

Available online at [www.sciencedirect.com](http://www.sciencedirect.com/science/journal/2314808X)

ScienceDirect

journal homepage: http://ees.elsevier.com/ejbas/default.asp

Full Length Article

Some applications of *Dα***-closed sets in topological spaces**

(b) Egyptian J

O.R. Sayed [a,](#page-0-0) [,](#page-0-1) A.M. Khalil [b,](#page-0-2) [*](#page-0-1)*

^a *Department of Mathematics, Faculty of Science, Assiut University, Assiut, 71516, Egypt* ^b *Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt*

ARTICLE INFO

Article history: Received 23 January 2015 Received in revised form 27 July 2015 Accepted 27 July 2015 Available online 18 August 2015

α-closed *Dα*-closed *Dα*-continuous *Dα*-closed graph Strongly *Dα*-closed graph

2010 Mathematics subject classification: 54A05 54C08 54C10 54D10

1. Introduction and preliminaries

Generalized open sets play a very important role in General Topology, and they are now the research topics of many topologies worldwide. Indeed a significant theme in General Topology and Real Analysis is the study of variously modified forms of continuity, separation axioms, etc. by utilizing generalized open sets. One of the most well-known notions and also inspiration source are the notion of α -open [\[1\]](#page-7-0) sets introduced by Njåstad in 1965 and generalized closed (g-closed) subset of a topological space [\[2\]](#page-7-1) introduced by Levine in 1970.

ABSTRACT

In this paper, a new kind of sets called *Dα*-open sets are introduced and studied in a topological spaces. The class of all *Dα*-open sets is strictly between the class of all *α*-open sets and g-open sets. Also, as applications we introduce and study $D\alpha$ -continuous, *Dα*-open, and *Dα*-closed functions between topological spaces. Finally, some properties of *Dα*-closed and strongly *Dα*-closed graphs are investigated.

© 2015 Mansoura University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-*Keywords:* nc-nd/4.0/).

^{*} *Corresponding authors.* Tel.: +2088 2242873.

E-mail addresses: o_sayed@aun.edu.eg (O.R. Sayed); a.khalil@azhar.edu.eg (A.M. Khalil).

http://dx.doi.org/10.1016/j.ejbas.2015.07.005

²³¹⁴⁻⁸⁰⁸X/© 2015 Mansoura University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Since then, many mathematicians turned their attention to the generalization of various concepts in General Topology by considering *α*-open sets [\[3–10\]](#page-7-2) and generalized closed sets [\[11–13\].](#page-8-0) In 1982 Dunham [\[14\]](#page-8-1) used the generalized closed sets to define a new closure operator, and thus a new topology *τ**, on the space, and examined some of the properties of this new topology. Throughout the present paper (X, τ) , (Y, σ) and (Z, v) denote topological spaces (briefly *X*, *Y* and *Z*) and no separation axioms are assumed on the spaces unless explicitly stated. For a subset *A* of a space (*X*, *τ*), *Cl*(*A*) and *Int*(*A*) denote the closure and the interior of *A*, respectively. Since we require the following known definitions, notations, and some properties, we recall in this section.

Definition 1.1. Let (*X*, *τ*) be a topological space and *A* ⊆ *X*. Then

- (i) *A* is *α*-open [\[1\]](#page-7-0) if $A \subseteq Int(ClInt(A))$ and *α*-closed [1] if $Cl(int(Cl(A)) \subset A$.
- (ii) *A* is generalized closed (briefly g-closed) [\[2\]](#page-7-1) if $Cl(A) \subset U$ whenever $A \subseteq U$ and U is open in X .
- (iii) *A* is generalized open(briefly g-open) [\[2\]](#page-7-1) if *X**A* is g-closed.

The *α*-closure of a subset *A* of *X* [\[3\]](#page-7-2) is the intersection of all *α*-closed sets containing *A* and is denoted by *Clα*(*A*). The *α*-interior of a subset *A* of *X* [\[3\]](#page-7-2) is the union of all *α*-open sets contained in *A* and is denoted by *Intα*(*A*). The intersection of all g-closed sets containing *A* [\[14\]](#page-8-1) is called the g-closure of *A* and denoted by *Cl**(*A*), and the g-interior of *A* [\[15\]](#page-8-2) is the union of all g-open sets contained in *A* and is denoted by *Int**(*A*).

We need the following notations:

- $\alpha O(X)$ (resp. $\alpha C(X)$) denotes the family of all α -open sets (resp. *α*-closed sets) in (*X*, *τ*).
- *GO*(*X*) (resp. *GC*(*X*)) denotes the family of all generalized open sets (resp. generalized closed sets) in (*X*, *τ*).
- $\alpha O(X, x) = \{U \mid x \in U \in \alpha O(X, \tau)\}, O(X, x) = \{U \mid x \in U \in \tau\}$ and $\alpha C(X, x) = \{ U \mid x \in U \in \alpha C(X, \tau) \}.$

Definition 1.2. A function $f: X \to Y$ is said to be:

- (i) *α*-continuous [\[16\]](#page-8-3) (resp. g-continuous [\[17\]\)](#page-8-4) if the inverse image of each open set in *Y* is *α*-open (resp. g-open) in *X*.
- (ii) *α*-open [\[16\]](#page-8-3) (resp. *α*-closed [\[16\]\)](#page-8-3) if the image of each open (resp. closed) set in *X* is *α*-open (resp. *α*-closed) in *Y*.
- (iii) g-open [\[18\]](#page-8-5) (resp. g-closed [\[18\]\)](#page-8-5) if the image of each open (resp. closed) set in *X* is g-open (resp. g-closed) in *Y*.

Definition 1.3. Let $f: X \rightarrow Y$ be a function:

- (i) The subset $\{(x, f(x)) | x \in X\}$ of the product space $X \times Y$ is called the graph of *f* [\[19\]](#page-8-6) and is usually denoted by *G*(*f*).
- (ii) a closed graph [\[19\]](#page-8-6) if its graph *G*(*f*) is closed sets in the product space *X* × *Y*.
- (iii) a strongly closed graph [\[20\]](#page-8-7) if for each point $(x, y) \notin G(f)$, there exist open sets $U \subset X$ and $V \subset Y$ containing x and *y*, respectively, such that $(U \times Cl(V)) \cap G(f) = \phi$.
- (iv) a strongly *α*-closed graph [\[21\]](#page-8-8) if for each $(x, y) \in (X \times Y) \setminus \{$ *G*(*f*), there exist $U \in \alphaO(X, x)$ and $V \in O(Y, y)$ such that $(U \times Cl(V)) \cap G(f) = \phi$.

Definition 1.4. A topological space (*X*, *τ*) is said to be:

- (i) α -*T*₁ [\[9\]](#page-8-9) (resp. g-*T*₁ [\[22\]\)](#page-8-10) if for any distinct pair of points *x* and *y* in *X*, there exist *α*-open (resp. g-open) set *U* in *X* containing *x* but not *y* and an *α*-open (resp. g-open) set *V* in *X* containing *y* but not *x*.
- (ii) α - T_2 [\[8\]](#page-7-3) (resp. g- T_2 [\[22\]\)](#page-8-10) if for any distinct pair of points *x* and *y* in *X*, there exist *α*-open (resp. g-open) sets *U* and *V* in *X* containing *x* and *y*, respectively, such that $U \cap V = \emptyset$.

Lemma 1.5. Let $A \subseteq X$, then

(i)
$$
X \setminus Cl^*(A) = Int^*(X \setminus A)
$$
.
(ii) $X \setminus Int^*(A) = Cl^*(X \setminus A)$.

Lemma 1.6. A function $f:(X, \tau) \rightarrow (Y, \sigma)$ has a closed graph [\[19\]](#page-8-6) if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in O(X, x)$ and *V* ∈ *O*(*Y*, *y*) such that $f(U)$ ∩ *V* = ϕ .

Lemma 1.7. The graph *G*(*f*) is strongly closed [\[23\]](#page-8-11) if and only if for each point $(x, y) \notin G(f)$, there exist open sets $U \subset X$ and *V* \subset *Y* containing *x* and *y*, respectively, such that $f(U) \cap Cl(V) = \emptyset$.

2. *Dα***-closed sets**

In this section we introduce *Dα*-closed sets and investigate some of their basic properties.

Definition 2.1. A subset *A* of a space *X* is called *Dα*-closed if $Cl^*(Int(Cl^*(A))) \subseteq A$.

The collection of all *Dα*-closed sets in *X* is denoted by *DαC*(*X*).

Lemma 2.2. If there exists an g-closed set *F* such that $Cl^*(Int(F)) \subseteq A \subseteq F$, then *A* is *Dα*-closed.

Proof. Since *F* is g-closed, $Cl^*(F) = F$. Therefore, $Cl^*(Int(Cl^*(A))) \subseteq$ $Cl^*(Int(Cl^*(F))) = Cl^*(Int(F)) \subseteq A$. Hence *A* is $D\alpha$ -closed.

Remark 2.3. The converse of above lemma is not true as shown in the following example.

Example 2.4. Let (X, τ) be a topological space, where $X = \{a, b, c\}$ *c*} and $\tau = {\phi, {a}, {a}, {b}, {X}.$ Then $F_x = {\phi, {c}, {b}, {c}, {X}}$, $GC(X) =$ $\{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$, $GO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$, $D\alpha C(X) = \{\phi,$ ${b}, {c}, {a, c}, {b, c}, X$, $D\alpha O(X) = {\phi, {a}, {b}, {a, b}, {a, c}, X$. Therefore ${c} \in D\alpha C(X)$ and ${a, c} \in GC(X)$ but $Cl^*(Int{a, c}) = {a, c} \subset \mathbb{C}$ ${c} \subset {a, c}$.

Theorem 2.5. Let (*X*, *τ*) be a topological space. Then

- (i) Every α -closed subset of (X, τ) is $D\alpha$ -closed.
- (ii) Every g-closed subset of (X, τ) is $D\alpha$ -closed.

Proof. (i) Since closed set is g-closed, $Cl^*(A) \subseteq Cl(A)$ [\[14\].](#page-8-1) Now, suppose *A* is α -closed in *X*, then $Cl(int(Cl(A))) \subseteq A$. Therefore, $Cl^*(Int(Cl^*(A))) \subseteq Cl(int(Cl(A))) \subseteq A$. Hence *A* is $D\alpha$ -closed in *X*.

(ii) Suppose *A* is g-closed. Then $Cl^*(A) = A$ [\[14\].](#page-8-1) Therefore, $Int(Cl^*(A)) \subseteq Cl^*(A)$. Then $Cl^*(Int(Cl^*(A))) \subseteq Cl^*(Cl^*(A)) \subseteq$ $Cl^*(A) = A$ [\[14\].](#page-8-1) Hence *A* is *Dα*-closed.

Remark 2.6. The converse of above theorem is not true as shown in the following example.

- (i) *Dα*-closed set need not be *α*-closed. (see Example 2.7 below)
- (ii) *Dα*-closed set need not be g-closed. (see Example 2.7 below)

Example 2.7. Let (X, τ) be a topological space, where $X = \{a, b, c\}$ and $\tau = {\phi, {a, b}, X}$. Then $F_X = \alpha C(X) = {\phi, {c}, X}$, $\alpha O(X) = {\phi, {a}$, b }, X }, $GC(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$, $GO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$, $D\alpha C(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$, $D\alpha O(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ ${a, c}, {b, c}, X}$. Therefore ${a} \in D\alpha C(X)$, but ${a} \notin \alpha C(X)$ and ${a} \notin GC(X)$.

From the above discussions we have the following diagram in which the converses of implications need not be true.

 α -closed set \rightarrow $D\alpha$ -closed set \leftarrow g -closed set

Theorem 2.8. Arbitrary intersection of *Dα*-closed sets is *Dα*-closed.

Proof. Let ${F_i : i \in \Lambda}$ be a collection of *Dα*-closed sets in *X*. Then $Cl^*(Int(Cl^*(F_i))) \subseteq F_i$ for each *i*. Since $\cap F_i \subseteq F_i$ for each *i*, $Cl^*(\bigcap F_i) \subseteq Cl^*(F_i)$ for each *i*. Hence $Cl^*(\bigcap F_i) \subseteq \bigcap Cl^*(F_i)$, $i \in \Lambda$. Therefore $Cl^*(Int(Cl^*(\cap F_i)))\subseteq Cl^*(Int(\cap Cl^*(F_i)))\subseteq Cl^*(\cap Int(Cl^*(F_i)))\subseteq$ \cap **Cl^{*}(Int(Cl^{*}(F_i)))** ⊆ \cap **F**_i. Hence \cap F_i is *Dα*-closed.

Remark 2.9. The union of two *Dα*-closed sets need not to be *Dα*-closed as shown in Example 2.7, where both {*a*} and {*b*} are *Dα*-closed sets but { a } \cup {*b*} = { a , *b*} is not *Dα*-closed.

Corollary 2.10. If a subset *A* is *Dα*-closed and *B* is *α*-closed, then $A \cap B$ is *Dα*-closed.

Proof. Follows from Theorem 2.5 (i) and Theorem 2.8.

Corollary 2.11. If a subset *A* is *Dα*-closed and *F* is g-closed, then $A \cap F$ is *Dα*-closed.

Proof. Follows from Theorem 2.5 (ii) and Theorem 2.8.

Definition 2.12. Let *A* be a subset of a space *X*. The *Dα*closure of A, denoted by Cl2(A), is the intersection of all *Dα*-closed sets in *X* containing *A*. That is $\ Cl^{\mathcal{D}}_{\alpha}(A)= \cap \{F: A\subseteq F\}$ and $F \in D\alpha C(X)$ }.

Theorem 2.13. Let *A* be a subset of *X*. Then *A* is *Dα*-closed set in *X* if and only if $Cl_{\alpha}^{\mathbb{D}}(A) = A$.

Proof. Suppose *A* is *Dα*-closed set in *X*. By Definition 2.12, $\text{Cl}_\alpha^{\text{D}}(A) = A$. Conversely, suppose $\text{Cl}_\alpha^{\text{D}}(A) = A$. By Theorem 2.8 *A* is *Dα*-closed.

Theorem 2.14. Let *A* and *B* be subsets of *X*. Then the following results hold.

(i) $A \subseteq \mathrm{Cl}_{\alpha}^{\mathbb{D}}(A) \subseteq \mathrm{Cl}_{\alpha}(A), \mathrm{Cl}_{\alpha}^{\mathbb{D}}(A) \subseteq \mathrm{Cl}^{*}(A)$. (ii) $Cl_{\alpha}^{D}(\phi) = \phi$ and $Cl_{\alpha}^{D}(X) = X$. (iii) If $A \subseteq B$, Then $Cl_{\alpha}^{D}(A) \subseteq Cl_{\alpha}^{D}(B)$. (iv) $Cl_{\alpha}^{\mathbb{D}}(Cl_{\alpha}^{\mathbb{D}}(A)) = Cl_{\alpha}^{\mathbb{D}}(A)$. (V) $Cl_{\alpha}^{D}(A) \cup Cl_{\alpha}^{D}(B) \subseteq Cl_{\alpha}^{D}(A \cup B)$. (vi) $Cl_{\alpha}^{D}(A \cap B) \subseteq Cl_{\alpha}^{D}(A) \cap Cl_{\alpha}^{D}(B)$.

Proof. (i) Follows From Theorem 2.5 (i) and (ii), respectively. (ii) and (iii) are obvious.

(iv) If $A \subseteq F$, $F \in D\alpha C(X)$, then from (iii) and Theorem 2.13, $Cl_{\alpha}^{\mathbb{D}}(A) \subseteq Cl_{\alpha}^{\mathbb{D}}(F) = F$. Again $Cl_{\alpha}^{\mathbb{D}}(Cl_{\alpha}^{\mathbb{D}}(A)) \subseteq Cl_{\alpha}^{\mathbb{D}}(F) = F$. Therefore $\text{Cl}^{\text{D}}_{\alpha}(\text{Cl}^{\text{D}}_{\alpha}(A)) \subseteq \cap \{F : A \subseteq F, F \in D\alpha C(X)\} = \text{Cl}^{\text{D}}_{\alpha}(A).$

(v) and (vi) follows from (iii).

Remark 2.15. The equality in the statements (v) of the above theorem need not be true as seen from Example 2.7, where $A = \{a\}$, $B = \{b\}$, and $A \cup B = \{a, b\}$. Then one can have that, $\text{Cl}_{\alpha}^{\text{D}}(A) = \{a\}$; $\text{Cl}_{\alpha}^{\text{D}}(B) = \{b\}$; $\text{Cl}_{\alpha}^{\text{D}}(A \cup B) = X$; $\text{Cl}_{\alpha}^{\text{D}}(A) \cup \text{Cl}_{\alpha}^{\text{D}}(B) = \{a, b\}$. Further more the equality in the statements (iv) of the above theorem need not be true as shown in the following example.

Example 2.16. Let (X, τ) be a topological space, where $X = \{a, a\}$ *b*, *c*} and $\tau = {\emptyset, {\{b\}, \{c\}, \{b, c\}, X\}}$. Then $F_x = GC(X) = D\alpha C(X) =$ $\{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$, $GO(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Let $A = \{a\}$, *B* = {*b*}, and *A* \cap *B* = ϕ . Then one can have that, $Cl^D_{\alpha}(A) = \{a\}$; $Cl_{\alpha}^D(B) = \{a, b\}$; $Cl_{\alpha}^D(A \cap B) = \phi$; $Cl_{\alpha}^D(A) \cap Cl_{\alpha}^D(B) = \{a\}.$

3. *Dα***-open sets**

In this section we introduce *Dα*-open sets and investigate some of their basic properties.

Definition 3.1. A subset *A* of a space *X* is called an *Dα*-open if *X* \ *A* is *Dα*-closed. Let *DαO*(*X*) denote the collection of all an *Dα*-open sets in *X*.

Lemma 3.2. Let *A* ⊆ *X*, then

(i) $X \setminus \text{Cl}^*(X \setminus A) = \text{Int}^*(A)$. (ii) $X \setminus Int^*(X \setminus A) = Cl^*(A)$.

Proof. Obvious.

Theorem 3.3. A subset *A* of a space *X* is *Dα*-open if and only if $A \subseteq Int^*(Cl(int^*(A)))$.

Proof. Let *A* be *Dα*-open set. Then *X* \ *A* is *Dα*-closed and $Cl^*(Int(Cl^*(X \setminus A))) \subseteq X \setminus A$. By Lemma 3.2 $A \subseteq Int^*(Cl(int^*(A))).$ Conversely, suppose $A \subseteq Int^*(Cl(int^*(A)))$. Then $X \setminus Int^*(Cl(int^*$ $(A)) \subseteq X \setminus A$. Hence $(Int^*(Cl(int^*(X \setminus A)))) \subseteq X \setminus A$. This shows that $X \setminus A$ is $D\alpha$ -closed. Thus A is $D\alpha$ -open.

Lemma 3.4. If there exists g-open set *V* such that $V \subseteq A \subseteq Int^*$ $(Cl(V))$, then *A* is *D* α -open.

Proof. Since *V* is g-open, $X \setminus V$ is g-closed and $X \setminus Int^*(Cl(V))$ $\subseteq X \setminus A \subseteq X \setminus V$. Therefore From Lemma 3.2 *Cl*^{*}(Int(X \ V)) \subseteq *X* \ *A* \subseteq *X* \ *V* . From Lemma 2.2 we have *X* \ *A* is *D* α -closed. Hence *A* is *Dα*-open.

Remark 3.5. The converse of Lemma 3.4 need not to be true as seen from Example 2.4, where ${a, b} \in D\alphaO(X)$ and ${b} \in GO(X)$ but ${b} \subset {a, b} \not\subset {b}$.

Theorem 3.6. Let (*X*, *τ*) be a topological space. Then

- (i) Every α -open subset of (X, τ) is $D\alpha$ -open.
- (ii) Every g-open subset of (X, τ) is $D\alpha$ -open.

Proof. From Theorem 2.5, the proof is obvious.

Remark 3.7. The converse of the above theorem is not true as seen from Example 2.7, where ${b, c} \in D\alphaO(X)$ but ${b, c} \notin \alphaO(X)$ and ${b, c} \notin GO(X)$.

From the above discussions we have the following diagram in which the converses of implications need not be true.

 α -open set \rightarrow D α -open set \leftarrow g-open set

Theorem 3.8. Arbitrary union of *Dα*-open set is *Dα*-open.

Proof. Follows from Theorem 2.8.

Remark 3.9. The intersection of two *Dα*-open sets need not be *Dα*-open as seen from Example 2.7, where both {*b*, *c*} and $\{a, c\}$ are *D* α -open sets but $\{b, c\} \cap \{a, c\} = \{c\}$ is not *Dα*-open.

Corollary 3.10. If a subset *A* is *Dα*-open and *B* is *α*-open, then $A \cup B$ is *Dα*-open.

Proof. Follows from Theorem 3.6 (i) and Theorem 3.8.

Corollary 3.11. If a subset *A* is *Dα*-open and *U* is g-open, then *A* ∪ *U* is *Dα*-open.

Proof. Follows from Theorem 3.6 (ii) and Theorem 3.8.

Definition 3.12. Let *A* be a subset of a space *X*. The *Dα*interior of A is denoted by $\mathop{\rm Int}_\alpha^{\mathbb D}(\mathsf{A})$, is the union of all an *Dα*-open sets in *X* contained in *A*. That is $Int_{\alpha}^{D}(A) = ∪ \{U: U ⊆ A,$ $U \in D\alpha O(X)$.

Lemma 3.13. If *A* is a subset of *X*, then

(i) $X \setminus \text{Cl}^{\text{D}}_{\alpha}(A) = \text{Int}_{\alpha}^{\text{D}}(X \setminus A)$.

(ii) $X \setminus Int_{\alpha}^{D}(A) = Cl_{\alpha}^{D}(X \setminus A)$.

Proof. Obvious.

Theorem 3.14. Let *A* be a subset of *X*. Then *A* is *Dα*-open if and only if $Int_{\alpha}^D(A) = A$.

Proof. Follows from Theorem 2.13 and Lemma 3.13.

Theorem 3.15. Let *A* and *B* be subsets of *X*. Then the following results hold.

(i) $Int_{\alpha}(A) \subseteq Int_{\alpha}^{D}(A) \subseteq A$, $Int^{*}(A) \subseteq Int_{\alpha}^{D}(A)$. (ii) $Int_{\alpha}^{\mathbb{D}}(\phi) = \phi$ and $Int_{\alpha}^{\mathbb{D}}(X) = X$. (iii) If $A \subseteq B$, then $Int_{\alpha}^{D}(A) \subseteq Int_{\alpha}^{D}(B)$.

- (iv) $Int_{\alpha}^D(int_{\alpha}^D(A)) = Int_{\alpha}^D(A)$.
- (v) $Int_{\alpha}^D(A) \cup Int_{\alpha}^D(B) \subseteq Int_{\alpha}^D(A \cup B)$.
- (vi) $Int_{\alpha}^D(A \cap B) \subseteq Int_{\alpha}^D(A) \cap Int_{\alpha}^D(B)$.

Proof. Obvious.

Remark 3.16. The equality in the statements (v) of Theorem 3.15 need not be true as seen from Example 2.7, where $A = \{b, c\}$, *B* = {*a*, *c*}, and *A* \cup *B* = *X*. Then one can have that, $Int_{\alpha}^{D}(A) = \{b, c\};$ $Int_{\alpha}^D(B) = \{c\}$; $Int_{\alpha}^D(A) \cup Int_{\alpha}^D(B) = \{b, c\}$; $Int_{\alpha}^D(A \cup B) = X$. Furthermore the equality in the statements (iv) of the above theorem need not be true as seen from Example 2.7, where $A = \{b, c\}$, $B = \{a, c\}$, and $A \cap B = \{c\}$. Then one can have that, $Int_{\alpha}^{\mathbb{D}}(A) = \{b, c\}$; $Int_{\alpha}^{\mathbb{D}}(B) = \{a, c\}$; $Int_{\alpha}^{\mathbb{D}}(A \cap B) = \emptyset$; $Int_{\alpha}^{\mathbb{D}}(A) \cap Int_{\alpha}^{\mathbb{D}}(B)$ $(B) = \{c\}$.

Theorem 3.17. Let *x* ∈ *X*. Then $x \in Cl^D_{\alpha}(A)$ if and only if $U \cap A \neq \emptyset$ for every *Dα*-open set *U* containing *x*.

Proof. Let $x \in Cl^D_{\alpha}(A)$ and there exists $D\alpha$ -open set *U* containing *x* such that $U \cap A = \phi$. Then $A \subseteq X \setminus U$ and $X \setminus U$ is $D\alpha$ closed. Therefore $Cl_{\alpha}^{D}(A) \subseteq Cl_{\alpha}^{D}(X \setminus U) = X \setminus U$. This implies $x \notin Cl_{\alpha}^D(A)$, which is a contradiction. Conversely, assume that *U* \cap *A* ≠ ϕ for every *D* α -open set *U* containing *x* and *x* ∉ $Cl_{\alpha}^{D}(A)$. Then there exists *Dα*-closed subset *F* containing *A* such that *x* ∉ *F*. Hence *x* ∈ *X* \ *F* and *X* \ *F* is *Dα*-open. Therefore *A* ⊆ *F*, $(X \setminus F) \cap A = \emptyset$ This is a contradiction to our assumption.

Lemma 3.18. Let *A* be any subset of (*X*, *τ*). Then

(i) $A \cap Int^*(Cl(int^*(A)))$ is $D\alpha$ -open;

(ii) $A \cup Cl^*(Int(Cl^*(A)))$ is $D\alpha$ -closed.

Proof.

- (i) $Int^*(Cl(int^*(A \cap Int^*(Cl(int^*(A)))))) = Int^*(Cl(int^*(A) \cap Int^*(Cl))$ $(int^*(A)))) = Int^*(Cl(int^*(A)))$. This implies that $A \cap Int^*(Cl(int^*(A))) = A \cap Int^*(Cl(int^*(A \cap Int^*(Cl(int^*(A))))))$ ⊆ Int*(Cl(Int*(A ∩ Int*(Cl(Int*(A)))))). Therefore A ∩ Int*(Cl (Int^{*}(A))) is *Dα*-open.
- (ii) From (i) we have $X \setminus (A \cup \mathrm{Cl}^*(\mathrm{Int}(\mathrm{Cl}^*(A))) = (X \setminus A)$ \cap *Int**(*Cl*(*Int**(*X* \ *A*))) is *Dα*-open that further implies $A \cup Cl^*(Int(Cl^*(A)))$ is $D\alpha$ -closed.

Theorem 3.19. If *A* is a subset of a topological space *X*,

(i) $Int_{\alpha}^{\mathbb{D}}(A) = A \cap Int^*(Cl(int^*(A)))$.

(ii) $Cl_{\alpha}^D(A) = A \cup Cl^*(Int(Cl^*(A)))$.

Proof

(i) Let $B = Int_{\alpha}^{D}(A)$. Clearly *B* is *Dα*-open and *B* \subseteq *A*. Since *B* is *Dα*-open, $B \subseteq Int^*(Cl(int^*(B))) \subseteq Int^*(Cl(int^*(A)))$. This proves that $B \subseteq A \cap Int^*(Cl(int^*(A)))$. By Lemma 3.18,

 $A \cap Int^* (Cl(int^* (A)))$ is *Dα*-open. By the definition of $Int_\alpha^D(A)$, $A \cap Int^* (Cl(int^*(A))) \subseteq B$. Then it follows that $B = A \cap Int^*(Cl(Int^*(A)))$. Therefore $Int^D_{\alpha}(A) = A \cap Int^*(Cl)$ $(int[*](A)))$.

- (ii) By Lemma 3.13 we have $Cl_{\alpha}^{\mathbb{D}}(A) = X \setminus Int_{\alpha}^{\mathbb{D}}(X \setminus A),$
	- $= X \setminus ((X \setminus A) \cap Int^*(Cl(int^*(X \setminus A))))$, using (i)
	- $= X \setminus (X \setminus A) \cup (X \setminus Int^*(Cl(int^*(X \setminus A)))$
	- $= A \cup Cl^*(Int(Cl^*(A))).$

4. *Dα***-continuous functions**

In this section we introduce *Dα*-continuous functions and investigate some of their basic properties.

Definition 4.1. A function $f: X \to Y$ is called $D\alpha$ -continuous if the inverse image of each open set in *Y* is *Dα*-open in *X*.

Theorem 4.2.

- (i) Every *α*-continuous function is *Dα*-continuous.
- (ii) Every g-continuous function is *Dα*-continuous.

Proof. It is obvious from Theorem 3.6.

Remark 4.3.

(i) *Dα*-continuous function need not be *α*-continuous. (see Example 4.4 (i) below) (ii) *Dα*-continuous function need not be g-continuous.

(see Example 4.4 (ii) below)

Example 4.4. (i) Let $X = \{a, b, c\}$ associated with the topology $\tau = {\phi, {a}, X}$ and $Y = {x, y, z}$ associated with the topology $\sigma = {\phi, {x, y}, {z}, Y}$. Let $f : X \rightarrow Y$ be a function defined by $f(a) = f(b) = x$, $f(c) = z$. One can have that $F_x = \{\phi, \{b, c\}, X\}$, $GC(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$, $GO(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, Y\}$ b }, { a, c }, X }, $\alpha O(X) = \{ \phi, \{a\}, \{a, b\}, \{a, c\}, X \}$, $D \alpha C(X) = D \alpha O(X) =$ *P*(*X*). Since {*z*} is open in *Y*, $f^{-1}(\{z\}) = \{c\} \in D\alpha O(X)$, but $\{c\} \notin \alpha O(X)$. Therefore *f* is *Dα*-continuous but not *α*-continuous.

(ii) Let (*X*,*τ*) and (*Y*,*σ*) be the topological spaces in (i) and *f* : $X \rightarrow Y$ be a function defined by $f(a) = x$, $f(b) = f(c) = z$. Since $\{z\}$ is open in *Y*, $f^{-1}(\{z\}) = \{b, c\} ∈ DαO(X)$, but $\{b, c\} ∉ GO(X)$. Therefore *f* is *Dα*-continuous but not g-continuous.

From the above discussions we have the following diagram in which the converses of implications need not be true.

 α -continuity \rightarrow D α -continuity \leftarrow g-continuity

Theorem 4.5. Let $f: X \to Y$ be a function. Then the following are equivalent:

- (i) *f* is *Dα*-continuous.
- (ii) For each $x \in X$ and each open set $V \subset Y$ containing $f(x)$, there exists *D* α -open set $W \subset X$ containing *x* such that *f*(*W*) ⊂ *V*.
- (iii) The inverse image of each closed set in *Y* is *Dα*-closed in *X*.
- (iv) $f(Cl_{\alpha}^{D}(A)) \subseteq Cl(f(A))$ for every subset A of X.
- (V) $Cl_{\alpha}^{D}(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$ for every subset *B* of *Y*.
- (vi) $f^{-1}(\text{Int}(B)) \subseteq \text{Int}_{\alpha}^{D}(f^{-1}(B))$ for every subset *B* of *Y*.

Proof. (i)⇒(ii) Since *V* ⊂ *Y* containing *f*(*x*) is open, then $f^{-1}(V) \in D\alpha O(X)$. Set $\; W = f^{-1}(V) \;$ which contains $x,$ therefore $f(W) \subset V$.

(ii)⇒(i) Let *V* ⊂ *Y* be open, and let $x \in f^{-1}(V)$, then $f(x) \in V$ and thus there exists $W_x \in D\alphaO(X)$ such that $x \in W_x$ and $f(W_x) \subset V$. Then $x \in W_x \subset f^{-1}(V)$, and so $f^{-1}(V) = \bigcup_{v \in V_x} W_x$ but $\bigcup_{v \in V_x} W_x \in$ $x \in f^{-1}(V)$ $x \in f^{-1}(V)$

D α O(X) by Theorem 3.8. Hence $f^{-1}(V) \in D\alpha$ O(X), and therefore *f* is *Dα*-continuous.

(i)⇒(iii) Let *F* ⊂ *Y* be closed. Then *Y**F* is open and $f^{-1}(Y \setminus F) \in D\alpha O(X)$, i.e. $X - f^{-1}(F) \in D\alpha O(X)$. Then $f^{-1}(F)$ is $D\alpha$ closed of *X*.

(iii)⇒(iv) Let $A ⊆ X$ and *F* be a closed set in *Y* containing $f(A)$. Then by (iii), $f^{-1}(F)$ is *Dα*-closed set containing A. It follows that $\mathsf{Cl}_{\alpha}^{\mathbb{D}}(A) \subseteq \mathsf{Cl}_{\alpha}^{\mathbb{D}}(f^{-1}(F)) = f^{-1}(F)$ and hence $f(\mathsf{Cl}_{\alpha}^{\mathbb{D}}(A)) \subseteq F$. Therefore $f(Cl_{\alpha}^{\mathbb{D}}(A)) \subseteq Cl(f(A))$.

(iv)⇒(v) Let $B ⊆ Y$ and $A = f^{-1}(B)$. Then by assumption, $f(\mathrm{Cl}^\mathrm{D}_\alpha(A))\subseteq\mathrm{Cl}(f(A))\subseteq\mathrm{Cl}(B)$. This implies that $\mathrm{Cl}^\mathrm{D}_\alpha(A)\subseteq f^{-1}$ $(Cl(B))$. Hence $Cl_{\alpha}^{D}(f^{-1}(B)) \subseteq f^{-1}(Cl(B)).$

 $(v) \Rightarrow (vi)$ Let $B \subseteq Y$. By assumption, $Cl_{\alpha}^{D}(f^{-1}(Y \setminus B)) \subseteq f^{-1}$ $(Cl(Y \setminus B))$. This implies that, $Cl_{\alpha}^{D}(X \setminus f^{-1}(B)) \subseteq f^{-1}(Y \setminus Int(B))$ and hence $X \setminus Int_{\alpha}^{\mathbb{D}}(f^{-1}(B)) \subseteq X \setminus f^{-1}(Int(B)).$ By taking complement on both sides we get $f^{-1}(\text{Int}(B)) \subseteq \text{Int}_{\alpha}^D(f^{-1}(B)).$

(vi)⇒(i) Let *U* be any open set in *Y*. Then *Int*(*U*) = *U*. By assumption, $f^{-1}(\text{Int}(U)) \subseteq \text{Int}_{\alpha}^{D}(f^{-1}(U))$ and hence $f^{-1}(U) \subseteq \text{Int}_{\alpha}^{D}(f^{-1}(U))$ (*U*)) *I* Then $f^{-1}(U) = Int_{\alpha}^{D}(f^{-1}(U))$. Therefore by Theorem 3.14, *f U* [−]¹ () is *Dα*-open in *X*. Thus *f* is *Dα*-continuous.

Theorem 4.6. Let $f: X \to Y$ be $D\alpha$ -continuous and let $q: Y \to Z$ be continuous. Then *gof* : $X \rightarrow Z$ is $D\alpha$ -continuous.

Proof. Obvious.

Remark 4.7. Composition of two *Dα*-continuous functions need not be *Dα*-continuous as seen from the following example.

Example 4.8. Let $X = \{a, b, c\}$ associated with the topology $\tau =$ $\{\phi, \{b\}, \{a, b\}, X\}$, $Y = \{x, y, z\}$ associated with the topology $\sigma = {\phi, {x}, Y}$ and $Z = {p, q, r}$ associated with the topology $v = {\phi, {r}, Z}$ and $f:(X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = y$, $f(b) = x$, $f(c) = z$. Define $g:(Y, \sigma) \rightarrow (Z, v)$ by $g(x) = g(y) = p$, $g(z) = r$. One can have that $F_x = \{\phi, \{c\}, \{a, c\}, X\}$, $GC(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$, $GO(X)$ $= {\phi, {a}, {b}, {b}, {a, b}, X}$, $D\alpha C(X) = {\phi, {a}, {c}, {a, c}, {b, c}, X}$, $D\alpha O(X)$ $= {\phi, {a}, {b}, {b}, {a, b}, {b, c}, X}$, and $F_Y = { \phi, {y, z}, Y}$, $GC(Y) = { \phi, {y},$ ${z}, {x, y}, {x, z}, {y, z}, Y$, *GO*(Y) = { ϕ , {x}, {y}, {z}, {x, y}, {x, z}, Y}, $D\alpha C(Y) = D\alpha O(Y) = P(X)$. Clearly, *f* and *g* are *Dα*-continuous. {*r*} is open in *Z*. But $(gof)^{-1}({r}) = f^{-1}(g^{-1}({r})) = f^{-1}({z}) = {c}$, which is not *Dα*-open in *X*. Therefore *gof* is not *Dα*-continuous.

5. *Dα***-open functions and** *Dα***-closed functions**

In this section we introduce *Dα*-open functions and *Dα*-closed functions and investigate some of their basic properties.

Definition 5.1. A function $f: X \to Y$ is said to be $D\alpha$ -open (resp. *Dα*-closed) if the image of each open (resp. closed) set in *X* is *Dα*-open (resp. *Dα*-closed) in *Y*.

Theorem 5.2.

- (i) Every *α*-open function is *Dα*-open.
- (ii) Every g-open function is *Dα*-open.

Proof. It is obvious from Theorem 3.6.

Remark 5.3.

- (i) *Dα*-open function need not be *α*-open. (see Example 5.4 below)
- (ii) *Dα*-open function set need not be g-open. (see Example 5.5 below)

Example 5.4. (i) Let $X = \{x,y,z\}$ associated with the topology $\tau = {\phi, {x}, X}$ and $Y = {a,b,c}$ associated with the topology $\sigma = {\phi, {a, b}, {c}, Y}.$ Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a function defined by $f(x) = a$, $f(y) = b$ and $f(z) = c$. One can have that $F_Y = \alpha O(Y) =$ ${\phi, {a, b}, {c}, Y}$, $GC(Y) = GO(Y) = D\alpha C(Y) = D\alpha O(Y) = P(X)$. Since ${x}$ is open in *X*, $f({x}) = {a} \in D\alphaO(Y)$, but ${a} \notin \alphaO(Y)$. Therefore *f* is *Dα*-open function but not *α*-open.

Example 5.5. (ii) Let $X = \{x,y,z\}$ associated with the topology $\tau = {\phi, \{y\}, \{x, y\}, X}$ and $Y = {a, b, c}$ associated with the topology $\sigma = {\phi, {a}, Y}$. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a function defined by $f(x) = b$, $f(y) = c$ and $f(z) = a$. One can have that $F_Y = \{\phi, \{b, c\}, Y\}$, $GC(Y) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, Y\}$, $GO(Y) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, Y\}$ *b*}, $\{a, c\}$, Y }, $D\alpha C(Y) = D\alpha O(Y) = P(X)$. Since $\{x, y\}$ is open in *X*, $f({x, y}) = {b, c} \in D\alphaO(Y)$, but ${b, c} \notin GO(Y)$. Therefore *f* is $D\alpha$ open function but not g-open.

From the above discussions we have the following diagram in which the converses of implications need not be true.

 α -open function \rightarrow D α -open function \leftarrow *q*-open function

Theorem 5.6. Let $f: X \to Y$ be a function. The following statements are equivalent.

- (i) *f* is *Dα*-open.
- (ii) For each *x* ∈ *X* and each neighborhood *U* of *x*, there exists *Dα*-open set *W* ⊆ *Y* containing *f*(*x*) such that *W* ⊆ *f*(*U*).

Proof. (i)⇒(ii) Let *x* ∈ *X* and *U* is a neighborhood of *x*, then there exists an open set *V* \subseteq *X* such that $x \in V \subseteq U$. Set *W* = *f*(*V*). Since *f* is *D* α -open, $f(V) = W \in D\alphaO(Y)$ and so $f(x) \in W \subseteq f(U)$.

(ii)⇒(i) Obvious.

Theorem 5.7. Let $f: X \to Y$ be *D* α -open (resp. *D* α -closed) function and *W* ⊆ *Y*. If *A* ⊆ *X* is a closed (resp. open) set containing *f W*[−]¹ () , then there exists *Dα*-closed (resp. *Dα*-open) set *H* ⊆ *Y* containing *W* such that $f^{-1}(H) \subseteq A$.

Proof. Let $H = Y \setminus f(X \setminus A)$. Since $f^{-1}(W) \subseteq A$, we have $f(X \setminus A) \subseteq Y \setminus W$. Since *f* is *Dα*-open (resp. *Dα*-closed), then *H* is *Dα*-closed (resp. *Dα*-open) set and $f^{-1}(H) = X \setminus f^{-1}(f(X \setminus A)) \subset$ $X \setminus (X \setminus A) = A$.

Corollary 5.8. If $f: X \to Y$ is *Dα*-open, then $f^{-1}(Cl_{\alpha}^D(B)) \subseteq Cl(f^{-1}(B))$ for each set $B \subset Y$.

Proof. Since $Cl(f^{-1}(B))$ is closed in *X* containing $f^{-1}(B)$ for a set $B \subseteq Y$. By Theorem 5.7, there exists $D\alpha$ -closed set $H \subseteq Y$, $B \subseteq H$ such that $f^{-1}(H) \subseteq Cl(f^{-1}(B))$. Thus, $f^{-1}(Cl_{\alpha}^D(B)) \subseteq f^{-1}(Cl_{\alpha}^D(H)) \subseteq$ $f^{-1}(H) \subseteq Cl(f^{-1}(B))$.

Theorem 5.9. A function $f: X \to Y$ is *D* α -open if and only if $f(int(A)) \subseteq Int_{\alpha}^{D}(f(A))$ for every subset *A* of *X*.

Proof. Suppose $f: X \to Y$ is *D* α -open function and $A \subseteq X$. Then *Int*(*A*) is open set in *X* and $f(int(A))$ is *D* α -open set contained in $f(A)$. Therefore $f(int(A)) \subseteq Int_{\alpha}^D(f(A))$. Conversely, let be $f(int(A)) \subseteq Int_{\alpha}^D(f(A))$ for every subset *A* of *X* and *U* is open set in *X*. Then $Int(U) = U$, $f(U) \subseteq Int_{\alpha}^{D}(f(U))$. Hence $f(U) = Int_{\alpha}^{D}(f(U))$. By Theorem 3.14 $f(U)$ is $D\alpha$ -open.

Theorem 5.10. For any bijective function $f:(X, \tau) \rightarrow (Y, \sigma)$ the following statements are equivalent.

- (i) f^{-1} is *D* α -continuous function.
- (ii) *f* is *Dα*-open function.
- (iii) *f* is *Dα*-closed function.

Proof. (i)⇒(ii) Let *U* be an open set in *X*. Then *X* \ *U* is closed in *X*. Since f^{-1} is *Dα*-continuous, $(f^{-1})^{-1}(X \setminus U)$ is *Dα*-closed in *Y*. That is $f(X \setminus U) = Y \setminus f(U)$ is *Dα*-closed in *Y*. This implies $f(U)$ is *Dα*-open in *Y*. Hence *f* is *Dα*-open function.

(ii)⇒ (iii) Let *F* be a closed set in *X*. Then *X* \ *F* is open in *X*. Since *f* is *Dα*-open, *f*(*X* \ *F*) is *Dα*-open in *Y*. That is $f(X \setminus F) = Y \setminus f(F)$ is *Dα*-open in *Y*. This implies $f(F)$ is *Dα*closed in *Y*. Hence *f* is *Dα*-closed function.

(iii)⇒ (i) Let *F* be closed set in *X*. Since *f* is *Dα*-closed function, $f(F)$ is *Dα*-closed in *Y*. That is $(f^{-1})^{-1}(F)$ is *Dα*-closed in *Y*. Hence *f*⁻¹ is *Dα*-continuous function.

Remark 5.11. Composition of two *Dα*-open functions need not be *Dα*-open as seen from the following example.

Example 5.12. Let $X = \{x, y, z\}$ associated with the topology $\tau = {\phi, {x, y}, {z}, {z} \, x }$, $Y = {p, q, r}$ associated with the topology $\sigma = {\phi, {p}, Y}$ and $Z = {a,b,c}$ associated with the topology, $v =$ $\{\phi, \{b\}, \{a, b\}, Z\}$. Define $f:(X, \tau) \rightarrow (Y, \sigma)$ by $f(x) = p$, $f(y) = q$, $f(z) = r$ and $g:(Y, \sigma) \rightarrow (Z, v)$ by $g(p) = b$, $g(q) = a$, $g(r) = c$. One can have that; $F_Y = \{\phi, \{q, r\}, Y\}$, $GC(Y) = \{\phi, \{q\}, \{r\}, \{p, q\}, \{p, r\}$, ${q, r}$, Y}, $GO(Y) = {φ, {p}, {q}, {r}, {p, q}, {p, r}, Y}, DoC(Y) = DoO(Y)$ $y = P(X)$ and $F_z = \{\phi, \{c\}, \{a, c\}, Z\}, GC(Z) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, Z\},$ $GO(Z) = \{\phi, \{a\}, \{b\}, \{a, b\}, Z\}, \quad D\alpha C(Z) = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}, Z\},$ $D\alpha O(Z) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, Z\}$. Clearly, *f* and *g* are *Dα*-open function. {*z*} is open in *X*. But $gof({z}) = g(f({z})) = g({r}) = {c}$ which is not *Dα*-open in *Z*. Therefore *g*o*f* is not *Dα*-open function.

6. *Dα***-closed graph and strongly** *Dα***-closed**

In this section we introduce *Dα*-closed graph and strongly *Dα*-closed and investigate some of their basic properties.

Definition 6.1. A function $f: X \to Y$ has *D* α -closed graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alpha O(X, x)$ and *V* \in *GO*(*Y*, *y*) such that $(U \times Cl^*(V)) \cap G(f) = \emptyset$.

Remark 6.2. Evidently every closed graph is *Dα*-closed. That the converse is not true is seen from the following example.

Example 6.3. Let $X = \{a, b, c\}$ associated with the topology $\tau = {\phi, {a, b}, X}$ and $Y = {x, y, z}$ associated with the topology $\sigma = {\phi, {x}, {x, y}, Y}.$ Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a function defined by $f(a) = f(c) = x$, $f(b) = y$. One can have that $F_x = \{\phi, \{c\}, X\}$, $GC(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}, \quad GO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \quad D\alphaO$ $(X) = {\varphi, {a}, {b}, {a, b}, {a, c}, {b, c}, X}$ and $F_Y = {\varphi, {z}, {y, z}, Y}$, $GC(Y) = \{\phi, \{z\}, \{x, z\}, \{y, z\}, Y\}$, $GO(Y) = \{\phi, \{x\}, \{y\}, \{x, y\}, Y\}$. Since ${a, c} \in D\alphaO(X, c)$ and ${y} \in GO(Y, y)$ but ${a, c} \notin O(X)$ and ${y} \notin O(Y)$. Therefore *G*(*f*) is *D* α -closed but not closed.

Theorem 6.4. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a function and

- (i) *f* is *Dα*-closed graph;
- (ii) For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alphaO(X, x)$ and $V \in GO(Y, y)$ such that $f(U) \cap Cl^*(V) = \phi$.
- (iii) For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alphaO(X, x)$ and $V \in D\alpha O(Y, y)$ such that $(U \times Cl_{\alpha}^D(V)) \cap G(f) = \phi$.
- (iv) For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alphaO(X, x)$ and $V \in D\alpha O(Y, y)$ such that $f(U) \cap Cl_{\alpha}^{D}(V) = \phi$. Then (1) (i) \Leftrightarrow (ii)
	-
	- (2) (i) \Rightarrow (iii)
	- (3) (ii) \Rightarrow (iv)
	- (4) (i) \Rightarrow (iv)

Proof. (i)⇒(ii) Suppose *f* is *Dα*-closed graph. Then for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists $U \in D\alpha O(X, x)$ and $V \in GO(Y,$ *y*) such that $(U \times Cl^*(V)) \cap G(f) = \phi$. This implies that for each $f(x) \in f(U)$ and $y \in Cl^*(V)$. Since $y \neq f(x)$, $f(U) \cap Cl^*(V) = \phi$.

(ii)⇒(i) Let $(x, y) ∈ (X × Y) \ G(f)$. Then there exists $U \in D\alpha O(X, x)$ and $V \in GO(Y, y)$ such that $f(U) \cap Cl = {}^{*}(V) = \phi$. This implies that $f(x) \neq y$ for each $x \in U$ and $y \in Cl^*(V)$. Therefore $(U \times Cl^*(V)) \cap G(f) = \phi$.

(i)⇒(iii) Suppose *f* is *Dα*-closed graph. Then for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists $U \in D\alpha O(X, x)$ and $V \in GO(Y,$ *y*) such that $(U \times Cl^*(V)) \cap G(f) = \emptyset$. Since g-open set is $D\alpha$ open, $\mathsf{Cl}^\mathbb{D}_\alpha(\mathsf{V})\subseteq \mathsf{Cl}^*(\mathsf{V}).$ Therefore $(\mathsf{U}\times \mathsf{Cl}^\mathbb{D}_\alpha(\mathsf{V}))\cap \mathsf{G}(f)=\phi.$

(ii)⇒(iv) Let $(x, y) ∈ (X × Y) \ G(f)$. Then there exists $U \in D\alpha O(X, x)$ and $V \in GO(Y, y)$ such that $f(U) \cap Cl^*(V) = \phi$. Since $Cl^D_{\alpha}(V) \subseteq Cl^*(V)$, $f(U) \cap Cl^D_{\alpha}(V) \subseteq f(U) \cap Cl^*(V) = \emptyset$.

(i)⇒(iv) From (ii).

Definition 6.5. A topological space (X, τ) is said to be $D\alpha$ - T_1 if for any distinct pair of points *x* and *y* in *X*, there exist *Dα*open *U* in *X* containing *x* but not *y* and an *Dα*-open *V* in *X* containing *y* but not *x*.

Theorem 6.6.

(i) Every α - T_1 space is $D\alpha$ - T_1 .

(ii) Every g- T_1 space is $D\alpha$ - T_1 .

Proof. It is obvious from Theorem 3.6.

Remark 6.7. The converse of the above theorem is not true as seen from Example 2.7.

Theorem 6.8. Let $f : X \to Y$ be any surjection with $G(f)$ *D* α -closed. Then *Y* is g-*T*₁.

Proof. Let $y_1, y_2(y_1 \neq y_2) \in Y$. The subjectivity of *f* gives the existence of an element $x_0 \in X$ such that $f(x_0) = y_2$. Now $(x_0, y_1) \in (X \times Y) \setminus G(f)$. The *Dα*-closeness of *G*(*f*) provides $U_1 \in D\alpha O(X, x_0), \quad V_1 \in GO(Y, y_1)$ such that $f(U_1) \cap Cl^*(V_1) = \phi$. Now $x_0 \in U_1 \Rightarrow f(x_0) = y_2 \in f(U_1)$. This and the fact that $f(U_1) \cap Cl^*(V_1) = \emptyset$ guarantee that $y_2 \notin V_1$. Again from the subjectivity of *f* gives a $x_1 \in X$ such that $f(x_1) = y_1$. Now $(x_1, y_2) \in (X \times Y) \setminus G(f)$ and the *Dα*-closedness of *G*(*f*) provides $U_2 \in D\alpha O(X, x_1), V_2 \in GO(Y, y_2)$ such that $f(U_2) \cap Cl^*(V_2) = \emptyset$. Now $x_1 \in U_2 \Rightarrow f(x_1) = y_1 \in f(U_2)$ so that $y_1 \notin V_2$. Thus we obtain sets $V_1, V_2 \in GO(Y)$ such that $y_1 \in V_1$ but $y_2 \notin V_1$ while $y_2 \in V_2$ but $y_1 \notin V_2$. Hence *Y* is g-T₁.

Corollary 6.9. Let $f : X \to Y$ be any surjection with $G(f)$ *Dα*-closed. Then *Y* is *Dα*-*T*₁.

Proof. Follows From Theorems 6.6 (i) and 6.8.

Theorem 6.10. Let $f : X \rightarrow Y$ be any injective with $G(f)$ *Dα*-closed. Then *X* is *Dα*-*T*₁.

Proof. Let $x_1, x_2(x_1 \neq x_2) \in X$. The injectivity of *f* implies $f(x_1) \neq f(x_2)$ whence one obtains that $(x_1, f(x_2)) \in (X \times Y) \setminus$ *G*(*f*). The *Dα*-closedness of *G*(*f*) provides $U_1 \in D\alphaO(X, x_1)$, $V_1 \in GO(Y, f(x_2))$ such that $f(U_1) \cap Cl^*(V_1) = \emptyset$. Therefore $f(x_2) \notin f(U_1)$ and a fortiori $x_2 \notin U_1$. Again $(x_2, f(x_1)) \in (X \times Y) \setminus$ *G*(*f*) and *Dα*-closedness of *G*(*f*) as before gives $U_2 \in D\alphaO(X,$ *x*₂), $V_2 \in GO(Y, f(x_1))$ with $f(U_2) \cap Cl^*(V_2) = \emptyset$, which guarantees that $f(x_1) \notin f(U_2)$ and so $x_1 \notin U_2$. Therefore, we obtain sets *U*₁ and *U*₂ ∈ *D* α *O*(*X*) such that $x_1 \in U_1$ but $x_2 \notin U_1$ while $x_2 \in U_2$ but $x_1 \notin U_2$. Hence *X* is $D\alpha$ -*T*₁.

Corollary 6.11. Let $f : X \rightarrow Y$ be any bijection with $G(f)$ *Dα*-closed. Then both *X* and *Y* are *Dα*-*T*1.

Proof. It readily follows from Corollary 6.9 and Theorem 6.10.

Definition 6.12. A topological space $(X, τ)$ is said to be $Dα$ - T_2 if for any distinct pair of points *x* and *y* in *X*, there exist *Dα*open sets *U* and *V* in *X* containing *x* and *y*, respectively, such that $U \cap V = \emptyset$.

Theorem 6.13.

(ii) Every g- T_2 space is $D\alpha$ - T_2 .

Proof. Obvious.

Remark 6.14. The converse of the above theorem is not true as seen from Example 2.7.

Theorem 6.15. Let $f : X \to Y$ be any surjection with $G(f)$ *D* α -closed. Then *Y* is g-T₂.

⁽i) Every α - T_2 space is $D\alpha$ - T_2 .

Proof. Let $y_1, y_2(y_1 \neq y_2) \in Y$. The subjectivity of *f* gives a $x_1 \in X$ such that $f(x_1) = y_1$. Now $(x_1, y_2) \in (X \times Y) \setminus G(f)$. The $D\alpha$ closedness of *G*(*f*) provides $U \in D\alphaO(X, x_1)$, $V \in GO(Y, y_2)$ such that $f(U) \cap Cl^*(V) = \emptyset$. Now $x_1 \in U \Rightarrow f(x_1) = y_1 \in f(U)$. This and the fact that $f(U) \cap Cl^*(V) = \emptyset$ guarantee that $y_1 \notin Cl^*(V)$. This mean that there exists $W \in GO(Y, y_1)$ such that $W \cap V = \emptyset$. Hence *Y* is $g-T_2$.

Corollary 6.16. Let $f : X \rightarrow Y$ be any surjection with $G(f)$ *Dα*-closed. Then *Y* is *Dα*-*T*₂.

Proof. Follows from Theorems 6.13 (ii) and 6.15.

Definition 6.17. A function $f: X \to Y$ has a strongly *Dα*-closed graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alphaO(X, x)$ and $V \in O(Y, y)$ such that $(U \times Cl(V)) \cap G(f) = \phi$.

Corollary 6.18. A strongly *Dα*-closed graph is *Dα*-closed. That the converse is not true is seen from Example 6.3, where ${y} \in GO(Y, y)$ but ${y} \notin O(Y)$. Therefore *G*(*f*) is *Dα*-closed but not strongly *Dα*-closed.

Remark 6.19. Evidently every strongly *α*-closed graph (resp. strongly closed graph) is strongly *Dα*-closed graph. That the converse is not true is seen from the following example.

Example 6.20. Let $X = \{a, b, c\}$ associated with the topology $\tau = {\phi, {a, b}, X}$ and $Y = {x, y, z}$ associated with the topology $\sigma = {\phi, {x, y}, {z}, Y}.$ Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a function defined by $f(a) = f(c) = x$, $f(b) = y$. One can have that $F_x = \{\phi, \{c\}, X\}$, $GC(X) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}, GO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \alpha O(X)$ $= {\phi, {a, b}, X}$, $D\alpha O(X) = {\phi, {a}, {b}, {a, b}, {a, c}, {b, c}, X}.$ Since ${a, c} \in D\alphaO(X, c)$ and ${z} \in O(Y, z)$ but ${a, c} \notin \alphaO(X)$ (resp. ${a, c}$ ∉ $O(X)$). Therefore *G*(*f*) is strongly *Dα*-closed but not strongly *α*-closed (resp. strongly closed).

Theorem 6.21. For a function $f:(X, \tau) \rightarrow (Y, \sigma)$, the following properties are equivalent:

- (i) *f* has strongly *Dα*-closed graph.
- (ii) For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alphaO(X, x)$ and $V \in O(Y, y)$ such that $f(U) \cap Cl(V) = \phi$.
- (iii) For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alphaO(X, x)$ and $V \in \alpha O(Y, y)$ such that $(U \times Cl_{\alpha}(V)) \cap G(f) = \phi$.
- (iv) For each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in D\alphaO(X, x)$ and $V \in \alpha O(Y, y)$ such that $f(U) \cap Cl_{\alpha}(V) = \phi$.

Proof. Similar to the proof of Theorem 6.4.

Theorem 6.22. If $f: X \to Y$ is a function with a strongly $D\alpha$ closed graph, then for each $x \in X$, $f(x) = \bigcap \{Cl_\alpha(f(U)) : U \in$ $D\alpha O(X, x)$.

Proof. Suppose the theorem is false. Then there exists a $y \neq f(x)$ such that $y \in \bigcap \{ Cl_\alpha(f(U)) : U \in D\alpha O(X, x) \}$. This implies that *y* \in *Cl_a*($f(U)$) for every $U \in D\alphaO(X, x)$. So $V \cap f(U) \neq \emptyset$ for every *V* $\in \alpha O(Y, y)$. This, in its turn, indicates that $Cl_{\alpha}(V) \cap f(U)$ \supset *V* \supset *f*(*U*) \neq ϕ , which contradicts the hypothesis that f is a function with *Dα*-closed graph. Hence the theorem holds.

Theorem 6.23. If $f: X \to Y$ is $D\alpha$ -continuous function and *Y* is *T*2. Then *G*(*f*) is strongly *Dα*-closed.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. Since *Y* is T_2 , there exists a set $V \in O(Y, y)$ such that $f(x) \notin Cl(V)$. But $Cl(V)$ is closed. Now $Y \setminus Cl(V) \in O(Y, f(x))$. By Theorem 4.5 there exists $U \in D\alpha O(X, x)$ such that $f(U) \subseteq Y \setminus Cl(V)$. Consequently, $f(U) \cap Cl(V) = \phi$ and therefore *G*(*f*) is strongly *Dα*-closed.

Theorem 6.24. Let $f: X \to Y$ be any surjection with $G(f)$ strongly *Dα*-closed. Then *Y* is *T*₁ and *α*-*T*₁.

Proof. Similar to the proof of Theorem 6.8 and T₁-ness always guarantees *α*-*T*1-ness. Hence *Y* is *α*-*T*1.

Corollary 6.25. Let $f: X \to Y$ be any surjection with $G(f)$ strongly *Dα*-closed. Then *Y* is *Dα*-*T*₁.

Proof. Follows From Theorems 6.6 (i) and 6.24.

Theorem 6.26. Let $f: X \to Y$ be any injective with $G(f)$ strongly *Dα*-closed. Then *X* is *Dα*-*T*₁.

Proof. Similar to the proof of Theorem 6.10.

Corollary 6.27. Let $f: X \to Y$ be any bijection with $G(f)$ strongly *Dα*-closed. Then both *X* and *Y* are *Dα*-*T*₁.

Proof. It readily follows from Corollary 6.25 and Theorem 6.26.

Theorem 6.28. Let $f: X \to Y$ be any surjection with $G(f)$ strongly *Dα*-closed. Then *Y* is T_2 and *α*-*T*₂.

Proof. Similar to the proof Theorem 6.15 and *T*₂-ness always guarantees α - T_2 -ness. Hence *Y* is α - T_2 .

Corollary 6.29. Let $f: X \to Y$ be any surjection with $G(f)$ strongly *Dα*-closed. Then *Y* is *Dα*-*T*₂.

Proof. Follows From Theorems 6.13 (i) and 6.28.

REFERENCES

- [1] [Njåstad O. On some classes of nearly open sets. Pacific J](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0010) [Math 1965;15:961–70.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0010)
- [2] [Levine N. Generalized closed sets in topology. Rend Circ Mat](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0015) [Palermo 1970;19:89–96.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0015)
- [3] [Andrijevic D. Some properties of the topology of](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0020) *α*-sets. Mat [Vesnik 1984;36:1–10.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0020)
- [4] [Caldas M, Dontchev J. On spaces with hereditarily compact](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0025) *α*[-topologies. Acta Math Hungar 1999;82:121–9.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0025)
- [5] [Caldas M, Jafari S. On some low separation axioms in](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0030) [topological spaces. Houston J Math 2003;29:93–104.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0030)
- [6] [Caldas M, Navalagi G. On weakly](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0035) *α*-open functions [between topological spaces. Internat J Math Sci 2004;3:39–](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0035) [51.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0035)
- [7] [Jafari S, Noiri T. Some remarks on weakly](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0040) *α*-continuity. Far [East J Math Sci 1998;6:619–25.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0040)
- [8] [Maheshwari SN, Thakur SS. On](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0045) *α*-irresolute mappings. [Tamkang J Math 1980;11:209–14.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0045)
- [9] [Maki H, Devi R, Balachandran K. Generalized](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0050) *α*-closed sets in [topology. Bull Fukuoka Univ Ed 1993;42:13–21.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0050)
- [10] Noiri T. Weakly *α*[-continuous function. Internat J Math Sci](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0055) [1987;10:483–90.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0055)
- [11] [Agashe P, Levine N. Adjacent topologies. J Math Tokushima](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0060) [Univ 1973;7:21–35.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0060)
- [12] [Dunham W. T 1/2-spaces. Kyungpook Math J 1977;17:161–](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0065) [9.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0065)
- [13] [Dunham W, Levine N. Further results on generalized closed](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0070) [sets in topology. Kyungpook Math J 1980;20:169–75.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0070)
- [14] [Dunham W. A new closure operator for non-](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0075)T₁ topologies. [Kyungpook Math J 1982;22:55–60.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0075)
- [15] [Robert A, Missier SP. On semi*-closed sets. Asian J Engine](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0080) [Maths 2012;4:173–6.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0080)
- [16] [Mashhour AS, Hasanein IA, EL-Deeb SN.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0085) *α*-continuous and *α*[-open mappings. Acta Math Hungar 1983;41:213–18.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0085)
- [17] [Balachandran K, Sundaram P, Maki J. On generalized](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0090) [continuous maps in topological spaces. Mem Fac Sci Kochi](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0090) [Univ Math 1991;12:5–13.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0090)
- [18] [Malghan SR. Generalized closed maps. J Karnatak Univ Sci](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0095) [1982;27:82–8.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0095)
- [19] [Long PE. Functions with closed graphs. Amer Math Monthly](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0100) [1969;76:930–2.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0100)
- [20] [Herrington LL, Long PE. Characterizations of H-closed](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0105) [spaces. Proc Amer Math Soc 1975;48:469–75.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0105)
- [21] [Caldas M, Jafari S, Latif RM, Noiri T. Characterizations of](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0110) function with strongly α[-closed graphs. Sci Stud Res Ser](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0110) [Math Inform 2009;19:49–58.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0110)
- [22] [Caldas M, Jafari S. On g-US spaces. Stud Cercet Stiint Ser Mat](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0115) [Univ Bacau 2005;14:13–20.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0115)
- [23] [Noiri T. On functions with strongly closed graphs. Acta Math](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0120) [Acad Sci Hungar 1978;32:373–5.](http://refhub.elsevier.com/S2314-808X(15)00057-3/sr0120)