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TWO TYPES OF FUZZY SEMI-CONTINUITY
AND FOUR TYPES OF FUZZY IRRESOLUTNESS
IN FUZZIFYING TOPOLOGICAL SPACES

K.M.ABp-EL HakEM, F.M.ZEYADA AND O.R.SAYED

The concept of semi-open sets is extended in fuzzifving topology in two
various types one of them is stronger than the other but the converse may
not true. These concepts and two types of semi-continuity induced by
them are introduced and studied in fuzzifyng topelogy. Furthermore, four
types of irresolute functions are considered between fuzzilying topological
spaces,

The concept of fuzzifying topology with the semantic method of contin-
uous valued logic was introduced by M.S.Ying [8]. For the definitions and
results in fuzzifying topelogy which we used in the present paper we refer
to [8,9,10]. In genergl topology the cuncepts of semi-cpen sets and semi-
continuity was introduced by N.L.Levine [6] and the concept of semi-closed
sets was introduced by N.Biswas [2]. It is worth to mention that these con-
cepts considered in fuzzy topology by K.K.Azad [1]. In 8.G.Crossley and
S.K.Hildbrand [4] the concept of irresolute functions are introduced and
we note that these types of functions are considered by M.N.Mukherjee
and 5.B.Sinha (7] in fuzzy topology [3]. In the present paper we introduce
and study two extentions of semi-open sets and semi-continuity in fuzzi-
fying topology. Furthermore, depending on these types of semi-open sets,
four types pf irresolute functions are introduced and studied in fuzzifying
. topology.

2. Preliminaries.

In the sequal note that for any formula ¢, the symbol (@] means the
truth value of , where the set of truth values is the unit interval. Also,
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a formula ¢ is valid, we write |= ¢, if and only if [p] = 1 for every
interpretation.

First, we present the fuzzy logical and corresponding set theoritcal no-
tations [8,9] since we need the major of them in this paper.
(1) ] := a{a = [0,1]); [ A ] :=min([e], [¥]);

[ = ] :=min(1, 1~ [¢] + [¢]);
(2) If X is the universe of discourse, then

[Vap(z)] = inf [p(2));
K Ae F{X} where F(X) is the family of all fuzzy sets of X, then

[z € A] =A (z).

In addition the following derived formula are given
(1) [~¢] = [ = 0] = 1 - [g);
(2) [ V ¥] := [~(~g A ~¢)] = max([¢], [¥]);
(8) [ = ] := [(¢ = ¥) A (¥ = p));
(4) [ A¥] := [~ ~ —¢)] = max(0, [i] + [] — 1);
(8) [p V] i= [~p = ¥] = [(= A=9)] = min(1, [¢] + [);
(6) [A(=)e(2)] : [~Vap(2)] = sup (z);
(7) If A, B € F(X), then

(a) ACB:=Vi(zeA—z¢€ B}h mf min(1,1 - A(z) + B(z));

(b) A= B:=(ACB)A(BC A)

(¢c) A=B:=(ACB)A(BCA),

We do often not distingush the connectives and their truth value func-
tions and state strictly our results on formalization M.5.Ying do [8,9,10].

Secondly, we give the following definitions and results [8] in fuzzifying
topology which are used in the sequal.

Definition 2.1. Let X be a universe of discourse, P(X) is the family of
subsets of X and 7 € F(P(X)) satisfy the following conditions:

(1) (X)) =1

(2) for any A, B, r(ANB) 2 r(A) A 7(B);

(3) for any {Ax: A€ A}, 7(U 43) 2 A 7(43).
Then 7 is called a fuzzifying topology and (X, 7) is & fuzzifying topological
space.

Definition 2.2. The family of fuzzifying closed sets is denoted by F €
F(P(X)) and defined as

AeEF=X~Ae€r,

where X ~ A is the complement of A.

= d h
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Definition 2.3. Let z € X. The neighborhood system of z is denoted
by N. € F(P(X)) and defined as follows:

N.(A)= sup 7(B).
tEBCA

Definition 2.4. (Lemma 5.2 (8]). The closure A of A is defined as
A(z) = 1= Ny (X ~ A).

In Theorem 5.3 [8] M.S. Ying proved that the closure ¢l : P(X) —
F(X), is a fuzzifying closure operator (see Definition 5.3 [8]) i.e., its ex-
tention el : F(X) — F(X),

(A=Y an A, 4 € F(X),

where A, = {z : A(z) 2 a} is the a-cut of A, satisfies the following
Kuratowski closure axims:

(1) [ cl(g) = & s

(2) for any A € F(X), | A C cl(A);

(3) for any 4, B € F(X),[= cl(AU B) = cl(A) Uel(B);

(4) for any A € F(X), = cl(cl(4)) C cl(A).

Definition 2.5. For any 4 € P(X), the interior A° of A is defined as
A®(z) = N:(A).

Corollary 2.1.
r{A) = :gﬂ A®(z)

Definition 2.6 [10]. Let (X,7),(Y,U) be two fuzzifying topological
spaces. A unary fuzzy predicate C € F(¥X), called fuzzy continuity,
is given as follows:

C(f) :=VYu(ueU — f~'(u) € 7).
Now, we add the following concept:
Definition 2.7. For any A € F(X),

= (A)° = X ~ (X ~ A).
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Lemma 2.1. If [A C B] =1, then
(1) = A C E
(2) = (A)° € {EJ’+
Lemma 2.2. Let (X,7) be a fuzzifying topological space. For any A, B €
F(X),
VD EX=X;
@A
(3) k= (A0 B) = (A n(B)",
(4) = (A) 2 (A).
3. Fuzzifying semi-open sets.

Definition 3.1. Let (X, 7) be a fuzzifying topological space.

(1) The family of fuzzifying semi-open sets of type i is denoted by
(S7)' € F(P(X)),i = 1,2 and defined as follows:

(i) Ae(St)':=3B(BerABCANACBE);, -

(i) A€ (St)*:=3B(BerAB°CAANAC B).
Theorem 3.1,

() FA€e(St) «3B(BETABCAANAC B*);

(2) =A€E(ST)) »3B(BETAB CAANAC B*);

(3) =A€(8r) = Ae(57).
Proof. (1) We need to prove that for each B & P(X),[BerAAC B] =
[BernAdC B finf B*(y) =0 then r(B) =0=[BerndcC
Bl=[BerAAC .E‘“'] Suppose Iréf B®(y) =t > 0, then there exista
v. € B such that By, , =B (Indee-:i suppose that for every y € B there
exists ¢ € B such t.ha.t : € B,y Then for each y € B, B%(z) < B*(y)
and so B°(z) < mf B*(y). If B°(z) = inf B°(y) then By, = B, a
contradiction. If E“{m} < IInf B*(y), a contradmtmn also.). Let z € A.
Then B°~(z) = U B°(y) ABp. ) )(2) 2 B*(y.) A (Bgu(,, )(2) 2 tA B(2).
So mf B*=(z) } mf (tAB(z)) =tA mf B(z). Thus t A mf B*=(z) 2
H\mf B(z) and sm:,e thmf B°(z) 2 s .*..ﬁ.u‘ét ELI} then [B ETAA C
B“I = [B ErAAC B Hence, (S7)(A) = sup (r(B)A[A C B*)).

A

(2) In (1) we proved that for each B € P(X),[BerACB|=[B e
TAAC B°]. So, for each B € P(X),[Ber|A[B°C A]A[AC B] =
[Ber]A[B® C A]A AC B*]. Thus,

(57)(A) = sgp ([Ber|a[B°CAlAAC B'"]
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(3) Immediate.

Remark 3.1. In crisp setting i.e. if the underlying fuzzifying topology is
an ordinary topology we have for each A € P(X),(S7)'(A4) = (Sr)}(A)”
But in fuzzifying setting in general, there exists A € P(X) such that
(S7)*(A) £(S7)'(A) as illustrated by the following counterxample.

Counterexample 3.1. Let X = {a,b,c} and consider the fuzzifying
topology 7 defined on X as follows:
r(X) = r(¢) = L,r({a}) = r({a,0}) = &, 7({b}) = 5 ({e}) =
r({a,c}) = . 7({b,c}) = 4. One can deduce that (S7)*({a,b}) = &<
/75 = (S7)'({a, b}).
Theorem 3.2. Let (X, 1) be a fuzzifying topological space. Then
(1) EAer = Ae(ST)Y
(2) For any {A): A€ A} € P(X);
(8) (57)'(U, 42) 2, A (S7)(An);
(a) (ST)*(\U Ax) 2 A (S7)*(A4);

Proof. (1) Ummediate. 3 '
(2) (a) From Lemma 1,18, [{aﬂ Ay) € B] > A (45 € B).
Then
x b : s
(STICY 4a) = Egj;fmtrw}ngg Ax € B)
2 A (r(B) A4, € B)).
o5 i DAL S B)
For each A € A put My = {B : B C 4;). Then UM\ C {B: B C
U A;}. EA
AEA
0,
su A (r(B)A[dy C B])
HEP{XJ.BPEHE.: Muﬂff JA[4, C B))
" 2 su A(r(B)A[ArC B
EEPIXLHEM:..AEJ\"“{ (B)A[Ar € B)
;| = sup A (r(f(A)A[4xC Eﬁ]‘}

LEA
re L

= A sup ((B) A4y C B))
BCAx

= A (57)(4y).
(2) From Lemma 1.1 ), [B° C U A\ 2, [B* € 4y
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So
2 Lk 7 o
(ST)°(Y Ax) = EE!';&}{T(B} A[B°C U AALY ANC B))

> sup (r(B)A A [B°C Ax]A A [AyC B)
BEP(X) AR e i

= sup A (r(B)A[B" G Ax] A [4r G B)
BeP{X)

Put M) = P(X) for each A € A. Then

sup A ((B)A[B° C Ai| A [Ax € B))
BeP(X) €
= sup A (r(f(A)ALFA) S Al A [4x S (D)
fEh];I My

A

=A sup (r(B)A[B° C A\ A[4s C B))
BeM,

AEM

=A sup (r(B)A[B°C A\A[A4,C B))
‘€A BeP(X)

=4, (57)(4s).

Corollary 3.1.
(1) =Aer—Ae (S
(2) (a) = X € (S7), (b) |= ¢ € (ST),
(2) (a) = X € (S7), (b) = ¢ € (S7)°,

Proof. (1) From Theorem 3.1 (3) and Theorem 3.2 (1).
(2) From Theorem 3.2 (1).
(3) From Theorem 3.1 (3) and from (2).

Definition 3.2. Let (X, 7) be a fuzzifying topological space. The fam-
ily of all fuzzifing semi-closed sets of type i will be denoted by (SF)' €
F(P(X)),i = 1,2 and defined as follows:

(SF)'(A) 1= (S7)'(X ~ 4).

Theorem 3.3. Let (X,7) bea fuzzifying topological space. Then,
(1) EFC(SF)y _
(2) (a) = X € (SF), (b) =@ €(SF);
(3) From any {Ax: A €A} C P{X],[SF}'{*H‘ Ax) 2.7 (SFY(Ay).
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4. Fuzzifying (S7)'-neighborhood structure of a point.

Definition 4.1. Let z € X. The fuzzifying (S7)'-neighborhood system
i
of z,i = 1,2, is denoted by N°™" ¢ F(P(X)) and defined as follows:

NV (A) = B At LHJ

Remark 4.1. If there is no confusion we write N} for {ST} . A simi-

lar remark for the cunsequences concepts depend on (S7)" is mn.uidered
without mention in the sequal of the paper, where i = 1,2.

Theorem 4.1.
(1) Ae(S7) =Va(z€ A—3B(Be(St)' Az € BC A));
(2)FA€e(Sr) «Ve(z€ A—3IB(BENABCA)),;

Proof. (1) Note that [Vz(z € A — 3B(B € (St)'Az € B C A)) =
inf =p . (S7)}(B). First it is clear that inf o (S7)(B) = (S7)'(4).

ge::m:-:i let M, = {B :z € B C A} i.br ca.-:h z € A. Then for any
f € p M we ha.w: Y f(z) = A and so (S7)'(4) = {ST}‘{ Y flz)) 2
A (ST)(f(=)). Thuﬂ (Sﬂ (A)= sup A (S7)'(f(z)) =

JE

A sup. (ST)i(f(=)) = .ﬁ. sup [Sr}[ﬂ'n

% {E]l Applying (1) we haw- Vz(z € A — 3B(B € N‘ B C 4))] =
inf sup sup (ST)H{C) = mf sp (57) [:‘L}-(ST] (A).

€A B

Corollary 4.1.
inf NiA) = (S7)(A).

Theorem 4.2. The mapping N' : X — FN(P(X)),z ~— N}, where
FN(P(X)) is the set of all normal fuzzy subset of P(X) has the follawmg
properties:
(1) forany z, A\l AEN} =z € 4;
(2) for any z, A4, B, 'FACH—-{AEN'—lHENJ.;
(3) for any z, AB }::AEN‘-rEH{HeN‘nHCAh‘u‘y(yEH—v
H e N})).

Proof. Since for each z € X, N}(X) = 1, then each N} is normal,
(1) ¥ [A € Nf] = 0, then the result holds. If [A €'Ni] =
mp (S7)'(H) > 0, then there exists H, such that € H, C A, Now, we

have [z € A] = 1. Therefore, [4 € N}] < [z € A] holds always.
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(2) Immediate.
(3) BH(He NAHCAAVYy(yeH - He N:}}]
= i s i = i i
= sup (N3(H) A inf, Ny(H) = sup (N A (ST ()
= sup (Sr)(H) 2 sup (S7)'(H)=[A€ N}
HCA sEHCA

5. (§7)' closure and (S7)'-interior.

Definition 5.1.
(1) The (57)'-closure of A is denoted and defined as follows:

ci(A)(z)= jat (1- (SF)'(B));

(2) The (S7)'-interior of A is denoted and defined as follows:
int'(A)(z) = Ni(A).

Theorem 5.1. For any 7,4, B
(a) el'(A)(z) = 1 = Ny(X ~ A);
(b) |= el'(8) = ¢;
' (c) = A Ccl'(A);
| (d) rz €cli(A) = VB(BEN; - ANB # ¢);
() EA=cl(A)— A€ (SF),
(f) |z B=cl'(A) — B € (SF)".

Proof.
(a) el'(A)(z) = 4354(1 ~(SF)'(B)) = 'Ex__igfgxﬁil - (57)'(X ~ B))
1—  sup (ST)(X~B)=1-Ni(X ~ A);
TEX~BCX~A

(b) From (a) we have, cl'($)(z) =1 = Ni(X ~ ¢) =0.

(¢) It is clear that for any A € P(X) and any z € X, if 2 ¢ A, then
Ni(A)=0. If z € A, then cl'(A)(z) =1-N}(X ~A)=1-0= 1. Then
[AC el'(4)] = 1. '

(d) Applying (a) we have,

IVB(Be N; — ANB # ¢)| = ad¥. (1~ Ni(B)) =1-Ng(X ~ 4)
= [z € cl'(A)].

;————_“
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(e) From Corollary 4.1 and from (a) and (c) above we have,
— avies
(4 =cl'(A)] = m:}[iﬁ[l cl'(A)(z))
- LN
=(57)'(X ~ 4)
= (SF)'(A).

() If [A € B] =0, then (B Zcl'(4)] = 0 (indeed,

[B = cl'(4)] = max(0, (B € cl'(A)] + [cf'(4) € B] - 1)
< max(0, inf of*(4)(z) + [4 € B] - 1)

= max(o, :EE e'(A)(z)+0-1)=0.).

Now we suppose (4 C B| = 1,[B C cl'(d)] = 1 - sup Ny(X ~

A) [4) € B| = inf NiX ~ A). So, (B % ei(4) =

max(0, inf = Ni(X ~ 4) - sup NX ~ A). If [B = cli(4)] > ¢,

then'g:f_. NiX ~ 4) > t+ s Ni(X ~ 4). Foranyz € X ~

B, sup (8T)(C) >t + sup Ni{(X ~ A) and so there exists €, such

eNCE X =d sEH-A

that 2 € C; € X ~ A and (§7)'(C;) > t + sup SNg(X ~ A). Now,
E -

we prove that C. C X ~ B, If not, then there exists z' € B ~ A4 with

z' € C,. Hence, sup N(X ~ 4) 2 Nu(X ~ 4) > (S7)(C:) >

L A
t+ sup | SNy (X ~ A), a contradiction, Therefore,

—

(SF)(B) = (S7){(X ~ B) = (ol o NVe(X ~ B) 2 B (S5T)/(Cy) > ¢

+ sup Ny (X ~A)>t
sEH~A

Since t is arbitrary, it holds that (B =cl'(A)] € [B € (SF)).

Theorem 5.2. For any z, 4, B,
(1)(a) | int'(A) = X ~ el'(X ~ A); :
(b) Eint'(X) = X;
() k= int'(4) C 4;
(d) = B =int'(A) — B € (Sr)';
(¢) =B € (St)'ABC A— BCinti(A),
(f) |F A = int'(4) & 4 € (S7)".
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Proof. (a) From Theorem 5.1 (a), -.jJ"i{A ~ A)z) = 1= Ni(4) =1~
int'(4)(X). Then, [int'(4) = X ~ cl'(X ~ A) =1

(b) and (¢) are obtained from (a) above and from Theorem 5.1 (b) and
(¢)

(d) From (a) above and from Theorem 5.1 (f) we have

[B =int'(A)] = [X ~ B Zcl'(X ~ A)] € [X ~ B € (SF)]
= [B € (S7)'].

(e) If [B C A] =0, then the result holds. If [BC A] =1, then
[B € int'(4)] = "ém{iini"{;&]{r] = Iigg Ni(4) > }ngN:(H}
= (Sr)'(B)=[Be (S7)' AB C Al
(f) From Corollary 4.1 we have
[A = int*(A)] = min( i’é.fa ine"(A}[_.-.-.}, ) Eigcii Au — int'(A)(%)))
= j:é.iint"[;i]{:} = }:Efi Ni(A)=(Sr)(A)=[A€ (7)),

8. (§7)"-Continuous functions.

Definition 6.1. Let (X,7),(Y,U) be two fuzzifying topological spaces,
A unary fuzzy predicate 5'C € F (¥*X) called fuzzy semi-continuity of
type i is given as follows:

f€S§C:=YulueU— f'(u) €(ST)).

Definition 6.2. Let (X,7),(¥,U) be two fuzzifying topological spaces.
The unary fuzzy predicates S'a; € F(Y*), where j =1,2,...,5, as follows:
(1) Sian(f) = VB(B € Fy — f~}(B) € (SF)k),
where Fy is the family of all fuzzifying closed subsets of ¥ and (SF) is
the family of all fuzzifying semi-closed subsets of type 1 of X.
(2) S'an(f) = VaVu(u € N,y — [~} (u) € N5
where NV is the fuzzifying neighborhood system of ¥ and N'¥ is the
fuzzifying semi-neigborhood systems of type 1 of X.
(3) Stas(f) = VaVu(u € NY,,) — I(f(v) Cu—v e NX));'

(4) Sl f) = VA(f(elx(4)) € ely(F(A));
(5) S'as(f) = VB(eli(f7(B)) € f~ (cly(B))).
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Theorem 6.1. :
= f€8'C e feS'aj, where j = 1,2,3,4,5.

Proof. (a) We will prove that |= f € §C = f € S'a,.
(f € S'ey] = ponf, min(L1 = Fy(B) + (SF)x(f7'(B)))
\ = pdnf min(L,1-U(Y ~ B) + (S7)'(X ~ f7'(B)))
! = inf min(1,1=U(Y ~ B) +(Sr)(f~(Y ~ B)))

BeP(Y)

= Jdaf min(1,1~U(u) +(S7)'(f 7 (u)))

= [f € §'C).

(b) We want to prove that |= f € §'C + f € §'ay. First, we prove that
S'aa(f) 2 S'C(f). MNJ(u) £ NJX(f~(u)), then min(1, 1~NJ,(u)+
NX(f~Yu))) =1 2 S'C(f). Suppose NE,-}(H] > NX(f~Yu)). Itis
clear that, if f(z) € A Cuthan z € f~1(A) C f~(u)

Then,
Nia(®) = N = m?‘éﬁgu”“” - zeas;‘}ammﬂi{m
< sup U(A)= sup. (ST)(f7(4)
Jizl€ACu {z)eACN
< sup  (U(A) - (S)'(f7'(4))).
J(z)EACH ,
Sa,
1= N+ X)) 2 inf (1= U(4) +(S7)(f7(4))
1 A and thus,
| min(1,1 = N, (u) + N;¥(u)))
2 m;gﬂ;“ min(1,1 - U(A) + IISIT)'IIJ’"{A}]J
2 F'Eig{f”ﬂunil. 1=U(v) +(S7)'(f7'(¥))) = S'C(f).
Hence,

inf ‘Eig{fx} min(1,1 - N}, + V¥ (f7}(w) 2 [f € §'C).
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Secondly, we prove that S'C(f) 2 S'az(f). From Corollary 4.1, we
have

s'c(f) = jaf, min(1,1-U(u) + (ST)(F7 ()
- . - Y . iWXf=1 1
& ‘Elgfﬂm{l'ri ”:"']{E‘NI{II(“}'*"E}E&'}N: (f7 ()
= i ; — Y : iX(p=1(y
= Jof mind,1= inf Npe(u)+ sl NZ(/7(u)

> inf inf min(1,1 = Nji(u) + NX(f7H (W) = S'aalf).

(¢) We prove that |= f € §'az « f € 5'a;. From Theorem 4.2 (2) we
have,

S'as(f) = inf inf min(1,1- N}E,,{u]+ sup NiX (1))

=EX weP(Y) vEP(X ) (¥)Cu
. . * Y iX s p=1 - o
= }Ei‘ uﬁ%{?lmn{l!l = Nyoylu) + N7 (7 (w))) =8 aa(f).

(d) We want to prove that |= f € S'ay ~ f € S'ays. First, For any
B € P(Y) one can deduce that f~*(f(cl’c(f~'(B)))) € el (f7UB)) =1
since for each fuzzy set 4 we have [f~'(f{4)) 2 4] = 1 and one can
deduce that [ely(f(f~*(B))) € ely(B)] = 1 since [f(f~'(B)) € B] = 1.
Then from Lemma 1.2(2) [10] we have, \

[elic(f~(B)) € f~Mely(B))) 2 [ (f(el(f7(B))) € £ (elv(B))]
> [F (Sl (FH(BY)) € £ ey (F(F7H(B))))]
> [f(elle(f7H(B)) C ety (F(F™1(B)))):

Therefore,

S'ag = inf [ely(f7(B) S /7 (cly(B))]
> inf [f(cli(f~(B)) € ely (f(f~(B))
2 dnf [f(cli(4)) € (cly (F(AD] = S'au(f)

Secondly, for each A € P(X), there exists B € P(Y) such that f(A) = B

1
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and f~!(B) 2 A. Hence from Lemma 1.2 (1) [10] we have,

S'ay(f)= inf_[f(cli(A))C ely(f(A))]

AEP(X)

inf _ [f(cly(A)) C F(f (cly(£(A)))]

> in
. AEP(X) 1
' 2, dnf [eli(A) C £~ (ely(f(4))))-
BEFH}ﬁ-IM}[d{x{f_l[B}) C £\ (cly(B)))

> g [elic(f~(B)) C £\ (cly(B))) = S'a().

F
v

(e) We want to prove that = f €8s~ feSay

S'as(f) = [VB(cliy(f7'(B)) € £~ (cly(B)))]
g3, jnf min(1,1-(1- NX(X ~ fN(B)) +1- N}f[_,,(r ~ B))
= pdity 5of min(1,1- Njio(Y ~ B)+ NPX(f~(Y ~ B)))

= Jof | inf min(1,1 - Nj.(u) + NX (7' () = S'aa(f).

=

Theorem 6.2. Let (X,1),(Y,U) be two fuzzifying topological spaces.
Forany feY* | feC — fe SiC.

Proof. The proof is obtained from Theorem 3.2 (1) and Corollary 3.1
().
7. (i,7)-Irresolute functions.

Definition 7.1. Let (X, 7),(Y,U) be two fuzzifying topological spaces.
A unary fuzzy predicate (i,5) - I € F(YX) called fuzay (i, j)-irresolute of
type (i,7) is given as follows;

fE€(i,j) = I=VYu(u € (SUY — f~(u) € (Sr)), where i, j € {1,2}).

Theorem 7.1. Let (X, 7),(Y,U) be two fuzzifying topological spaces and
let f € YX. Then,
(D Efe(,j)-1-fesic;
(2} i=fE{i,2}—I-*f'E[l',l}-'I;
{3H=.-"E[1t.f}-f"’f‘5(2-ﬂ—1
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Proof. (1) From Theorem 3.1(3) and Theorem 3.2(1) we have, U(u) <
(SU)(u) then the result holds.

From Theorem 3.1(3) we have for any fuzsifying topology v that
[(S7)! € (S7)?] =1, then (2) and (3) are obtained.

Definition 7.2. Let (X,1),(Y,U) be two fuzzifying topological spaces.
We define the unary fuzzy predicates (i,j) — Iay € F(Y¥), where k =
1,2,3,4,5 and i, j € {1,2), as follows: |

(1) £ € (i,7)~Tay := Yu(u € (SFY}, ~ f=}(u) € (SF)k, where (SF)}
is the family of semi-closed subsets of ¥ of type j and (SF)Y is the family
of semi-closed subsets of X of type 1.

(2) f € (i,7) = Tag := YzVu(u € N}I;} — f~Yu) € NiX), where NI
is the semi-neighborhood system of type j of ¥ and N'* is the semi-
neighborhood system of type i of X; ¥

(3) f € (1,) = Jag 1= Va¥u(u € N} — Ju(f(v) C u — v € NiX)),

(4) f€(i,7) = Tay := VA(f(clx(A)) C el (f(A4)));

(8) f € (i,3) — T := VB(cli (f7(B)) C f~(cl}.(B))).

Theorem T7.2.
FLE()~Teo fe(i,j)—Tayk=1,234,.5.
Proof. (a) We will prove that |= f € (i,)) = I = f € (i) = [ay.

£ € ()~ Teu) =  inhy, min(1, 1~ (SF)4(B) + (SF)x (S~ (B)

= pdafy min(1,1- (SUY(Y ~ B) +(S7)(X ~ f~Y(B)))
= ,dnt min(1,1~ (SUY(Y ~ B) +(St)'(f~'(Y ~ B)))
= iR‘?} min(1,1 = (SUY (u) + (S7)(F~ (u)))

uE

=[fE '13}-1]

(b) We will prove that |= f € (i,j) ~ I «~ f € (i,j) = lay. First,
we prove that [f € (i.]) = laq] 2 [f € (i,3) = 1. 1 N (u) <
N (£~ (w)), min(1,1 = Njl(u) + NEX(f~4(w))) = 12 [f € (i, j] - 1),
Suppose N}ﬂj{u} > NIX(f~)(u)). It is clear that, if f(z) € A C u, then
z € f~1(A) C f~}(u)
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Then,
Njfey(w) = N¥(f~ (W)= sup (SUY(4)- sup (S7)i(B)
(z)EACH TEBCS="(u)
s sup (SUY(A)- sup_(S7)i(f~(4)
fiz)EACH Jiz)EA
S e ((SUY(4) - (sr) (.f"{-d})
Sa,
1= Ni{(w) + NEX(F M w)) 2 ralDh (1 = (SUY(A) +(Sr)i (£ (4))).
and thus,

min(1, 1 = N7(,(u) + NE¥(£74(w)))

> ”:;gi min(1,1 - {SU)’f[-"ﬂ +(87)’ {f-I(A}}J

2 dnf min(1,1~ (SUY (w) + (STI(f(w)) = [f € (i, ) = .
Hence,

inf dnf min(1,1 =N (u) + NP¥(F )2 [ € (i,5) - 1.

Secondly, we prove that [f € (i,;) = I] 2 If € (i,j) - Iay)., From
Corollary 4.1,

fe(ig)-1= oo, ymin(l, 1 = (SUY (u) + (S7)(F~* (u)))

1- MJY X
= oeBlyy ™= 8 Nio () inf | N(F7 )
. bd Xy p=1
Eu;gg”mmil,l ﬁ}{}{u N () + e Ne U )
2 inf o min(1,1- MU (u) + NI (£~ (W) = [f € (i,5) - Taa).

(e) We that |= f € (i,j) = fag = f € (4,j) = Iy, From Theorem
4.2(2) we have,

f € (i) = Tag] = inf Jof min(lL1-N0(u)+ sup  NiX()
vEP(X). f(¥)Cy

= inf inf min(L,1 = Nj,)(w) + NI (£ (u))

- = [f € (i,7) - = Tay].
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(d) We prove that |= f € (i,7) — Tay = f € (i,j) — Ias. First, for any
B € P(Y) one can deduce that f='(f(cl%(f~(B)))) 2 el (f~1(B))] =1
since for any fuzzy set A we have [f~'(f(4)) 2 A] = 1 and one can deduce

that [cld, (f(f~1(B))) C el{,(B)] = 1since [ff~)(B) € B] = 1. Then from
Lemma 1.2(2) [10] we hawe

[elie(F~1(B)) € F~ (el (BY)) = [f*(fleli(f~(B))) G £~ (et} (B))]
> [ (el (F71(B))) S SN (el (F(FH(B))))
> [flels(f71(B))) € el (F(f71(BY))]
Therefore,
If € (i) = Tos] = _inf  (eli(f~(B)) € £~ (R (B))]

> mf [f(ch(f'I(EJ)]Ccf (BN

BeP(Y)

inf [f(cli(4) S (B (F(A) = [f € (i.5) - Tau.

AEFEX}
Secondly, for each 4 € P(X), there exists B € P(Y') such that f(A) =
B and f~'(B) 2 A. Hence from Lemma 1.2 (1) [10] we have,

€T = G [f(cfx{AﬂCcf (f(A)]
mf [f(ﬂi’ (4)) € F(f 7 (el (F(A)))]

> lgf l[cr ‘(4) C f“{cf{ffﬁﬁ))}]

2 HEP(Y},B—!{A}id ~4(B)) C £ (et} (B))]

inf (el (f~}(B)) C S (cK(B))]

2
BeEP(Y)
= (f € (1,7) = Tas).
(e) We want to prove that |= f € (i,j) = fag « f € (1,]) — [as.
[f € {I}JJ fﬂa] = [VB{ch{f'*(B}] C f (el (B)))

= o |X i =1 iY P

= ;v s iXpe=lfy
pdaf,, inf min(l,1 =Ny, (¥ ~ B) + N7(f7(Y ~ B)))

= 3 iy iX(e=1
‘Elgfﬂ:g.f min(1, 1 Nﬂ:]l{“}"'”: (f7 (w)))

=[f € (i,j) = [aa].

l"u’
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