation point of S, respectively; and “C”, “C” are
the binary crisp predicates “almost in ““,”often in”, respec-
tively. The degree to which x is an a-adherence point of S is
adh,S(x) = [Se“x]. If (X,7) and (Y,0) are two fuzzifying
topological spaces and fe Y*, the unary fuzzy predicates
C,, I, € 3(YY), called fuzzifying a-continuity [18], fuzzifying
o-irresoluteness [1], are given as C,(f):=VB(B€o—
(B et,), I()=VBBco,—f'(B)e1,), respectively.
Let Q be the class of all fuzzifying topological spaces. A unary

fuzzy predicate 75 € 3(£2), called fuzzifying a-Hausdorffness
[21], is given as follows:

T3(X, 1) =VaVy((x e XAy € X Ax#y) —» IBIC(BE€ NLAC
EN,ABNC=9)).

A unary fuzzy predicate I' € 3(Q), called fuzzifying compact-
ness [22], is given as follows:

I(X,7) := (YR)(K(R, X) — Bp)((p < R) A K(p, 4) @ FF(p)))

and if 4 c X, then I'(4):=I'(4,7/A4). For K, K, (resp. < and
FF) see [16, Definition 4.4] (resp. [16, Theorem 4.3] and [22,
Definition 1.1 and Lemma 1.1]). A unary fuzzy predicate
ST € 3(I(P(X))), called fuzzy finite intersection property [22],
is given as

SI(R) :=Vp((p < R) A FF(p) — IxVB(B € p — x € B)).

A fuzzifying topological space (X, 1) is said to be fuzzifying o-
topological space [1] if 7,(4 N B) = 1,(A4) A 7,(B). A unary fuz-
zy predicate LC € 3(Q), called fuzzifying locally compactness
[24], is given as follows: (X,7)€ LC:=(Vx)@B)((x €
Int(B) ® I'(B,t/B)).

2. Fuzzifying a-base and a-subbase

Definition 2.1. Let (X, 1) be a fuzzifying topological space and
pr< 1, Then f, is called an a-base of t, if S, fulfils the
condition:

A€ N —3B(Bep,)N(xeBCA)).

X

Theorem 2.1. f3,is an a-base of 1, if and only if t, = ﬁiu), where

V. A\B.BY.

U B,—A/€A
A"

B (4) =

Proof. Suppose that f, is an a-base of 7,. If
UBZ = A7
reA

then from Theorem 3.1 (1) (b) in [18],

©,(4) —ra(UB;) > N\w(B) = \B.(B)).
reA 1€ L€
Consequently,

W)=\ ABB).
UBz:ALEA

reA
To prove that

\V  AB.(B),

U B,—A/EA
seA

we first prove

t(d4) =\ \/ w(B)

xeAxeBC A

7,(A4) <
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(Indeed, assume y, =
f HVEA

and furthermore

=T <Uf(X)>

=AV =@

Also

xeA

xeAxeBC A

{B:x € Bc A}. Then for any

Urx) = 4,

xeAd

w(d) < \ 'V w®).

xeAxeBC A

Therefore

w) =\ \V wB).

xXeEAxeBC A
Now, since
N <\ BB n(A4) = N\ w(B) = AN (4
XEBC A XEAXEBC A XEA
<AV E®=V AL(x)
XEAXEBC A fEH s .',7‘xeA
Then
\ A\B.B
UB;.:ALEA
AEA
Therefore

V' ABB)
UBL:AAEA

reA

In the other side, we assume

V' Ab(B
UB/ :AAGA

reA

7,(4) =

and we will show that f, is an a-base of 7, i.e., for any

ACX, N‘

Indeed, if
xXEBCA, UB;\:B,

<\ B.(B)

XeEBCA

€A

> N\u(fx) >

Vo Anlx)

/€HY€AA’“X€A

then there exists 4, € A such that x € B;, and

/\B.(B (B.) < \/ B.(B).

reA

Therefore

N2 (4) =

xeBCA

)

Theorem 2.2. Let f§, € I(P(X)). Then f, is an a-base for some
fuzzifying o-topology 1, if and only if it has the following
properties:

(1) B X) =

L;
() E(Aep)A(BeB,)N(xeANB)— 3C((C
€f)N(xeCCANB).

Proof. If 8, is an a-base for some fuzzifying o-topology t,,
then 7,(X) = p”(X). Clearly, Y (X)=1. In addition, if
x € AN B, then

B.(A) A B,(B) < t(4) ATu(B) < 7,(AN B) < N¥ (40 B)

€eCC ANB

Conversely, if f, satisfies (1) and (2), then we have 1, is a fuzz-
ifying  o-topology. In fact, 1,(X)=1. For any
{A;:4 € A}  P(X), we set

= {{B,j/i 10, € A,} : U B(jl1 = A,}

9,€4;
Then for any

Selleo U U 8, =4

/eAB) €f(2) reA

Therefore

(U] v e
€A UBé _ UAZ(SGA
oeA reA

> VAN BB

/€H 9,~€ABs, €f(2)

= /\ \/ /\ ﬁa(BrS;) = /\Ta((A )

/ieA{B,)/ :0,€A, }€y,0,€4; reAd

Finally, we need to prove that 7,4 N B) = 1,(A4) A 1,(B).
If 7,(4)>1t 1,B)>1t then there exists {B; :
)»1 (S Al}a {B;v2 : /12 S /12} such that

UBi=4, |JB.,=8B

Aeq; Ja€dy

and for any 4, € Ay, f,(B;,) > t,forany 1, € Ay, B,(B,,) > t.
Now, for any x € 4 N B, there exists A;, € Ay, 4», € 45 such
that x € B, N B,,.. From the assumption, we know that

(< BB )AB(BL) <\ B0

xeCC B,l\mB,ZY
and furthermore, there exists C, such that
xeC,CB;, NB), CANB, ﬁj(C\) > 1.

Since |J C,=ANB, we have

xeANB
A B(Co< \/ AB(B)=r(4nB).
xXeEANB UB;.:AFWB/EA
reA

Now, let 7,(4) A 1,(B) = k. For any natural number n, we
have 7,(4) >k —1, 7,(B)>k—1and so 1,(4NB) = k-1
Therefore 1, (A NB) = k = 1,(A) A1(B). O
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Recall that if (X, 1) is a topological space and 1, is the col-
lection of all ¢-open sets in X, then an a-subbase of 7, is a col-
lection S of a-open sets such that every a-open set is the union
of sets that are finite intersections of elements from S. There-
fore we have the following definition.

Definition 2.2. ¢, € 3(P(X)) is called an a-subbase of 1, if ¢
is an a-base of 7,, where

(p;m <ﬂ3/> = \/ /\(pm(B/l)v {B/ DA S A}@P(X)v
N

reA B,—A/€A
jen "
with “€” standing for “a finite subset of™.

Theorem 2.3. ¢, € 3(P(X)) is an a-subbase of some fuzzifying
a-topology if and only if ¥ (X) = 1.

Proof. We only demonstrate that ¢ satisfies the second con-
dition of Theorem 2.2, and others are obvious. In fact

@5 (4) A g (B) = ( VoA %(Bz,)) A ( V A (/’1(3/‘.:))
n,, ey By =4hed ﬂ/z(f/lz Biy =pi2€42

-V Y, ( /\«m(B,-.,))A</\%<Bzz>>

- —p \h€4 Jn€dy
mqmlk’x An/gmzkﬂz B

< \/ </\%(3/’.)> = @i (AN B).

N, Bi=AnB \ie4
ieA

Therefore if x € A N B, then

Pl(A) N o}(B) < gf(ANB) < \/ of(0). O

xeCC ANB

3. Fuzzifying a-compact spaces

Definition 3.1. A binary fuzzy predicate K, € J(I(P(X))x
P(X)), called fuzzifying o-open covering [l], is given as
K,(M,4) :=KR,A) @ (RC1y). A unary fuzzy predicate
I'y € 3(Q), called fuzzifying o-compactness [1], is given as
follows:
(X,7) € I'y := (YR)(K,(R, X)—(Fp)((p

< R) A K(p, X) @ FF(p)))
and if 4cX, then I',(A):=I,(A,t/A). It is obvious that
I',(X,7):=I'(X,1,) and | K, (R, 4)—K,(R, 4).

Theorem 3.1. Let (X, 1) be a fuzzifying topological space, ¢, be
an a-subbase of 1, and

Bi = (YR)(K,, (R, X) — Fp((p < R) A K(p, X) @ FF(p))),
where K, (R, X) = K(R,X)® (RCo,);

B, := (VS)((Sis a universal net in X) — Ix((x € X) A (S>*x));
By = (VS)((SeNX)— 3T (3Ex)((T< S) A (x € X) A (TH"x)),

where “T < S stands for “T is a subnet of S”’;

By = (VS)((S € N(X) — —(adh,S = ¢));

Bs = (VR)(R € I(P(X)) ARCF, ® fI(R) — IxVA(A € R
— X € A)).

Then ¥(X,x)el, - pi=12,...,5.
Proof.

(1) Since ¢, C1,, [RCo,] < [RC1,] forany R € I(PX)).
Then [K,, (R, X)] < [K,(R,X)]. Therefore I'y(X,1)<

[B1]-
@ ) = /\ {\/[Sl>“x] : S is a universal net in X}.

xeX

(2.1) Assume X is finite. We set X = {xy, ... ,x,,}. For any uni-
versal net S in X, there exists i, € {1,...,m} with SC{x; }. In
fact, if not, then for any ie{l,...,m}, SZ{x},
SCX —{x;} and SCN_,(X —{x;}) =¢, a contradiction.
Therefore x;, ¢ 4 and N7 (A) =0 (see[18], Theorem 4.2 (1))
S¢A, and [So*xi] = A

SZ4

provided furthermore

(1 -N (A)) — 1. Therefore [f5] = 1 = [B].
(2.2) In general, to prove that [f8] < [f2] we prove that for any
A€]0,1], if [B5] < 4, then [] < 4. Assume for any 4 € [0, 1],
[B>] < A. Then there exists a universal net S in X such that
V [S*x] < 4 and for any xeX, [S*x]= A
yex N
(1 - N*(4)) < 2, ie., there exists AcX with S 4 and
N%(A4) > 1 — 2. Since ¢, is an o-subbase of 7,, @7 is an «-base
of 1, and from Definition 2.1, we have
V ¢%(B) = Ni(4) >1—14, ie., there exists BC A such

xeBCA
that x € Bc A4 and

\/ {mini.eA(pz(BZ) : ﬂBz =BB,CX,ic /1} = ¢} (B)

reA

>1-4

where A is finite. Therefore there exists a finite set A4 and
B,cX(AeA) such that () B,=B and for any

e
re A, @,(B;) > 1 — A Since S A and A is finite, there exists
),(X) € A such that Sd B,;(x).We set ERO(B;V(X)) = v (/)z(BZ(.\’))' If

xeX

o < N,, then for any 6 > 0,p5 < {B)):x € X}. Consequently,
for any B € p;, S ¢ B and SCB because S is a universal net. If
[FF(p)] = 1 —inf{d € [0,1]:F(ps)} = t, then for any n € w (the
non-negative integer), inf{d € [0,1]: F(p,;)} <1 —r+1 and
there exists J, < 1 — 741 such that F(ps,). If d, = 0, then
P(X) = gy, is finite and it is proved in (2.1). If §, > 0, then
for any Be€g,;,SCB°. Since F(ps,), we have
SC{B: B € ps}#0¢. ie., Ups # Xand there exist x, € X
such that for any B € @s., X, ¢ B. Therefore, if x, € B, then
B ¢ 50> i.e.,

p(B) < do,K(p, X) = /\\/p(B) < \/go(B) <oo< 1 ft+%.

xeXxeB X.EB

Let n—>oo. We obtain K(p,X)<1—1¢t and [K(p,X)®
FF(p)] = 0. In addition, [K, (R.,X)]>1—-/4 In fact,
[R. C ,] =1 and
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(K%, X)) = AV R(B) = \R(Biw) = \ou(Biw)

xeXxeB xex xex
=>1-
because x € B;(y). Now, we have
[Bi] = (VR)(K,, (R, X) — Tp((p < R) A K(p, X) ® FF(p)))
< Kw,(iRwX) — Jp((p < R) A K(n X) ® FF(p))
(R, X)+ \/ [K(p, X) @ FF(p))] < 4.

P<NR,

=min(l,1 —

By noticing that A is arbitrary, we have [;] < [f2].
(3) It is immediate that [$,] < [83].
(4) To prove that [B3]<[f4], first we prove that
BETUT < S) A (TH*x))] < [S < “x], where [T ((T < S)

AT =V A (1=N(4)  and  [Soc] =
T<S 7¢4

A (1 = NZ(4)). Indeed, for any T < S one can deduce

S A

{4:S74}C{4:T ¢ A} as follows. Suppose T = So
K. If SiZA, then there exists m € D such that S(n) ¢ A
when n > m, where > directs the domain D of S.
Now, we will show that T(~ZA. If not, then there exists
p € E such that T(g) € 4 when ¢ > p, where > directs
the domain E of 7. Moreover, there exists n; € E such
that K(n;) = m because T < S, and there exists n, € E
such that n, > n;,p because (E,>) is directed. So,
K(ny) = K(ny) = m,SoK(n,) ¢ A and SoK(n,) =
T(ny) € A. They are contrary. Hence {4 :SiA}g
{4:17¢ A}. Therefore

[BT((T < S) A =V A(O-
T<ST¢ A
=V A )< N\ (1-M)
T<S{4:T A} {4:57 4}
— /\ (1 — Ni(A)) = [Soc*x].
S74

Therefore for any x € X and S € N(X) we have

Bl= A VBET(T<S)A < A\ VIS
SeN(X)xeX SeN(X)»ceX
= /\ —\</\(1 — [S(X“x})) = /\ [ (adh,S = ¢)]
SeN(X) xeX SeN(X)
= [B4]-
(5) We want to show that [f4] < [fs]. For any R € 3(P(X)),
assume [fI(M)]=A. Then for any o6 >1-—4, if
Ay ooy A €Rs, AiNAyN .. NA,#¢. In fact, we set
(4) =V R(4;). Then p <R and FF(p) = 1. By
putting e = 2 + 6 — 1 > 0, we obtain
i—e< A< [FF(p) — (3x)(VB)(B € p — x € B)]
= VAU -p(B)

xeXx¢B

There exists x, € Xsuch that 1 —e¢ < A (1 —
Xo¢B

plies p(B)y <1—4A+&e=0 and x,€Nps = A NA,N...
N A, Now, we set 9, ={41NAN...NA,:n€NA,...,
A, € R;} and S:95— X,Br>xp€ B,Bc s and know that
(¥s,<) is a directed set and S is a net in X. Therefore

@(B))7xo ¢ Bim-

[Bs) < [~(adh,S = ¢)] =

VA (1= Nia)

xEXSZ™ A

[RCF,]=u Then for any Be€ P(X), R(B) <
— i, and

Assume
1+ F,(B)

[RCE, @ fI(R) — (Gx)(VA)(A € R) — x € A)]

=min(1,2— pu— i+ \/ \(1 - R4

xeXx¢A

Therefore, it suffices to show that for any

xe X, N(1=Ni(A) <2— i+ \(1 - R(4)),

Sz x¢A

ie.,

\V/ R(4) <2- 2+ \/ N (4)

x¢A Sz A

for some 6 > 1 — A.For any ¢ €[0,1], if \/ R(4) > ¢, then
x¢A

there exists A, such that x, ¢ 4, and R(A4,) > ¢.

Case l.t1<1— A, thent <2 —pu—2+ \/N"( ).
Sz 4
Case2.t > 1 — 4. Here weset 6 =1 (r+ 1 — 2) and have

A, € Rs, 4, € Ys. In addition,

1< R(A) <1+ F(A) — iyt + 1 — 1 < Fy(A.) = 1,(4°).

Since A, € ¥s5, we know that Spze€ A4,, ie., Sp¢ A. when
Bc A, and StZ AS. Therefore,

2—p—i+ \/ Ni(A4)
Sz A
+1,(A4S) = t+

>2—pu—A+N(A) =22—pu—2

(1-2) =1t

By noticing that t is arbitrary, we have completed the proof.
(6) Toprovethat[fis] = [(X,7) € I',]see[l] Theorem3.3. O

The above theorem is a generalization of the following
corollary.

Corollary 3.1. The following are equivalent for a topological
space (X,7).

(a) X is an a-compact space.

(b) Every cover of X by members of an a-subbase of 1, has a
finite subcover.

(c) Every universal net in X a-converges to a point in X.

(d) Each net in X has a subnet that a-converges to some point
in X.

(e) Each net in X has an a-adherent point.

(f) Each family of o-closed sets in X that has the finite inter-
section property has a non-void intersection.

Definition 3.2. Let {(X|,t,):s € S} be a family of fuzzifying
topological spaces, HAGSX be the cartesian product of
{X;s€S} and ¢ = {p :s€8,Us € P(X,)}, where
P [LesXs = Xi(t€S) is a prO_]eCthIl. For ®c ¢, S(D)
stands for the set of indices of elements in ®. The «-base
B, € I(IL,esXs) of TT,cs(ts), is defined as
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Vep, = (3(D)<<I>@<p A (ﬂqb = V)) —Vs(s € S(®) — V, € (1,),), ie.,

=\ N\ @),

(p@w.ﬂ P=sES(P)

Definition 3.3. Let (X,7) and (Y,0) be two fuzzifying
topological space. A unary fuzzy predicate O, e J(Y%), is

called fuzzifying o-openness, 1is given as follows:
O,(f) =VUU € 1, > f(U) € 6,). Intuitively, the degree to
which f is aopen is [0,()]= A min(l,1 -7, (U)+
o, (f10))).

Lemma 3.1. Let (X,t) and (Y,a) be two fuzzifying topological
space. For any f € Y*, 0,(f) := VB(B € B — f(B) € 7,), where
[)’f is an o-base of 1.

Proof. Clearly, [0,()] < [VU(U € B} — f(U) €a,)]. Con-

versely, for any U C X, we are going to prove

w(U) +a,(AV)) = [WV(V € B — /1V) € 0,)].

min(1,1 —

If 7(U) < 0,(f(V)), it is hold clearly. Now assume t,(U) >

o, (flU)). If RCPX) with JR=U, then [, 4f(V)=
(U). Therefore

AUR) =1
L) -a)= \  ABW
RCPY Um UVeR

— OV Aen

oS P Jo=Rt) Ve

< Vo ABEWD

nc (x| Jr=uren

wC P(x)| Jr=ureR

< VA -y

nc p(x)| Jr=uren

\/ /\mm - X

RC P(x)| JR=UVeR

VV(Vep, —f(V)€a,)]. O

")),

min(l,1 —

7,(U) + a,((V))) =

+0,(f(V))) =
Lemma 3.2. For any family {(Xy, 1) :s € S} of fuzzifying topo-
logical spaces. (1) F(Vs)(s€eS—p,€0,);, and (2)
E(Vs)(seS—>p,eC,).
Proof.

(1) For any ¢ € S, we have

Ox(pl) = /\
ver([1.s%)

Then it suffices to show that for any U € P(HSeSXS), we have

> ([L..) ().

min (1,1~ (T (=), ) (0) + (), (V).

(%), (P,(V))

Assume

(L))o= V AV A @o)sa

Ujen B;=UkcAP;€0,NP;=B;scS(D,)

where @, = {p;!(V,) : 5 € S(;)}(4 € A).Hence there exists
{B;: €A} CP(H(Eg s) such that |J B, = U and further-

reA
more, for any 4 € A, there exists ®; € ¢ such that N®, = B,
and (N p;'(V,) = B;, where for any s€ S(®;) we have

seS(P))
. ))

(t)s(Vy) > . Thus p,(U) = (U N rs
= ¢, then U = ¢,

reA seS(d;)
(1) Ifforany Ae A, N p;'(Vy)
SES(P;)

pAU) = ¢ and (1.)(pAU)) = 1. Therefore

(), (P (U)) = ([Tyes(t),) (U).
(2) If there exists 4, € 4, such that ¢ () p;'(V,) = B,.,

seS(®;)
() If1¢S(@,), ie.teS5—S(®

) pt(B ) =X,
Therefore (t2),(p,(B..

))—(‘)(Xz)—l
(i) IftesS(d,), thenp,( .) =V,CX,. Thus

P,(U)_P,<( U B/io) U( U Bh))
1€8(®;,) 1£S (7, )

= U p/(BZo) U U pl(B/ic) =V,UX, =X.
1€8(d;,) 1#S(®;,)

Hence  (7,)(pAV)) = (t)(pAU)) =
() (V) > .

Therefore (1,),(p,(U)) = ([Les(t2),)(U). Thus O,(p,) = 1.

(2) From Lemma 3.1 in [17] we have E(Vs)(s € S —
p s € C). Furthermore, for any two fuzzifying to-
pological spaces (X,7) and (Y,0) and f'€ Y*, we
have C(f) < C,(f) (Theorem 6.3 (3) in [18]). Th-
erefore F(Vs)(se S—>p, e Cy). O

(t)(X) =1 or

Theorem 3.2. Let {( X, 1,):5 € S} be the family of fuzzifying
topological spaces, then

VU C][X ATL(U,t/U) A 3x(x € Int,(U))

ses

— IT(TES AVt € S— TAT,(X,,1,))).

Proof. It suffices to show that

Vo [nwgona \ozw)
ver([T.x) Lo

<\ A Hx,o).

TeSteS-T

Indeed, if

\V} rut/uyn \/ NJ(U)|>u>0,
ver([].o%) el Loy

then there exists U € P([],.sX,) such that I',(U,t /U) > pand
VN0 where N(0)= Y (Tl 00
xel

er.seSX"
Furthermore, there exists V' such that xe€ Vc U and

(IT,es(t2),) (V) > p. Since B, is an a-base of [1(x),.
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(Il @)=V AsBI= VA A @), (V) >
UjeaB;=VieA Ujen By =VieA®;€p.N®;=B;seS(®;)

where

@, ={p,' (V) :5€ S(®;)} (% € A).

Hence there exists {B;: 1€ A} C P(HSe X Y) such that
UseaB; = V. Furthermore, for any . € A, there exists ®, € ¢
such that N®, = B; and for any s € S(®;), we have (t,)(V,) >
u. Since x € V, thereexists B;_suchthatx € B, C V'C U. Hence
there exists @, €¢ such that N®; = B, and

m pgl(VS) =B, C sESXS

seS(@,)

and for any s € S(®;), we have (7,)4(V,) > 1 — u. By

N »'

seS(@,)

we have P;(B,)=V;CX;, if 6 € S(®,,); Ps(B;,) = X;, if
0€S—S(,,).Since B,, C U, forany ¢ € S — S(®,,), we have
P;(U) D Ps(B;,) = X5 and Ps(U) = X;. On the other hand,
since for any s € S and

U, e P, (T] oym),) (00 (0) > (), (00,

we have, for any

/\ min(l 1—(

UseP(X)

se S, L(p,) = )+ HzeS Ty), p‘ s ) 1.
Furthermore, since by Theorem 4.4 [1], we have
ETr(X,1) ® L(f) > T',(f(X)), then T (U,7/U)= T (U,1/
U) @ L(ps) < T'(P5(U),15) = I'(X5,t5) for each &€ S5-—
S(®,). Therefore,

VA L(x,z) =

TeSteS-T

Iy (X5,15) >
SeS—-S(®;)

r,(U,t/U)>p 0O

The above theorem is a generalization of the following
corollary.

Corollary 3.2. If there exists a coordinate o-neighborhood
a-compact subset U of some point x € X of the product space,
then all except a finite number of coordinate spaces are
o-compact.

Lemma 3.3. For any  fuzzifying  topological
(X,1), ACXKX, [ T5(X,1) — T5(4,7/4).

space

Proof.
[Tl = A (M), M)
XYEXxF#YU,VEP(X),UNV=¢
< A \/ (N"‘ (UnA), N (Vn A))
XyeX xF#y(UNA)N(VNA)=¢
< Voo (M)
XYEAXFAYU'NV'=¢,U' V' €P(4)
= Tg(A’ T/A)v
where N'(U)= \ 1,/4(C) and 1,/A(B) =
\/ Tm(V). |:| xeCCU
B=VNA

Lemma 34. For any fuzzifying o-topological

(X.7), T;(Xf() ® (X, 1) — T;(X, 7).
For the definition of Tj(X, 1) see [21].

space

Proof. If [T5(X,t) ® I',(X,7)] =0, then the result holds.
Now, suppose that [75(X,t) ® I',(X,7)] >4 >0. Then
T5(X,1) + I',(X,7) —1 > A > 0. Therefore from Theorem 4.6
(11,

T3(X, 1) @ (I'(A) AT(B)) A
— @AU)EV)((Ue,) AV
(ACUAN(BCV)A

(ANB=¢)E"T5(X;7)

ET,)A (ANB=4)).
Then for any 4,Bc X, AN B = ¢,
TI3(X, 1) @ (I'y(A) AT4(B)) < min(z,(U), (V)

UnV=¢,ACUBCV
or equivalently

T%(X,t) < TW(A) AT, (B) — min(t,(U), 1,(¥)).

unV=¢,ACUBCV
Hence for any
A, BCX, ANB=¢, 1 —[I',(A) NT,(B)]
+ \/ min(t,(U), 7,(V)) + T(X,7) — 1 > L.

UNV=¢,ACUBCV

From Theorem 4.1(1) in [l1] we have
AeF, — TI,(A). Then

ErX 1)
Fo(X7) + [0(A) A 1o(B)] — 1 = (X, ) + 1,(A) — 1)
A (rm(X> T) + TM(B(.) - 1)

< (Fa(X, 1) @ 1,(49))
A (T (X, 1) @ 1,(B°))
< [I(4) AT4(B)).
[todA9) A 7 B)). So,

Thus I'y(X,7) — [[W(A) A T(B)] — 1 < —

1= [0(4) A (B + , \V min(t,(U), 7,(V)) > A
ie., UnV=¢p,ACUBCV
Ti(X,7) = N min(l,1 = [t,(4) A1,(BY)]

ANB=¢

+ \  min(nU),n()>4i O

UnV=¢,ACUBCV

The above lemma is a generalization of the following
corollary.

Corollary 3.3. Every a-compact a-Hausdorff topological space
is o-normal.

Lemma 3.5. For any fuzzifying o-topological  space
(X,7), ET5(X, 1) @ I',(X,1) — T3(X,1). For the definition of
T5(X, 1) see 21, Definition 2.2].

Proof. Immediate, set 4 = {x} in the above lemma. O

The above lemma is a generalization of the following
corollary.
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Corollary 3.4. Every o-compact a-Hausdorff topological space
is a-regular.

Theorem 3.3. For any fuzzifying topological space (X,t) and
AcX, ET)(X,1)®@ I, (4A) — A€F,.

Proof. For any {x}c A, we have
I',({x}) = 1. By Theorem 4.6 [1],

r,({xh))] <

GNHy=¢, ACG, xeH,

{x}N4=¢ and

[T3(X, 1) ® (I,(4) A

Assume

Bo={H.:ANH,=¢,xeH}, |Jfx)24

xeX\4
and
U na={Juwna=¢.
So, Litf(x) =
Therefore
[T5(X,7) ® I'y(4)] < 7, (H,)

GNH,=¢, ACG, xeH,

1, (H,)

x€A“ANHy=¢.xeH

Vo Al

féHreA“ /}\,\‘GAL

<V fl(um
‘/.EH,\EA"[{'\ ved!

=F,(4). O

N

) = \/ 7,(A°)
fEH\'eX\A#‘

The above theorem is a generalization of the following
corollary.

Corollary 3.5. a-compact subspace of an o-Hausdorff topolog-
ical space is a-closed.

4. Fuzzifying locally a-compactness

Definition 4.1. Let Q be a class of fuzzifying topological
spaces. A unary fuzzy predicate L,C € J3(Q), called fuzzifying
locally a-compactness, is given as follows:

(X,71) € L,C:=(Vx)@B)(x € Int,(B) ® I'(B,t/B)).  Since
[x € Int,(X)] = N%(X) =1, then L,C(X,7) > I' (X,7). There-
fore, F(X,t) e I', — (X,7) € L,C.

Also, since EX,7)el' > (X,7) e LC  [24] and
F(X,7)eTl,— (X,7) e ITl], F(X,t) € I', = (X,1) € LC, which
is a generalization of Corollary 4.4 [26].

Theorem 4.1. For any fuzzifying topological space (X,t) and
AcX K(Xt)eLC®AeF,— (A4,1/4) € L,C.

Proof. We have

= A/ max (0,N§X(B) 4 T.(B,7/B) — 1)

XEXBC X

min(7,(G), rx(Hx))> .

and

L,C(A,1/A4) =

/\\/max(ON’ G)+I,(

xe€AGC A

G,(1/4)/G) — 1).

Now, suppose that [(X,7) € L,C® 4 € F,] > 2 > 0. Then for

any x € A, there exists B < X such that
N (B) + Ty(B,1/B) + 1, (X —A) =2 > ) (%)

Set E = AN Bec P(A). Then

\/ N(C) = NY(B)

E=CNB

and for any U € P(E), we have

(va/4),/ E(U) = Uﬁ\(/hEra/A(C) = U}(/OE(‘}/MAT“(D)
- U—)m/AmETa(D) - U\ZQE‘CQ(D)

Similarly, 7 7

(t/B),/E(V) = \/ (D).

U=DNE
Thus, (1,/B)s/E = (1,/A),/E and I'(E, (1/A)/E) = T(E, (7/B)/
E). Furthermore,

[EcF,/B]=1,/B(B—E)=1,/B(BNE) =

T, (X — A) = F,(A).

Since F(X,71)eTl,® A€F,—> (4,t/A)eT, (see [l],
rem 4.1 (1)], from (*) we have for any x € 4 that

Theo-

\/ max (O,Nf' (G)+TI.(G,(1/4)/G) — 1)

> NY(E) + I(E, (t/4)/E) — 1
= N*'(E) + I,(E, (1/B)/E) — 1
> N*(B) + [I',(B,1/B)® E€F,/B| — |
> N (B)+TI',(B,1/B) + |[E € F,/B] -2
> N*'(B) + I'(B,1/B)+ [A € F,] =2 > .
Therefore
L,C(4,7/4) = J\ \/ max (0 N"'(G) + I',(G, (¢/4)/G) — 1)

x€EAGC A

> A

Hence [(X,7) e L,C® A € F,] < L,C(4,7/4). O

As a crisp result of the above theorem we have the follow-
ing corollary.

Corollary 4.1. Let A be an a-closed subset of locally o-compact
space (X,t). Then A with the relative topology t/A is locally o-
compact.

The following theorem is a generalization of the statement
“If X is an a-Hausdorff topological space and 4 is an a-dense
a-locally compact subspace, then A4 is a-open”, where 4 is an
a-dense in a topological space X if and only if the a-closure
of 4is X.
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Theorem 4.2. For any fuzzifying o-topological space (X,t) and
AcCX,

ET5(X,1) ® L,C(A,1/4) ® (Cl,(A) =X) = A € 1,.
Proof. Assume

[T53(X,7) @ L,C(A4,1/A4) ® (Cl,(4) = X)] > 4> 0.

Then

L,C(A,1/A) > A= [T5(X, 1) @ (CL(A) = X)] + 1 =2 >,
ie.,

A\ max (o, N (B) + I',(B, (t/A)/B) 1) > 7.

xeABC A

Thus for any x € A4, there exists B, < 4 such that

A

N, (B\f) + rc((Bxa (T/A)/Bv) - 1> )»I.

X

ie.,

\/ w(K)+ IL(B.,(c/4)/B) — 1> 7.

HNA=B,xeKC H

Hence  there  exists K. such that K.NnA =
B,,1(K,) + I'(B\,(t/4)/B,) — 1 > }'. Therefore 1,(K,) > /.

(1) If for any xe€4
xeK.,cB.,cA, then

there exists K, such that
UK,=4 and 7,(4)=

x€Ad

ra(U KX> > ANn(K) =4 >

xed xed
(2) If there exists x, € A4 such that

K., N (B )#¢, t.(K.,) + (B, (t/4)/B.) = 1> 1.

From the hypothesis

[T3(X,7) ® L,C(4,1/A4) ® (CL(A) = X)] > />0,

we have [T5(X, 1) ® (CL(A) = X)]#0. So

©(Ky.,) + Tu(By,, (t/4)/By,) — 1 + [T3(X, 1) @ (CL(4)
=X)]|-1>4

Therefore

Taz(K\'o) + Fat(onv (T/A)/on) -1+ T;(X7 ‘L') + [(Cloc(A)

=X)]-1-1>4A
Since
(t2/A),/Bx.(U) = ,,\/ 1,/ A(C)

\/ 7,(D)

U=CNBy, C=DN4
\/ Ta(D) = Toc/on (U)7
U=DNB,,
I'y(Bx,, (1/4)/Bx.)
= I,(By,,7/Bx.)

From Theorem 3.3 we have
7, (B.) (X,7) ® I',(By,,7/By.)

=T
> T5(X,1) + I',(B.,,t/B:,) — 1.

Hence
,(Ky,) + f“(Bio) +[CL(A)=X]—-2> A
Now, for any y € A° we have

(€)= X = \ (1= N7 (49) < 1= N ().

xeX
Since (X, 1) is a fuzzifying a-topological space,
G(Ke) +1(B,) — 1 < n(Ky) @ (B, ) < tu(Ke) Aa(By)
< Ty (Kxo n Bio) < N?’( (Kxo n B;C)

Y

< Ny (49,

where

yeK,NB CH.N(H,NA) =H,N(H,_ UA)
=H, NACA".

Therefore

0<2<t(K.)+1.(B;) +[CL(4) = X] -2
=1,(K..) + 1,(BS) = 1+ [CL(4) = X] — 1
SN (A) +1 - N (4) — 1 =0,

a contradiction. So, case (2) does not hold. We complete the
proof. O

Theorem 4.3. For any fuzzifying a-topological space (X,t),
= T‘;(X,T)®(L1C(X,r))2—>VxVU(U€ N
—>3V<V6N§X/\CIQ(V)QU/\I"AV)))?

where (L,C(X,t))?:=L,C(X,t) ® L,C(X,t).
Proof. We need to show that for any x and U, x € U,
T3(X,7) ® (L,C(X,7) © N} (V)

< VNN AN ATv2/v) ).

| 4. ¢ yeU*

Assume that T2%(X,7) @ (L,C(X,1))’ ® Nf,X(U) >7>0.
Then for any x € X there exists C such that
T3(X,7) + N2 (C) + (LC(X, D) + N (U) =3 > 4 (%)
Since (X, 1) is fuzzifying a-topological space,
N7 (€) + N7 (U) = L < N3 (€)@ N7 (U) < NY(C) AN (U)

<NS(Cnuy = \/ w(w).

xewccnu

Therefore there exists W such that xe Wc CNU, and
T%(X,7) + (L,C(X, 7)) + 7,(W) — 2 > /. By Lemmas 3.3 and
3.5 we have T3(X,1) < T5(C,t/C) and

T5(C,t/C)+ I, (C,t/C) =1 < T5(C,1/C) @ I',(C,t/C)

< I3(C, 1/ Q).

Thus T5(X,7)+ I',(C,7/C) +1,(W) —2> A. Since for any
x € Wc U, we have
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T3(C,t/C) < 1 — 1,/ C(W)

+\ ((Nf’(G)/\ A N;“(C—G))),

Gce yeC—-w

so there exists G,x € G < W such that

<<N§C(6) AN NE(C- G)))

= T;(C,t/C) +1,/C(W) — 1 = T5(C,7/C) +1,(W) — 1

and

<<N§C(G) AN\ NE(C- G))) FT,(Ct/C) = 1> A
Thus

NE@G) = \/ N(D)=N(GUC) > )

DNC=G

=.+1-1,(C,7/C) = A
Furthermore, for any

yEC—WN(C-G) = \/ N(GUC)=N'(G)>Z

DNC=CNG¢

and

N

X

X

(G)=N"((GUC)NC) = N (GUC)AN-(C) > ).

Since NjX(G‘) = XGByC . 7,(B°) > 2, for any y € C — W, there
exists B, such that ye B;CG’ and t,(Bj)>A. Set
B°= \J B). Then C-WcB'cG and 1,(B)>
A n(B) = . V=BNC,  then
Y elC—WynC=(CUMNC=CAW=WcUNC

and V¢ = B U C*.Since (X, 1) is fuzzifying a-topological space,

Again, set

N (V) = N (BN C) = N2 (B) AN (C)
> N (G) AN (C) > 4. M
By (*) and Theorem3.3,7,(C°) = T3(X,1) ® I',(C,1/C)
> !

T5(X, 1) + I,(C,7/C) =1 = 2. So 1,(V°)
,(B° U C%) = 1,(B°) A 7,(C%)

\%

> /e, t,(V9) + IL(C, 7/C) — 1
> Jand I',(V, t/V) = I,(V, (t/C)/V)
> 1,/C(C — V) + I,(C, 1/C) — 1
> 1,(VS) + I,(C,7/C) =1 = 4 2)
Finally,
/}T“NiX(V") > />Nf‘<V"):u(V“> > 3)

Thus by (1)—(3), for any x € U, there exists V' < U such that
N (V)> 4 ANN(VF) =4 and  TV.aa/V) = A So

yeu*

V (NZX(V)A A NjX(Vf)Arz(V,T/V)> > 0O

Vcx yeu*

Theorem 4.4. For any fuzzifying o-topological space (X,t),
E TA(X, 1) ® (LO(X, 7))’ — (X, 1)

Proof. By Theorem 4.3, for any x € U, we have

\V T(Nf‘wm AN ()

> (1307 @ (1(C.e/O) @ N (U)]).

Thus

1-N(0+ (Ni"(V)A AN ) = [zz(x,r>®<r,<c,r/c>)1),

YeVcu yeus
ie, [TA(x,7)] = [T;(X,ﬂ@(l"d(C,T/C))z]. O
Theorem 4.5. For any fuzzifying a-topological space (X,t),

E 72X, 1) ® L,C(X, 1) HVAVU(UE N ®T,(4,7/4)
—»EV(VQ UAUEN A, (VF) /\Fx(V,r/V))),

where U € NZX = (¥x) (x €eANUE€ fo)
Proof. We only need to show that for any 4, U € P(X),

[T3(X,7) @ L.C(X, ) @ (4, /4) & N3 (U)]

<V (Nfix(V)/\rx(V")/\Fa(Vy‘f/V))

Vcu

Indeed, if

[Tg(x, 1)@ L,C(X,7) ® Ty(4,71/4) ® N;X(U)] > 4> 0,

then for any x € A4, there exists C € P(X) such that

{Tg(x, 1) @ N (C) @ I',(C,1/C) @ T',(A,1/4) ® NjX(U)] >

Since (X, 1) is fuzzifying a-topological space,

w(W) =N (CNU) = N; (C) AN (U)

xewcenu
> N7(C) AN (U) = N2 (C) @ Ny (V).
Then there exists W such that x € W c Cn U, and
[T3(X,7) ® 1,(W) @ I',(C,1/C) @ T',(A,1/A)] > A
Therefore
[T3(X,7)] + 0(W) =1 > 2+ 2—T,(C,1/C) — T',(4,7/A4)]
=2=A (%

Since for any

xew, [T;‘(X,‘z:)]
<l-n(m)+\/ (Nf.X(B)A /\N;*(Bf)),

we have
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X X ¢ !
\V (m (B) A \N; (B)) >
BCw yewr

Thus there exists B, such that x € B, c W< CnN U and for
any y € W¢, we have

N7 (B > 2, NY (B > A

X

Since
X c c
Njf (Bx) = 7,(G) > I,

XEG C BS
then for any y € W*, there exists G,, such that x € Giﬁy C B
and ra<G§}‘) > 7. Set G = | G, then W* C G, C B and

yew«
(G = A rx<G§y> > /. Since G, B, N (G,) >
yews

N (B,) > M, ie, \

XEHC Gy
that x € H, € G, and 1,(H,) > 2. Hence for any x € A, there
exists H, and G, such that xe H,. c G, c U,t,(H,) > A and
W2 UG, D |J H: 2 A. We define R € I(P(A4)) as follows:

7,(H) > . Thus there exists H, such

x€A xeAd
\/ 1,(H,), there exists H, such that H. N4 = D,
R(D) = { Ha=D
0, otherwise.
Let I'y(A,7/A) = p > u—e€(e >0). Then 1—K,(R,4)+

V [K(p,A) ® FF(p)] > p — €, where

p<N

KR, A= AVRB) = AVRD) = AV wlH) > 2

xeAxeB xeAxeD xeAxeDH NA=D

and
(RCt,/4] = N min(1,1 - R(B) + ./ A(B))
= /\ min (1,1 - \/7 1,(H,) + \( ri(H)> =1.

S0, K(%, 4) = [K(%, A)] > 7. By (*),
K(p,A) @ FF(p)] >u—e—1+K,(RA) =>pu—e—1+7

>Jl—ec
Thus
AVeE) +1= N\{6:Flp,)} —1>i—e and \\/p(E)
xeAxeE xeAxeE

> h— et N6 Flp)}
Hence there exists § > 0 such that F(pp) and
AV eoD)>i-e+8.
xeAxeD

Therefore for any x € A, there exists D, A such that
p(D,) > A—¢€ + B and

Jb.c4.

x€A

Suitably choose € such that 1 —e > 0, then p(D,) > f > 0.
Since

R(D,) = p(Dy) >0, D, =HyNA,

ie, HyvNA€gp, By Fgpp, so there exists (finite

Hy, Hg, ..., Hy such that
n

a2 4

=1

and

LiJl1};g; LiJ(;x}
i=1 i=1

Set V=UL Gy, and V'=N_G,, ACVCU, and
L) = A fx(G;) > 7>

1<ign

x€A,G.cWgc CNUcC, we have V = ULG,V, cCwcc.
Because 1,/C(C—V)= \/ 1,(D) = 1, (V) > A. Thus

Since for any

by (*), 7,/C(C = V) + Fg(?,cr:/(g)w— 1 > 7, and by Theorem 4.1
(1], Iy(V,1/V) = I'(V.r/CIV) Z [T(C,7/C) @ 14/

cc-n)> i
Finally, we have for any x € 4,

NY (V) =N <UG) > N <UH> >, (UH\/>
i=1 i=1

> /\ 11<HX/_) >N > .
1<ign '
So, N;X(V) = A NﬁX(V) > A. Therefore NZX(V) AT, (VA
r,(V,t/V) = »<
Thus

\/ (NiX(V)/\rl(V")/\I"“(V,r/V)) >. O

VU

Theorem 4.6. Let (X,7) and (Y,a) be two fuzzifying topologi-
cal spaces and fe YX be surjective. Then k¥ L,C(X,1)®
Cu(f) ® O(f) > LC(Y,a). For the definition of O(f), see [17].

Proof. If [L,C(X,7) ® C,(f) ® O(f)] > A > 0, then for any
xeX, there -exists UclX, such that [NzX(U)®
I,(U,7/U)® Cy(f) @ O(f)] > 4. Since N* (U)= \/ (V).

XeVCuU
so there exists V' cX such that xe€V cU and
[t(V)® T'(U,7/U) @ C,f) ® O(f)] > A. By Theorem 4.3 in
(1], [I'(U,7/U) @ C(N] < [T'(fLU), a/fTV))] and

(V) ® O(f)] = max(0, (V') + O(f) — 1) = max(0, 7(V")
+ /\ min(1, 1 — (V') +a(f(V))) — 1)

< rr;ax(O,r(V) +1=2(V)+a(f(V)) - 1)
= a(f(V)) < Ny, (V) < Ny (A0).

Since f'is surjective,

LC(Y,0) = LC(f(X), 0)

= A Vo [Mweirw,e )
YEAX) CAX)U'=f(U) CAX)

> A

Yeflx) CAX)

> A

Yeflx) CAX)

[NV, () @ Irg), e/

(V) ® O(f) ® I,(U,t/U) @ Cy(f)] = 4. O
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Theorem 4.7. Let (X,t) and (Y,0) be two fuzzifying topologi-
cal spaces and  feY¥ be surjective. Then
FL,C(X,7) ® L(f) ® Ou(f) = L,C(Y,0).

Proof. By Theorem 4.3 in [1], the proof is similar to the proof
of Theorem 4.6. [

Theorems 4.6 and 4.7 are a generalization of the following
corollary.

Corollary 4.2. Let (X,t) and (Y,a) be two topological spaces
and f:(X,t) = (Y,0) be surjective mapping. If f is an o-
continuous (resp. a-irresolute), open (resp. a-open) and X is
locally o-compact, then Y is locally compact (resp. locally o-
compact) space.

Theorem 4.8. Let {(X,t,):s € S} be a family of fuzzifying
topological spaces, then

= LxC(HX“ H»&_Es(n)s> — Vs(s

seS
€ SAL,C(X;, (t,),) NIT(TES AVt
€S—TATL(X,1))).

Proof. It suffices to show that

LO(T] % TLosm),) < A

seS

LC(X,, () ) A\ N\ Fx(X,,r,)}

TeSteS-T

From Theorem 4.7 and Lemma 3.1 we have for any ¢ € S,

Lac(H.veSX‘” HseS(T“)‘Y) - [LaC<H.v€SX” erS(To‘):)
@Cy(p,) ® O4(p,)] < L,C(X,,1,).

So,

Ao > (L T 00

tes

By Theorem 3.2 we have

VAR =\ L0 E00)e

TeSteS—-T uc H‘ax Xc (XX\
>V VRO )/u) e N )
UQH\QAX’\XQH\&SX‘ { ( ' > >}
> AV n(U]Le),/v)e Nt
XEH\&SXSUQH\&SX‘ { ( ' > >}
- L,C(HAGSX‘., ers(r,)\)
Therefore

O

/\LyC(XhT,) A \/ /\ rx(XhTI) .

tes TeSteS-T

L, C(Hsesx‘" H.xeshx)") S

We can obtain the following corollary in crisp setting.

Corollary 4.3. Let {X;:A€ A} be a family of nonempty
topological spaces. If T],.,X; is locally a-compact, then each

X; is locally o-compact and all but finitely many X, are
o-compact

5. Conclusion

The present paper investigates topological notions when these
are planted into the framework of Ying’s fuzzifying topological
spaces (in semantic method of continuous valued-logic). It con-
tinue various investigations into fuzzy topology in a legitimate
way and extend some fundamental results in general topology
to fuzzifying topology. An important virtue of our approach
(in which we follow Ying) is that we define topological notions
as fuzzy predicates (by formulae of Lukasiewicz fuzzy logic)
and prove the validity of fuzzy implications (or equivalences).
Unlike the (more wide-spread) style of defining notions in fuzzy
mathematics as crisp predicates of fuzzy sets, fuzzy predicates of
fuzzy sets provide a more genuine fuzzification; furthermore the
theorems in the form of valid fuzzy implications are more gen-
eral than the corresponding theorems on crisp predicates of fuz-
zy sets. The main contributions of the present paper are to give
characterizations of fuzzifying a-compactness. Also, we define
the concept of locally a-compactness of fuzzifying topological
spaces and obtain some basic properties of such spaces. There
are some problems for further study:

(1) One obvious problem is: our results are derived in the
Fukasiewicz continuous logic. It is possible to generalize
them to more general logic setting, like residuated lat-
tice-valued logic considered in [27,28].

(2) What is the justification for fuzzifying locally «-com-
pactness in the setting of (2, L) topologies.

(3) Obviously, fuzzifying topological spaces in [14] form a
fuzzy category. Perhaps, this will become a motivation
for further study of the fuzzy category.

(4) What is the justification for fuzzifying locally o-com-
pactness in (M, L)-topologies etc.
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