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A B S T R A C T

In this paper, a new kind of sets called Dα-open sets are introduced and studied in a to-

pological spaces. The class of all Dα-open sets is strictly between the class of all α-open

sets and g-open sets. Also, as applications we introduce and study Dα-continuous,

Dα-open, and Dα-closed functions between topological spaces. Finally, some properties of

Dα-closed and strongly Dα-closed graphs are investigated.
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1. Introduction and preliminaries

Generalized open sets play a very important role in General
Topology, and they are now the research topics of many to-
pologies worldwide. Indeed a significant theme in General

Topology and Real Analysis is the study of variously modified
forms of continuity, separation axioms, etc. by utilizing gen-
eralized open sets. One of the most well-known notions and
also inspiration source are the notion of α-open [1] sets intro-
duced by Njåstad in 1965 and generalized closed (g-closed)
subset of a topological space [2] introduced by Levine in 1970.
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Since then, many mathematicians turned their attention to the
generalization of various concepts in General Topology by con-
sidering α-open sets [3–10] and generalized closed sets [11–13].
In 1982 Dunham [14] used the generalized closed sets to define
a new closure operator, and thus a new topology τ*, on the
space, and examined some of the properties of this new to-
pology. Throughout the present paper ( , ), ( , )X Yτ σ and (Z, ν)
denote topological spaces (briefly X, Y and Z) and no separa-
tion axioms are assumed on the spaces unless explicitly stated.
For a subset A of a space (X, τ), Cl(A) and Int(A) denote the
closure and the interior of A, respectively. Since we require the
following known definitions, notations, and some properties,
we recall in this section.

Definition 1.1. Let (X, τ) be a topological space and A ⊆ X. Then

(i) A is α-open [1] if A Int Cl Int A⊆ ( ( ( )) and α-closed [1] if
Cl Int Cl A A( ( ( )) ⊆ .

(ii) A is generalized closed (briefly g-closed) [2] if Cl(A) ⊆ U
whenever A ⊆ U and U is open in X.

(iii) A is generalized open(briefly g-open) [2] if X\A is g-closed.

The α-closure of a subset A of X [3] is the intersection of
all α-closed sets containing A and is denoted by Clα(A). The
α-interior of a subset A of X [3] is the union of all α-open sets
contained in A and is denoted by Intα(A). The intersection of
all g-closed sets containing A [14] is called the g-closure of A
and denoted by Cl*(A), and the g-interior of A [15] is the union
of all g-open sets contained in A and is denoted by Int*(A).

We need the following notations:

• αO(X) (resp. αC(X)) denotes the family of all α-open sets (resp.
α-closed sets) in (X, τ).

• GO(X) (resp. GC(X)) denotes the family of all generalized open
sets (resp. generalized closed sets) in (X, τ).

• α α τO X x U O Xx U( , ) { | ( , )}= ∈ ∈ , O X x U x U( , ) { | }= ∈ ∈τ and
α α τC X x U C Xx U( , ) { | ( , )}= ∈ ∈ .

Definition 1.2. A function f : X → Y is said to be:

(i) α-continuous [16] (resp. g-continuous [17]) if the inverse
image of each open set in Y is α-open (resp. g-open) in
X.

(ii) α-open [16] (resp. α-closed [16]) if the image of each open
(resp. closed ) set in X is α-open (resp. α-closed) in Y.

(iii) g-open [18] (resp. g-closed [18]) if the image of each open
(resp. closed) set in X is g-open (resp. g-closed) in Y.

Definition 1.3. Let f : X → Y be a function:

(i) The subset {( , ( )) | }x x x Xf ∈ of the product space X × Y is
called the graph of f [19] and is usually denoted by G(f).

(ii) a closed graph [19] if its graph G(f) is closed sets in the
product space X × Y.

(iii) a strongly closed graph [20] if for each point ( , ) ( )x y G f∉ ,
there exist open sets U ⊂ X and V ⊂ Y containing x and
y, respectively, such that ( ( )) ( )U Cl V G f× ∩ = φ .

(iv) a strongly α-closed graph [21] if for each ( , ) ( ) \x y X Y G∈ ×
( )G f , there exist U O X x∈α ( , ) and V ∈ O(Y, y) such that

( ( )) ( )U Cl V G f× ∩ = φ .

Definition 1.4. A topological space (X, τ) is said to be:

(i) α-T1 [9] (resp. g-T1 [22]) if for any distinct pair of points
x and y in X, there exist α-open (resp. g-open) set U in
X containing x but not y and an α-open (resp. g-open)
set V in X containing y but not x.

(ii) α-T2 [8] (resp. g-T2 [22]) if for any distinct pair of points
x and y in X, there exist α-open (resp. g-open) sets U and
V in X containing x and y, respectively, such that U ∩ V = ϕ.

Lemma 1.5. Let A ⊆ X, then

(i) X Cl A Int X A\ ( ) ( \ )* *= .
(ii) X Int A Cl X A\ ( ) ( \ )* *= .

Lemma 1.6. A function f X Y: ( , ) ( , )τ σ→ has a closed graph [19]
if for each ( , ) ( ) \ ( )x y X Y G f∈ × , there exist U ∈ O(X, x) and
V ∈ O(Y, y) such that f(U) ∩ V = ϕ.

Lemma 1.7. The graph G(f) is strongly closed [23] if and only
if for each point ( , ) ( )x y G f∉ , there exist open sets U ⊂ X and
V ⊂ Y containing x and y, respectively, such that f U Cl V( ) ( )∩ = φ.

2. Dα-closed sets

In this section we introduce Dα-closed sets and investigate some
of their basic properties.

Definition 2.1. A subset A of a space X is called Dα-closed if
Cl Int Cl A A* *( ( ( ))) ⊆ .

The collection of all Dα-closed sets in X is denoted by DαC(X).

Lemma 2.2. If there exists an g-closed set F such that
Cl Int F A F*( ( )) ⊆ ⊆ , then A is Dα-closed.

Proof. Since F is g-closed, Cl*(F) = F. Therefore, Cl Int Cl A* *( ( ( ))) ⊆
Cl Int Cl F Cl Int F A* * *( ( ( ))) ( ( ))= ⊆ . Hence A is Dα-closed.

Remark 2.3. The converse of above lemma is not true as shown
in the following example.

Example 2.4. Let (X, τ) be a topological space, where X = {a, b,
c} and τ φ= { , { }, { , }, }a a b X . Then F c b c XX = { , { }, { , }, }φ , GC X( ) =

c a c b c X{ , { }, { , }, { , }, }φ , GO X a b a b X( ) { , { }, { }, { , }, }= φ , D C Xα φ( ) { ,=
b c a c b c X{ }, { }, { , }, { , }, } , D O X a b a b a c Xα φ( ) { , { }, { }, { , }, { , }, }= . There-

fore { } ( )c D C X∈ α and { , } ( )a c GC X∈ but Cl Int a c a c*( { , }) { , }= /⊂
c a c{ } { , }⊂ .

Theorem 2.5. Let (X, τ) be a topological space. Then

(i) Every α-closed subset of (X, τ) is Dα-closed.
(ii) Every g-closed subset of (X, τ) is Dα-closed.

Proof. (i) Since closed set is g-closed, Cl A Cl A*( ) ( )⊆ [14]. Now,
suppose A is α-closed in X, then Cl Int Cl A A( ( ( ))) ⊆ . There-
fore, Cl Int Cl A Cl Int Cl A A* *( ( ( ))) ( ( ( )))⊆ ⊆ . Hence A is Dα-closed in
X.
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(ii) Suppose A is g-closed. Then Cl*(A) = A [14]. There-
fore, Int Cl A Cl A( ( )) ( )* *⊆ . Then Cl Int Cl A Cl Cl A* * * *( ( ( ))) ( ( ))⊆ ⊆
Cl A A*( ) = [14]. Hence A is Dα-closed.

Remark 2.6. The converse of above theorem is not true as
shown in the following example.

(i) Dα-closed set need not be α-closed.
(see Example 2.7 below)

(ii) Dα-closed set need not be g-closed.
(see Example 2.7 below)

Example 2.7. Let (X, τ) be a topological space, where X a b c= { , , }
and τ φ= { , { , }, }a b X . Then F C X c XX = =α φ( ) { , { }, }, α φO X a( ) { , { ,=
b X}, } , GC X c a c b c X( ) { , { }, { , }, { , }, }= φ , GO X a b a b X( ) { , { }, { }, { , }, }= φ ,
D C X a b c a c b c Xα φ( ) { , { }, { }, { }, { , }, { , }, }= , D O X a b a bα φ( ) { , { }, { }, { , },=
a c b c X{ , }, { , }, } . Therefore { } ( )a D C X∈ α , but { } ( )a C X∉α and
{ } ( )a GC X∉ .

From the above discussions we have the following diagram
in which the converses of implications need not be true.

α α-closed set -closed set -closed set→ ←D g

Theorem 2.8. Arbitrary intersection of Dα-closed sets is
Dα-closed.

Proof. Let {Fi : i ∈ Λ} be a collection of Dα-closed sets in X.
Then Cl Int Cl F Fi i* *( ( ( ))) ⊆ for each i. Since ∩ Fi ⊆ Fi for each i,
Cl F Cl Fi i* *( ) ( )∩ ⊆ for each i. Hence Cl F Cl F ii i* *( ) ( ),∩ ⊆ ∩ ∈ Λ .
Therefore Cl Int Cl F Cl Int Cl F Cl Int Cl Fi i i* * * * * *( ( ( ))) ( ( ( ))) ( ( ( )))∩ ⊆ ∩ ⊆ ∩ ⊆
∩CCl Int Cl F Fi i* *( ( ( ))) ⊆ ∩ . Hence ∩Fi is Dα-closed.

Remark 2.9. The union of two Dα-closed sets need not
to be Dα-closed as shown in Example 2.7, where both
{a} and {b} are Dα-closed sets but { } { } { , }a b a b∪ = is not
Dα-closed.

Corollary 2.10. If a subset A is Dα-closed and B is α-closed, then
A ∩ B is Dα-closed.

Proof. Follows from Theorem 2.5 (i) and Theorem 2.8.

Corollary 2.11. If a subset A is Dα-closed and F is g-closed, then
A ∩ F is Dα-closed.

Proof. Follows from Theorem 2.5 (ii) and Theorem 2.8.

Definition 2.12. Let A be a subset of a space X. The Dα-
closure of A, denoted by Cl AD

α ( ), is the intersection of all
Dα-closed sets in X containing A. That is Cl A F A FD

α ( ) { := ∩ ⊆
D C XF α ( )}∈and .

Theorem 2.13. Let A be a subset of X. Then A is Dα-closed set
in X if and only if Cl A AD

α ( ) = .

Proof. Suppose A is Dα-closed set in X. By Definition 2.12,
Cl A AD

α ( ) = . Conversely, suppose Cl A AD
α ( ) = . By Theorem 2.8 A

is Dα-closed.

Theorem 2.14. Let A and B be subsets of X. Then the follow-
ing results hold.

(i) A Cl A Cl A Cl A Cl AD D⊆ ⊆ ⊆α α α( ) ( ), ( ) ( )* .
(ii) ClD

α φ φ( ) = and Cl X XD
α ( ) = .

(iii) If A ⊆ B, Then Cl A Cl BD D
α α( ) ( )⊆ .

(iv) Cl Cl A Cl AD D D
α α α( ( )) ( )= .

(v) Cl A Cl B Cl A BD D D
α α α( ) ( ) ( )∪ ⊆ ∪ .

(vi) Cl A B Cl A Cl BD D D
α α α( ) ( ) ( )∩ ⊆ ∩ .

Proof. (i) Follows From Theorem 2.5 (i) and (ii), respectively.
(ii) and (iii) are obvious.
(iv) If A ⊆ F, F ∈ DαC(X), then from (iii) and Theorem 2.13,

Cl A Cl F FD D
α α( ) ( )⊆ = . Again Cl Cl A Cl F FD D D

α α α( ( )) ( )⊆ = . Therefore
Cl Cl A F A F F D C X Cl AD D D

α α αα( ( )) { : , ( )} ( )⊆ ∩ ⊆ ∈ = .
(v) and (vi) follows from (iii).

Remark 2.15. The equality in the statements (v) of the above
theorem need not be true as seen from Example 2.7, where
A = {a}, B = {b}, and A B a b∪ = { , } . Then one can have that,
Cl A aD

α ( ) { }= ; Cl B bD
α ( ) { }= ; Cl A B XD

α ( )∪ = ; Cl A Cl B a bD D
α α( ) ( ) { , }∪ = .

Further more the equality in the statements (iv) of the
above theorem need not be true as shown in the following
example.

Example 2.16. Let (X, τ) be a topological space, where X = {a,
b, c} and τ φ= { , { }, { }, { , }, }b c b c X . Then F GC X D C XX = = =( ) ( )α

a a b a c X{ , { }, { , }, { , }, }φ , GO X b c b c X( ) { , { }, { }, { , }, }= φ . Let A = {a},
B = {b}, and A ∩ B = ϕ. Then one can have that, Cl A aD

α ( ) { }= ;
Cl B a bD

α ( ) { , }= ; Cl A BD
α φ( )∩ = ; Cl A Cl B aD D

α α( ) ( ) { }∩ = .

3. Dα-open sets

In this section we introduce Dα-open sets and investigate some
of their basic properties.

Definition 3.1. A subset A of a space X is called an Dα-open if
X \ A is Dα-closed. Let DαO(X) denote the collection of all an
Dα-open sets in X.

Lemma 3.2. Let A ⊆ X, then

(i) X Cl X A Int A\ ( \ ) ( )* *= .
(ii) X Int X A Cl A\ ( \ ) ( )* *= .

Proof. Obvious.

Theorem 3.3. A subset A of a space X is Dα-open if and only
if A Int Cl Int A⊆ * *( ( ( ))).

Proof. Let A be Dα-open set. Then X \ A is Dα-closed and
Cl Int Cl X A X A* *( ( ( \ ))) \⊆ . By Lemma 3.2 A Int Cl Int A⊆ * *( ( ( ))).
Conversely, suppose A Int Cl Int A⊆ * *( ( ( ))). Then X Int Cl Int\ ( (* *
A X A( ))) \* ⊆ . Hence ( ( ( ( \ )))) \Int Cl Int X A X A* * ⊆ . This shows
that X \ A is Dα-closed. Thus A is Dα-open.

Lemma 3.4. If there exists g-open set V such that V A Int⊆ ⊆ *
Cl V( ( )) , then A is Dα-open.
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Proof. Since V is g-open, X \ V is g-closed and X Int Cl V\ ( ( ))*
X A X V\ \⊆ ⊆ . Therefore From Lemma 3.2 Cl Int X V*( ( \ ))
X A X V\ \⊆ ⊆ . From Lemma 2.2 we have X \ A is Dα-closed.

Hence A is Dα-open.

Remark 3.5. The converse of Lemma 3.4 need not to be
true as seen from Example 2.4, where { , } ( )a b D O X∈ α and
{ } ( )b GO X∈ but { } { , } { }b a b b⊂ /⊂ .

Theorem 3.6. Let (X, τ) be a topological space. Then

(i) Every α-open subset of (X, τ) is Dα-open.
(ii) Every g-open subset of (X, τ) is Dα-open.

Proof. From Theorem 2.5, the proof is obvious.

Remark 3.7. The converse of the above theorem is not true as
seen from Example 2.7, where { , } ( )b c D O X∈ α but { , } ( )b c O X∉α
and { , } ( )b c GO X∉ .

From the above discussions we have the following diagram
in which the converses of implications need not be true.

α α-open set -open set -open set→ ←D g

Theorem 3.8. Arbitrary union of Dα-open set is Dα-open.

Proof. Follows from Theorem 2.8.

Remark 3.9. The intersection of two Dα-open sets need
not be Dα-open as seen from Example 2.7, where both {b, c}
and {a, c} are Dα-open sets but { , } { , } { }b c a c c∩ = is not
Dα-open.

Corollary 3.10. If a subset A is Dα-open and B is α-open, then
A ∪ B is Dα-open.

Proof. Follows from Theorem 3.6 (i) and Theorem 3.8.

Corollary 3.11. If a subset A is Dα-open and U is g-open, then
A ∪ U is Dα-open.

Proof. Follows from Theorem 3.6 (ii) and Theorem 3.8.

Definition 3.12. Let A be a subset of a space X. The Dα-
interior of A is denoted by Int AD

α ( ), is the union of all an
Dα-open sets in X contained in A. That is Int A U U AD

α ( ) { : ,= ∪ ⊆
U D O Xα ( )}∈ .

Lemma 3.13. If A is a subset of X, then

(i) X Cl A Int X AD D\ ( ) ( \ )α α= .
(ii) X Int A Cl X AD D\ ( ) ( \ )α α= .

Proof. Obvious.

Theorem 3.14. Let A be a subset of X. Then A is Dα-open if and
only if Int A AD

α ( ) = .

Proof. Follows from Theorem 2.13 and Lemma 3.13.

Theorem 3.15. Let A and B be subsets of X. Then the follow-
ing results hold.

(i) Int A Int A AD
α α( ) ( )⊆ ⊆ , Int A Int AD*( ) ( )⊆ α .

(ii) IntD
α φ φ( ) = and Int X XD

α ( ) = .
(iii) If A ⊆ B, then Int A Int BD D

α α( ) ( )⊆ .
(iv) Int Int A Int AD D D

α α α( ( )) ( )= .
(v) Int A Int B Int A BD D D

α α α( ) ( ) ( )∪ ⊆ ∪ .
(vi) Int A B Int A Int BD D D

α α α( ) ( ) ( )∩ ⊆ ∩ .

Proof. Obvious.

Remark 3.16. The equality in the statements (v) of Theorem
3.15 need not be true as seen from Example 2.7, where A = {b, c},
B = {a, c}, and A ∪ B = X. Then one can have that, Int A b cD

α ( ) { , }= ;
Int B cD

α ( ) { }= ; Int A Int B b cD D
α α( ) ( ) { , }∪ = ; Int A B XD

α ( )∪ = . Further-
more the equality in the statements (iv) of the above theorem
need not be true as seen from Example 2.7, where A = {b, c},
B = {a, c}, and A ∩ B = {c}. Then one can have that,
Int A b cD

α ( ) { , }= ; Int B a cD
α ( ) { , }= ; Int A BD

α φ( )∩ = ; Int A IntD D
α α( ) ∩

B c( ) { }= .

Theorem 3.17. Let x ∈ X.Then x Cl AD∈ α ( ) if and only if U ∩ A ≠ ϕ
for every Dα-open set U containing x.

Proof. Let x Cl AD∈ α ( ) and there exists Dα-open set U contain-
ing x such that U ∩ A = ϕ. Then A X U⊆ \ and X\U is Dα-
closed. Therefore Cl A Cl X U X UD D

α α( ) ( \ ) \⊆ = . This implies
x Cl AD∉ α ( ) , which is a contradiction. Conversely, assume that
U ∩ A ≠ ϕ for every Dα-open set U containing x and x Cl AD∉ α ( ).
Then there exists Dα-closed subset F containing A such that
x F∉ . Hence x ∈ X \ F and X \ F is Dα-open. Therefore A ⊆ F,
( \ )X F A∩ = φ This is a contradiction to our assumption.

Lemma 3.18. Let A be any subset of (X, τ). Then

(i) A Int Cl Int A∩ * *( ( ( ))) is Dα-open;
(ii) A Cl Int Cl A∪ * *( ( ( ))) is Dα-closed.

Proof.

(i) Int Cl Int A Int Cl Int A Int Cl Int A Int C* * * * * * *( ( ( ( ( ( )))))) ( ( ( ) (∩ ∩= ll
Int A Int Cl Int A( ( ))))) ( ( ( )))* * *= . This implies that
A Int Cl Int A A Int Cl Int A Int Cl Int A∩ = ∩ ∩* * * * * *( ( ( ))) ( ( ( ( ( ( ))))))
⊆ IInt Cl Int A Int Cl Int A* * * *( ( ( ( ( ( ))))))∩ . Therefore A Int Cl∩ *(
Int A*( ( ))) is Dα-open.

(ii) From (i) we have X A Cl Int Cl A X A\ ( ( ( ( ))) ( \ )∪ =* *
Int Cl Int X A( ( ( \ )))∩ * * is Dα-open that further implies

A Cl Int Cl A∪ * *( ( ( ))) is Dα-closed.

Theorem 3.19. If A is a subset of a topological space X,

(i) Int A A Int Cl Int AD
α ( ) ( ( ( )))= ∩ * * .

(ii) Cl A A Cl Int Cl AD
α ( ) ( ( ( )))= ∪ * * .

Proof.

(i) Let B Int AD= α ( ). Clearly B is Dα-open and B ⊆ A. Since B
is Dα-open, B Int Cl Int B Int Cl Int A⊆ ⊆* * * *( ( ( ))) ( ( ( ))). This
proves that B A Int Cl Int A⊆ ∩ * *( ( ( ))). By Lemma 3.18,
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A Int Cl Int A∩ * *( ( ( ))) is Dα-open. By the definition of

Int A A Int Cl Int A BD
α ( ), ( ( ( )))∩ ⊆* * . Then it follows that

B A Int Cl Int A= ∩ * *( ( ( ))) . Therefore Int A A Int ClD
α ( ) (= ∩ *

Int A( ( )))* .
(ii) By Lemma 3.13 we have Cl A X Int X AD D

α α( ) \ ( \ ),=
X X A Int Cl Int X A\ (( \ ) ( ( ( \ ))))= ∩ * * , using (i)

= ∪X X A X Int Cl Int X A\ ( \ ) ( \ ( ( ( \ )))* *
= ∪A Cl Int Cl A( ( ( )))* * .

4. Dα-continuous functions

In this section we introduce Dα-continuous functions and in-
vestigate some of their basic properties.

Definition 4.1. A function f : X → Y is called Dα-continuous if
the inverse image of each open set in Y is Dα-open in X.

Theorem 4.2.

(i) Every α-continuous function is Dα-continuous.
(ii) Every g-continuous function is Dα-continuous.

Proof. It is obvious from Theorem 3.6.

Remark 4.3.

(i) Dα-continuous function need not be α-continuous.
(see Example 4.4 (i) below)
(ii) Dα-continuous function need not be g-continuous.
(see Example 4.4 (ii) below)

Example 4.4. (i) Let X = {a, b, c} associated with the topology
τ φ= { , { }, }a X and Y = {x, y, z} associated with the topology
σ φ= { , { , }, { }, }x y z Y . Let f : X → Y be a function defined by
f(a) = f(b) = x, f(c) = z. One can have that F b c XX = { , { , }, }φ ,
GC X b c a b a c b c X( ) { , { }, { }, { , }, { , }, { , }, }= φ , GO X a b c a( ) { , { }, { }, { }, { ,= φ
b a c X}, { , }, } , α φO X a a b a c X( ) { , { }, { , }, { , }, }= , DαC(X) = DαO(X) =
P(X). Since {z} is open in Y, f z c D O X− = ∈1({ }) { } ( )α , but { } ( )c O X∉α .
Therefore f is Dα-continuous but not α-continuous.

(ii) Let (X,τ) and (Y,σ) be the topological spaces in (i) and f :
X → Y be a function defined by f(a) = x, f(b) = f(c) = z. Since {z}
is open in Y, f z b c D O X− = ∈1({ }) { , } ( )α , but { , } ( )b c GO X∉ . There-
fore f is Dα-continuous but not g-continuous.

From the above discussions we have the following diagram
in which the converses of implications need not be true.

α α-continuity -continuity -continuity→ ←D g

Theorem 4.5. Let f : X → Y be a function. Then the following
are equivalent:

(i) f is Dα-continuous.
(ii) For each x ∈ X and each open set V ⊂ Y containing f(x),

there exists Dα-open set W ⊂ X containing x such that
f(W) ⊂ V.

(iii) The inverse image of each closed set in Y is Dα-closed
in X.

(iv) f Cl A Cl f AD( ( )) ( ( ))α ⊆ for every subset A of X.
(v) Cl f B f Cl BD

α ( ( )) ( ( ))− −⊆1 1 for every subset B of Y.
(vi) f Int B Int f BD− −⊆1 1( ( )) ( ( ))α for every subset B of Y.

Proof. (i)⇒(ii) Since V ⊂ Y containing f(x) is open, then
f V D O X− ∈1( ) ( )α . Set W f V= −1( ) which contains x, therefore
f(W) ⊂ V.

(ii)⇒(i) Let V ⊂ Y be open, and let x f V∈ −1( ), then f(x) ∈ V and
thus there exists W D O Xx ∈ α ( ) such that x ∈ Wx and f(Wx) ⊂ V.
Then x W f Vx∈ ⊂ −1( ), and so f V Wx

x f V

−

∈

=
−

1

1

( )
( )

∪ but Wx

x f V∈ −
∈

1( )
∪

D O X( )α by Theorem 3.8. Hence f V D O X− ∈1( ) ( )α , and there-
fore f is Dα-continuous.

(i)⇒(iii) Let F ⊂ Y be closed. Then Y\F is open and
f Y F D O X− ∈1( \ ) ( )α , i.e. X f F D O X− ∈−1( ) ( )α . Then f F−1( ) is Dα-
closed of X.

(iii)⇒(iv) Let A X⊆ and F be a closed set in Y containing f(A).
Then by (iii), f F−1( ) is Dα-closed set containing A. It follows that
Cl A Cl f F f FD D

α α( ) ( ( )) ( )⊆ =− −1 1 and hence f Cl A FD( ( ))α ⊆ . Therefore
f Cl A Cl f AD( ( )) ( ( ))α ⊆ .

(iv)⇒(v) Let B Y⊆ and A f B= −1( ). Then by assumption,
f Cl A Cl f A Cl BD( ( )) ( ( )) ( )α ⊆ ⊆ . This implies that Cl A fD

α ( ) ⊆ −1

Cl B( ( )) . Hence Cl f B f Cl BD
α ( ( )) ( ( ))− −⊆1 1 .

(v)⇒(vi) Let B Y⊆ . By assumption, Cl f Y B fD
α ( ( \ ))− −⊆1 1

Cl Y B( ( \ )) . This implies that, Cl X f B f Y Int BD
α ( \ ( )) ( \ ( ))− −⊆1 1 and

hence X Int f B X f Int BD\ ( ( )) \ ( ( ))α
− −⊆1 1 . By taking complement on

both sides we get f Int B Int f BD− −⊆1 1( ( )) ( ( ))α .
(vi)⇒(i) Let U be any open set in Y. Then Int(U) = U. By as-

sumption, f Int U Int f UD− −⊆1 1( ( )) ( ( ))α and hence f U Int fD− −⊆1 1( ) (α

U( )) . Then f U Int f UD− −=1 1( ) ( ( ))α . Therefore by Theorem 3.14,
f U−1( ) is Dα-open in X. Thus f is Dα-continuous.

Theorem 4.6. Let f : X → Y be Dα-continuous and let g : Y → Z
be continuous. Then gof : X → Z is Dα-continuous.

Proof. Obvious.

Remark 4.7. Composition of two Dα-continuous functions need
not be Dα-continuous as seen from the following example.

Example 4.8. Let X a b c= { , , } associated with the topology τ =
φ{ , { }, { , }, }b a b X , Y x y z= { , , } associated with the topology
σ φ= { , { }, }x Y and Z p q r= { , , } associated with the topology
ν φ= { , { }, }r Z and f X Y: ( , ) ( , )τ σ→ by f(a) = y, f(b) = x, f(c) = z.
Define g Y Z: ( , ) ( , )σ ν→ by g x g y p( ) ( )= = , g(z) = r. One can have
that F c a c XX = { , { }, { , }, }φ , GC X c a c b c X( ) { , { }, { , }, { , }, }= φ , GO X( )

a b a b X{ , { }, { }, { , }, }= φ , D C X a c a c b c X D O Xα φ α( ) { , { }, { }, { , }, { , }, }, ( )=
a b a bφ{ , { }, { }, { , }, {= bb c X, }, } , and F y z Y GC Y yY = ={ , { , }, }, ( ) { , { },φ φ

z x y x z y z Y{ }, { , }, { , }, { , }, } , GO Y x y z x y x z Y( ) { , { }, { }, { }, { , }, { , }, }= φ ,
D C Y D O Y P Xα α( ) ( ) ( )= = . Clearly, f and g are Dα-continuous. {r}
is open in Z. But ( ) ({ }) ( ({ })) ({ }) { }gof r f g r f z c− − − −= = =1 1 1 1 , which is
not Dα-open in X. Therefore gof is not Dα-continuous.

5. Dα-open functions and Dα-closed functions

In this section we introduce Dα-open functions and
Dα-closed functions and investigate some of their basic
properties.
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Definition 5.1. A function f : X → Y is said to be Dα-open (resp.
Dα-closed) if the image of each open (resp. closed) set in X is
Dα-open (resp. Dα-closed) in Y.

Theorem 5.2.

(i) Every α-open function is Dα-open.
(ii) Every g-open function is Dα-open.

Proof. It is obvious from Theorem 3.6.

Remark 5.3.

(i) Dα-open function need not be α-open.
(see Example 5.4 below)

(ii) Dα-open function set need not be g-open.
(see Example 5.5 below)

Example 5.4. (i) Let X = {x,y,z} associated with the topology
τ φ= { , { }, }x X and Y = {a,b,c} associated with the topology
σ φ= { , { , }, { }, }a b c Y . Let f X Y: ( , ) ( , )τ σ→ be a function defined
by f(x) = a, f(y) = b and f(z) = c. One can have that F O YY = =α ( )

a b c Yφ{ , { , }, { }, } , GC(Y) = GO(Y) = DαC(Y) = DαO(Y) = P(X). Since
{x} is open in X, f x a D O Y({ }) { } ( )= ∈ α , but { } ( )a O Y∉α . There-
fore f is Dα-open function but not α-open.

Example 5.5. (ii) Let X = {x,y,z} associated with the topology
τ φ= { , { }, { , }, }y x y X and Y = {a, b, c} associated with the topol-
ogy σ φ= { , { }, }a Y . Let f X Y: ( , ) ( , )τ σ→ be a function defined by
f(x) = b, f(y) = c and f(z) = a. One can have that F b c YY = { , { , }, }φ ,
GC Y b c a b a c b c Y( ) { , { }, { }, { , }, { , }, { , }, }= φ , GO Y a b c a( ) { , { }, { }, { }, { ,= φ
b a c Y}, { , }, } , D C Y D O Y P Xα α( ) ( ) ( )= = . Since {x,y} is open in X,
f x y b c D O Y({ , }) { , } ( )= ∈ α , but { , } ( )b c GO Y∉ . Therefore f is Dα-
open function but not g-open.

From the above discussions we have the following diagram
in which the converses of implications need not be true.

α α-open function -open function -open function→ ←D g

Theorem 5.6. Let f : X → Y be a function. The following state-
ments are equivalent.

(i) f is Dα-open.
(ii) For each x ∈ X and each neighborhood U of x, there exists

Dα-open set W ⊆ Y containing f(x) such that W ⊆ f(U).

Proof. (i)⇒(ii) Let x ∈ X and U is a neighborhood of x, then there
exists an open set V ⊆ X such that x ∈ V ⊆ U. Set W = f(V). Since
f is Dα-open, f V W D O Y( ) ( )= ∈ α and so f x W f U( ) ( )∈ ⊆ .

(ii)⇒(i) Obvious.

Theorem 5.7. Let f : X → Y be Dα-open (resp. Dα-closed) func-
tion and W ⊆ Y. If A ⊆ X is a closed (resp. open) set containing
f W−1( ) , then there exists Dα-closed (resp. Dα-open) set H ⊆ Y
containing W such that f H A− ⊆1( ) .

Proof. Let H Y f X A= \ ( \ ). Since f W A− ⊆1( ) , we have
f X A Y W( \ ) \⊆ . Since f is Dα-open (resp. Dα-closed), then H
is Dα-closed (resp. Dα-open) set and f H X f f X A− −= ⊂1 1( ) \ ( ( \ ))
X X A A⊂ =\ ( \ ) .

Corollary 5.8. If f : X → Y is Dα-open, then f Cl B Cl f BD− −⊆1 1( ( )) ( ( ))α

for each set B ⊂ Y.

Proof. Since Cl f B( ( ))−1 is closed in X containing f B−1( ) for a set
B ⊆ Y. By Theorem 5.7, there exists Dα-closed set H ⊆ Y, B ⊆ H
such that f H Cl f B− −⊆1 1( ) ( ( )). Thus, f Cl B f Cl HD D− −⊆ ⊆1 1( ( )) ( ( ))α α

f H Cl f B− −⊆1 1( ) ( ( )) .

Theorem 5.9. A function f : X → Y is Dα-open if and only if
f Int A Int f AD( ( )) ( ( ))⊆ α for every subset A of X.

Proof. Suppose f : X → Y is Dα-open function and A ⊆ X. Then
Int(A) is open set in X and f Int A( ( )) is Dα-open set contained
in f(A). Therefore f Int A Int f AD( ( )) ( ( ))⊆ α . Conversely, let be
f Int A Int f AD( ( )) ( ( ))⊆ α for every subset A of X and U is open set
in X. Then Int(U) = U, f U Int f UD( ) ( ( ))⊆ α . Hence f U Int f UD( ) ( ( ))= α .
By Theorem 3.14 f(U) is Dα-open.

Theorem 5.10. For any bijective function f X Y: ( , ) ( , )τ σ→ the
following statements are equivalent.

(i) f −1 is Dα-continuous function.
(ii) f is Dα-open function.

(iii) f is Dα-closed function.

Proof. (i)⇒(ii) Let U be an open set in X. Then X \ U is closed
in X. Since f −1 is Dα-continuous, ( ) ( \ )f X U− −1 1 is Dα-closed in
Y. That is f X U Y f U( \ ) \ ( )= is Dα-closed in Y. This implies f(U)
is Dα-open in Y. Hence f is Dα-open function.

(ii)⇒ (iii) Let F be a closed set in X. Then X \ F is open in X.
Since f is Dα-open, f(X \ F) is Dα-open in Y. That is
f X F Y f F( \ ) \ ( )= is Dα-open in Y. This implies f(F) is Dα-
closed in Y. Hence f is Dα-closed function.

(iii)⇒ (i) Let F be closed set in X. Since f is Dα-closed func-
tion, f(F) is Dα-closed in Y. That is ( ) ( )f F− −1 1 is Dα-closed in Y.
Hence f −1 is Dα-continuous function.

Remark 5.11. Composition of two Dα-open functions need not
be Dα-open as seen from the following example.

Example 5.12. Let X = {x, y, z} associated with the topology
τ φ= { , { , }, { }, }x y z X , Y = {p, q, r} associated with the topology
σ φ= { , { }, }p Y and Z = {a,b,c} associated with the topology, ν =
φ{ , { }, { , }, }b a b Z . Define f X Y: ( , ) ( , )τ σ→ by f(x) = p, f(y) = q,
f(z) = r and g Y Z: ( , ) ( , )σ ν→ by g(p) = b, g(q) = a, g(r) = c. One
can have that; F q r YY = { , { , }, }φ , GC Y q r p q p r( ) { , { }, { }, { , }, { , },= φ
q r Y{ , }, } , GO Y p q r p q p r Y( ) { , { }, { }, { }, { , }, { , }, }= φ , D C Y D O Yα α( ) ( )=

P X) ( )= and F c a c ZZ = { , { }, { , }, }φ , GC Z c a c b c Z( ) { , { }, { , }, { , }, }= φ ,
GO Z a b a b Z( ) { , { }, { }, { , }, }= φ , D C Z a c a c b c Zα φ( ) { , { }, { }, { , }, { , }, }= ,
D O Z a b a b b c Zα φ( ) { , { }, { }, { , }, { , }, }= . Clearly, f and g are Dα-open
function. {z} is open in X. But gof z g r cg f z( ) ( ) { }{ } ( ({ })) { }= = =
which is not Dα-open in Z. Therefore gof is not Dα-open
function.

6. Dα-closed graph and strongly Dα-closed

In this section we introduce Dα-closed graph and strongly
Dα-closed and investigate some of their basic properties.
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Definition 6.1. A function f : X → Y has Dα-closed graph if
for each ( , ) ( ) \ ( )x y X Y G f∈ × , there exist U D O X x∈ α ( , ) and
V GO Y y∈ ( , ) such that ( ( )) ( )U Cl V G f× ∩ =* φ .

Remark 6.2. Evidently every closed graph is Dα-closed.
That the converse is not true is seen from the following
example.

Example 6.3. Let X = {a, b, c} associated with the topology
τ φ= { , { , }, }a b X and Y = {x, y, z} associated with the topology
σ φ= { , { }, { , }, }x x y Y . Let f X Y: ( , ) ( , )τ σ→ be a function defined
by f(a) = f(c) = x, f(b) = y. One can have that F c XX = { , { }, }φ ,
GC X c a c b c X( ) { , { }, { , }, { , }, }= φ , GO X a b a b X( ) { , { }, { }, { , }, }= φ , D Oα
X a b a b a c b c Xφ( ) { , { }, { }, { , }, { , }, { , }, }= and F z y z YY = { , { }, { , }, }φ ,
GC Y z x z y z Y( ) { , { }, { , }, { , }, }= φ , GO Y x y x y Y( ) { , { }, { }, { , }, }= φ . Since
{ , } ( , )a c D O X c∈ α and { } ( , )y GO Y y∈ but { , } ( )a c O X∉ and
{ } ( )y O Y∉ . Therefore G(f) is Dα-closed but not closed.

Theorem 6.4. Let f X Y: ( , ) ( , )τ σ→ be a function and

(i) f is Dα-closed graph;
(ii) For each ( , ) ( ) \ ( )x y X Y G f∈ × , there exist U D O X x∈ α ( , )

and V GO Y y∈ ( , ) such that f U Cl V( ) ( )∩ =* φ.
(iii) For each ( , ) ( ) \ ( )x y X Y G f∈ × , there exist U D O X x∈ α ( , )

and V D O Y y∈ α ( , ) such that ( ( )) ( )U Cl V G fD× ∩ =α φ.
(iv) For each ( , ) ( ) \ ( )x y X Y G f∈ × , there exist U D O X x∈ α ( , )

and V D O Y y∈ α ( , ) such that f U Cl VD( ) ( )∩ =α φ . Then
(1) (i)⇔ (ii)
(2) (i)⇒ (iii)
(3) (ii)⇒ (iv)
(4) (i)⇒ (iv)

Proof. (i)⇒(ii) Suppose f is Dα-closed graph. Then for each
( , ) ( ) \ ( )x y X Y G f∈ × , there exists U D O X x∈ α ( , ) and V GO Y∈ ( ,
y) such that ( ( )) ( )U Cl V G f× ∩ =* φ . This implies that for each
f x f U( ) ( )∈ and y ∈ Cl*(V). Since y ≠ f(x), f U Cl V( ) ( )∩ =* φ.

(ii)⇒(i) Let ( , ) ( ) \ ( )x y X Y G f∈ × . Then there exists
U D O X x∈ α ( , ) and V GO Y y∈ ( , ) such that f U Cl V( ) *( )∩ = = φ.
This implies that f(x) ≠ y for each x ∈ U and y ∈ Cl*(V). There-
fore ( ( )) ( )U Cl V G f× ∩ =* φ .

(i)⇒(iii) Suppose f is Dα-closed graph. Then for each
( , ) ( ) \ ( )x y X Y G f∈ × , there exists U D O X x∈ α ( , ) and V GO Y∈ ( ,
y) such that ( ( )) ( )U Cl V G f× ∩ =* φ . Since g-open set is Dα-
open, Cl V Cl VD

α ( ) ( )⊆ * . Therefore ( ( )) ( )U Cl V G fD× ∩ =α φ.
(ii)⇒(iv) Let ( , ) ( ) \ ( )x y X Y G f∈ × . Then there exists

U D O X x∈ α ( , ) and V GO Y y∈ ( , ) such that f U Cl V( ) ( )∩ =* φ .
Since Cl V Cl VD

α ( ) ( )⊆ * , f U Cl V f U Cl VD( ) ( ) ( ) ( )∩ ⊆ ∩ =α φ* .
(i)⇒(iv) From (ii).

Definition 6.5. A topological space (X,τ) is said to be Dα-T1 if
for any distinct pair of points x and y in X, there exist Dα-
open U in X containing x but not y and an Dα-open V in X
containing y but not x.

Theorem 6.6.

(i) Every α-T1 space is Dα-T1.
(ii) Every g-T1 space is Dα-T1.

Proof. It is obvious from Theorem 3.6.

Remark 6.7. The converse of the above theorem is not true as
seen from Example 2.7.

Theorem 6.8. Let f : X → Y be any surjection with G(f)
Dα-closed. Then Y is g-T1.

Proof. Let y y y y Y1 2 1 2, ( )≠ ∈ . The subjectivity of f gives the ex-
istence of an element xo ∈ X such that f(xo) = y2. Now
( , ) ( ) \ ( )x y X Y G fo 1 ∈ × . The Dα-closeness of G(f) provides
U D O X xo1 ∈ α ( , ) , V GO Y y1 1∈ ( , ) such that f U Cl V( ) ( )1 1∩ =* φ.
Now x U f x y f Uo o∈ ⇒ = ∈1 2 1( ) ( ). This and the fact that
f U Cl V( ) ( )1 1∩ =* φ guarantee that y V2 1∉ . Again from the sub-
jectivity of f gives a x1 ∈ X such that f(x1) = y1. Now
( , ) ( ) \ ( )x y X Y G f1 2 ∈ × and the Dα-closedness of G(f) provides
U D O X x2 1∈ α ( , ) , V GO Y y2 2∈ ( , ) such that f U Cl V( ) ( )2 2∩ =* φ .
Now x U f x y f U1 2 1 1 2∈ ⇒ = ∈( ) ( ) so that y V1 2∉ . Thus we obtain
sets V V GO Y1 2, ( )∈ such that y1 ∈ V1 but y V2 1∉ while y2 ∈ V2 but
y V1 2∉ . Hence Y is g-T1.

Corollary 6.9. Let f : X → Y be any surjection with G(f)
Dα-closed. Then Y is Dα-T1.

Proof. Follows From Theorems 6.6 (i) and 6.8.

Theorem 6.10. Let f : X → Y be any injective with G(f)
Dα-closed. Then X is Dα-T1.

Proof. Let x x x x X1 2 1 2, ( )≠ ∈ . The injectivity of f implies
f x f x( ) ( )1 2≠ whence one obtains that ( , ( )) ( ) \x f x X Y1 2 ∈ ×
( )G f . The Dα-closedness of G(f) provides U D O X x1 1∈ α ( , ),

V GO Y f x1 2∈ ( , ( )) such that f U Cl V( ) ( )1 1∩ =* φ. Therefore
f x f U( ) ( )2 1∉ and a fortiori x U2 1∉ . Again ( , ( )) ( ) \x f x X Y2 1 ∈ ×
( )G f and Dα-closedness of G(f) as before gives U D O X2 ∈ α ( ,

x2 ) , V GO Y f x2 1∈ ( , ( )) with f U Cl V( ) ( )2 2∩ =* φ , which guaran-
tees that f x f U( ) ( )1 2∉ and so x U1 2∉ . Therefore, we obtain sets
U1 and U D O X2 ∈ α ( ) such that x1 ∈ U1 but x U2 1∉ while x2 ∈ U2

but x U1 2∉ . Hence X is Dα-T1.

Corollary 6.11. Let f : X → Y be any bijection with G(f)
Dα-closed. Then both X and Y are Dα-T1.

Proof. It readily follows from Corollary 6.9 and Theorem 6.10.

Definition 6.12. A topological space (X, τ) is said to be Dα-T2 if
for any distinct pair of points x and y in X, there exist Dα-
open sets U and V in X containing x and y, respectively, such
that U ∩ V = ϕ.

Theorem 6.13.

(i) Every α-T2 space is Dα-T2.
(ii) Every g-T2 space is Dα-T2.

Proof. Obvious.

Remark 6.14. The converse of the above theorem is not true
as seen from Example 2.7.

Theorem 6.15. Let f : X → Y be any surjection with G(f)
Dα-closed. Then Y is g-T2.
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Proof. Let y y y y Y1 2 1 2, ( )≠ ∈ . The subjectivity of f gives a x1 ∈ X
such that f(x1) = y1. Now ( , ) ( ) \ ( )x y X Y G f1 2 ∈ × . The Dα-
closedness of G(f) provides U D O X x∈ α ( , )1 , V GO Y y∈ ( , )2 such
that f U Cl V( ) ( )∩ =* φ . Now x U f x y f U1 1 1∈ ⇒ = ∈( ) ( ). This and
the fact that f U Cl V( ) ( )∩ =* φ guarantee that y Cl V1 ∉ *( ). This
mean that there exists W GO Y y∈ ( , )1 such that W ∩ V = ϕ. Hence
Y is g-T2.

Corollary 6.16. Let f : X → Y be any surjection with G(f)
Dα-closed. Then Y is Dα-T2.

Proof. Follows from Theorems 6.13 (ii) and 6.15.

Definition 6.17. A function f : X → Y has a strongly Dα-closed
graph if for each ( , ) ( ) \ ( )x y X Y G f∈ × , there exist U D O X x∈ α ( , )
and V ∈ O(Y, y) such that ( ( )) ( )U Cl V G f× ∩ = φ .

Corollary 6.18. A strongly Dα-closed graph is Dα-closed. That
the converse is not true is seen from Example 6.3, where
{ } ( , )y GO Y y∈ but { } ( )y O Y∉ . Therefore G(f) is Dα-closed but
not strongly Dα-closed.

Remark 6.19. Evidently every strongly α-closed graph
(resp. strongly closed graph) is strongly Dα-closed graph.
That the converse is not true is seen from the following
example.

Example 6.20. Let X = {a, b, c} associated with the topology
τ φ= { , { , }, }a b X and Y = {x, y, z} associated with the topology
σ φ= { , { , }, { }, }x y z Y . Let f X Y: ( , ) ( , )τ σ→ be a function defined
by f(a) = f(c) = x, f(b) = y. One can have that F c XX = { , { }, }φ ,
GC X c a c b c X( ) = { , { }, { , }, { , }, }φ , GO X a b a b X( ) = { , { }, { }, { , }, }φ , αO X( )

φ a b X= { , { , }, } , D O X a b a b a c b c Xα φ( ) = { , { }, { }, { , }, { , }, { , }, }. Since
{ , } ( , )a c D O X c∈ α and { } ( , )z O Y z∈ but { , } ( )a c O X∉α (resp.
{ , } ( )a c O X∉ ). Therefore G(f) is strongly Dα-closed but not
strongly α-closed (resp. strongly closed).

Theorem 6.21. For a function f X Y: ( , ) ( , )τ σ→ , the following
properties are equivalent:

(i) f has strongly Dα-closed graph.
(ii) For each ( , ) ( ) \ ( )x y X Y G f∈ × , there exist U D O X x∈ α ( , )

and V ∈ O(Y, y) such that f U Cl V( ) ( )∩ = φ .
(iii) For each ( , ) ( ) \ ( )x y X Y G f∈ × , there exist U D O X x∈ α ( , )

and V O Y y∈α ( , ) such that ( ( )) ( )U Cl V G f× ∩ =α φ .
(iv) For each ( , ) ( ) \ ( )x y X Y G f∈ × , there exist U D O X x∈ α ( , )

and V O Y y∈α ( , ) such that f U Cl V( ) ( )∩ =α φ .

Proof. Similar to the proof of Theorem 6.4.

Theorem 6.22. If f : X → Y is a function with a strongly Dα-
closed graph, then for each x ∈ X, f x Cl f U U( ) { ( ( )) := ∩ ∈α

D O X x( , )}α .

Proof. Suppose the theorem is false. Then there exists a y ≠ f(x)
such that y Cl f U U D O X x∈∩ ∈{ ( ( )) : ( , )}α α . This implies that
y Cl f U∈ α ( ( )) for every U D O X x∈ α ( , ). So V ∩ f(U) ≠ ϕ for every
V O Y y∈α ( , ) . This, in its turn, indicates that Cl V f Uα ( ) ( )∩ ⊃
V f U φ( )⊃ ≠ , which contradicts the hypothesis that f is a func-
tion with Dα-closed graph. Hence the theorem holds.

Theorem 6.23. If f : X → Y is Dα-continuous function and Y is
T2. Then G(f) is strongly Dα-closed.

Proof. Let ( , ) ( ) \ ( )x y X Y G f∈ × . Since Y is T2, there exists a
set V ∈ O(Y, y) such that f x Cl V( ) ( )∉ . But Cl(V) is closed.
Now Y Cl V O Y f x\ ( ) ( , ( ))∈ . By Theorem 4.5 there exists
U D O X x∈ α ( , ) such that f U Y Cl V( ) \ ( )⊆ . Consequently,
f U Cl V( ) ( )∩ = φ and therefore G(f) is strongly Dα-closed.

Theorem 6.24. Let f : X → Y be any surjection with G(f) strongly
Dα-closed. Then Y is T1 and α-T1.

Proof. Similar to the proof of Theorem 6.8 and T1-ness always
guarantees α-T1-ness. Hence Y is α-T1.

Corollary 6.25. Let f : X → Y be any surjection with G(f) strongly
Dα-closed. Then Y is Dα-T1.

Proof. Follows From Theorems 6.6 (i) and 6.24.

Theorem 6.26. Let f : X → Y be any injective with G(f) strongly
Dα-closed. Then X is Dα-T1.

Proof. Similar to the proof of Theorem 6.10.

Corollary 6.27. Let f : X → Y be any bijection with G(f) strongly
Dα-closed. Then both X and Y are Dα-T1.

Proof. It readily follows from Corollary 6.25 and Theorem 6.26.

Theorem 6.28. Let f : X → Y be any surjection with G(f) strongly
Dα-closed. Then Y is T2 and α-T2.

Proof. Similar to the proof Theorem 6.15 and T2-ness always
guarantees α-T2-ness. Hence Y is α-T2.

Corollary 6.29. Let f : X → Y be any surjection with G(f) strongly
Dα-closed. Then Y is Dα-T2.

Proof. Follows From Theorems 6.13 (i) and 6.28.
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