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1. Introduction

The notion of g-continuous functions was introduced and studied by Balachan-
dran, Sundaram and Maki [2]. The research work in the field of continuity was
further developed and many topologists introduced and investigated different
types of continuous functions in general topology. The study of gpr-continuous
functions in topological spaces was initiated by Gnanambal and Balachandran
[3] in 1999. Also, in supra topological spaces, the study on continuity was dis-
cussed by many researchers. In 1983, Mashour et al [7] initiated the study of
S-continuous maps and S∗-continuous maps in supra topological spaces. This
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made the other topologists to inculcate various types of continuous functions
in supra topological spaces. In this paper, we shall continue the investiga-
tion carried out in [11] and study the notion of gprµ-closure and gprµ-interior.
Throughout this paper, (X, τ), (Y, σ) and (Z, η) represents topological spaces
on which no separation axioms are assumed unless explicitly stated. A sub
collection µ ⊂ P (X) is called a supra topology [7] on X if X ∈ µ and µ is closed
under arbitrary union. (X,µ) is called a supra topological space. The elements
of µ are said to be supra open in (X,µ) and the complement of a supra open
set is called supra closed set. The supra closure of a set A, denoted by clµ(A),
is the intersection of supra closed sets including A. The supra interior of a set
A, denoted by intµ(A), is the union of supra open sets included in A. We call
µ a supra topology associated with the topology τ if τ ⊂ µ.

2. Preliminaries

Definition 1. A subset A of a supra topological space (X,µ) is called:

(i) supra pre-closed [11] if clµ(intµ(A)) ⊆ A.

(ii) supra α-closed [1] clµ (intµ (clµ(A))) ⊆ A.

(iii) supra semi-closed [1] if intµ (clµ(A)) ⊆ A.

(iv)supra regular closed [1] A = intµ (clµ(A)).

The complements of above mentioned closed sets are called their respective
open sets.

The collection of all supra pre-open, supra pre-closed, supra semi-closed,
supra regular open, supra generalized pre-regular closed and supra generalized
pre-regular open subsets of X will be denoted by POµ(X), PCµ(X), SCµ(X),
ROµ(X), GPRCµ(X) and GPROµ(X) respectively.

Definition 2. [11] Let A be a subset of (X,µ). Then:

(i) the supra pre-closure of a set A is defined as pclµ(A) =
⋂

(B: B is a
supra pre-closed set and A ⊆ B).

(ii)the supra pre-interior of a set A is defined as pintµ(A) =
⋃

(B: B is a
supra pre-open set and B ⊆ A).

Definition 3. A subset A of a space (X,µ) is called:

(i) supra generalized closed (briefly gµ-closed) [1] if clµ(A) ⊆ U whenever
A ⊆ U and U is supra open in (X,µ).
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(ii) supra generalized pre-closed (briefly gpµ-closed) if pclµ(A) ⊆ U when-
ever A ⊆ U and U is supra open in (X,µ).

(iii) supra generalized pre-regular closed (briefly gprµ-closed) if pclµ(A) ⊆ U
whenever A ⊆ U and U is supra regular open in (X,µ).

Definition 4. Let (X, τ) and (Y, σ) be two topological spaces and µ be
an associated supra topology with τ .A function f : (X, τ) → (Y, σ) is called:

(i) supra-continuous [8] if f−1(V ) is supra closed in X for every closed set
V of Y .

(ii) supra α-continuous [8] if f−1(V ) is supra α-closed in X for every closed
set V of Y .

(iii) supra pre-continuous [10] if f−1(V ) is supra pre-closed in X for every
closed set V of Y .

(iv) gµ-continuous [8] if f−1(V ) is gµ-closed in X for every closed set V of
Y .

(v) gpµ-continuous if f−1(V ) is gpµ-closed in X for every closed set V of Y .

(vi) gprµ-continuous [11] if f−1(V ) is gprµ-closed in X for every closed set
V of Y .

3. gprµ-Closed Sets

Theorem 5. In a supra topological space (X,µ), let A be a subset of X.
Then x ∈ clµ(A) iff every supra open set containing x intersects A.

Proof. Let x /∈ clµ(A), then the set U = X − clµ(A) is a supra open set
containing x such that U ∩A = φ.

Conversly if there exist a supra open set U containing x which does not
intersect A, then X − U is a supra closed set containing A. By definition of
clµ(A), X − U must contain clµ(A). Thus clµ(A) ⊂ X − U which implies
U ∩ clµ(A) = φ. Hence x /∈ clµ(A).

Definition 6. [11] A space (X,µ) is called supra pre-regular T1/2 space if
every gprµ-closed set is supra pre-closed.
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Lemma 7. (i) For an x ∈ X in (X,µ), its complement X − {x} is gprµ-
closed or supra regular open.

(ii) (X,µ) is supra pre-regular T1/2 iff for each {x} of (X,µ), {x} is supra
pre-open or X-{x} is supra regular open.

Proof. (i) Let X-{x} is not supra regular open. Then X is the only supra
regular open set containing X-{x}. Thus pclµ (X −{x}) ⊆ X. Hence X-{x} is
gprµ-closed.

(ii) Suppose X-{x} is not supra regular open. Then X is the only supra
regular open set containing X-{x}. Thus pclµ(X − {x}) ⊆ X. Hence X-{x} is
gprµ-closed. Therefore X-{x} is supra pre-closed by definition 6. Hence {x }
is supra pre-open.

Conversely suppose that A is gprµ-closed such that A = X−{x} and X-{x}
is supra regular open. Since A is gprµ-closed, pclµ(A) ⊂ X − {x} = A. This
implies pclµ(A) ⊂ A holds. Hence A is supra pre-closed.

Theorem 8. If POµ(X) = PCµ(X), then GPRCµ(X) equals the power
set of X.

Proof. Suppose A ⊆ O, where O is supra regular open in (X,µ). Since O
is supra pre-open, it is supra pre-closed by hypothesis. Hence pclµ(A) ⊆ O and
so A is gprµ-closed. Thus GPRCµ(X) equals the power set of (X,µ)

Theorem 9. Let POµ(X) be closed under finite intersections. If A is
gprµ-open and B is gprµ open then A

⋂
B is gprµ-open.

Proof. Let

X − (A
⋂

B) = (X −A)
⋃

(X −B) ⊆ Q,

where Q is supra regular open. Then X − A ⊆ Q and X − B ⊆ Q. Since A
and B are gprµ-open, pclµ(X − A) ⊆ Q and pclµ(X − B) ⊆ Q. By hypothesis
pclµ((X −A)

⋃
(X −B)) = pclµ(X −A)

⋃
pclµ(X −B) ⊆ Q. That is pclµ(X −

(A
⋂

B)) ⊆ Q. Hence A
⋂

B is gprµ-open.

Definition 10. Let (X,µ) be a supra topological space and A ⊂ X. A
point x ∈ A is called an supra interior point of A, iff there exist a supra open
set G with x ∈ G such that G ⊂ A.
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Definition 11. [11] Let (X,µ) be a supra topological space, A ⊂ X and
x ∈ X. x is said to be a supra limit point of A iff every supra open set containing
x contains a point of A different from x. The supra derived set of A denoted
by Dµ[A] is the set of all supra limit points of A.

Theorem 12. Let (X,µ) be a supra topological space and A ⊂ X. Then
A is supra closed iff Dµ[A] ⊂ A.

Proof. Let (X,µ) be a supra topological space and A ⊂ X be supra closed.
By hypothesis X −A is supra open. Let x ∈ X −A be arbitrary. Then X −A
is a supra open set containing x such that (X − A)

⋂
A = φ. This implies

x /∈ Dµ[A]. Thus (X −A) ∈ (X −Dµ[A]). Hence Dµ[A] ⊂ A.

Conversely suppose that A is a subset of (X,µ) such that Dµ[A] ⊂ A. Let
x ∈ (X − A) be arbitrary. Then x /∈ A. This implies x /∈ Dµ[A]. Then there
exist a supra open set G with x ∈ G such that (G − {x})

⋂
A = φ. That is

G
⋂

A= φ. Thus G ⊂ X −A. Hence x is a supra interior point of X −A. This
implies X −A is a supra open set. Hence A is supra closed.

Theorem 13. In a supra topological space, Dµ[A] is supra closed for every
supra closed set A ⊂ X.

Proof. Let (X,µ) be a supra topological space and A ⊂ X. By theorem 12,
A is supra closed iff Dµ[A] ⊂ A. Hence Dµ[A] is supra closed iff Dµ[Dµ[A]] ⊂
Dµ[A]. Let x ∈ Dµ[Dµ[A]] be arbitrary. This implies for every supra open set
G containing x such that (G − {x})

⋂
Dµ[A] 6= φ. That is (G− {x})

⋂
A 6= φ.

This shows that x ∈ Dµ[A]. Thus Dµ[Dµ[A]] ⊂ Dµ[A]. Hence Dµ[A] is supra
closed.

Definition 14. Let(X,µ) be a supra topological space with supra topology
µ. If Y is a subset of X, the collection µY = {Y

⋂
U | U ∈ µ}is a supra topology

on Y called the supra subspace topology. With this supra topology, Y is called
supra subspace of X ; its supra open sets consists of all intersection of supra
open sets of X with Y .

Theorem 15. Let Y be a supra subspace of X. Then the set A is supra
closed in Y iff it equals intersection of a supra closed set of X with Y .

Proof. Let A = C
⋂

Y, where C is supra closed in X. Then X −C is supra
open in X. Thus (X − C)

⋂
Y is supra open in Y by the definition of supra

subspace topology. But (X − C)
⋂

Y = Y −A. Hence Y −A is supra open in
Y , so that A is supra closed in Y .
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Conversely, let A be supra closed in Y . Then Y − A is supra open in Y ,
it equals the intersection of a supra open set U of X with Y . Thus X − U is
supra closed in X and A = Y

⋂
(X − U), so that A equals the intersection of

a supra closed set of X with Y .

Theorem 16. Let Y be a supra subspace of X; let A be subset of Y .
Then clµY (A) = clµ(A)

⋂
Y , where clµY denotes the supra closure operator in

the supra subspace Y .

Proof. Let B denote clµY (A). The set cl
µ(A) is supra closed in X, so clµ(A)⋂

Y is supra closed in Y by theorem 15. SinceA ⊂ clµ(A)
⋂

Y and by definition
B equals intersection of all supra closed subsets of Y containing A, we haveB ⊂
(clµ(A)

⋂
Y ).

Conversely, we know that B is supra closed in Y , by the theorem 15,B =
C
⋂

Y, for some supra closed set C in X. Then C is a supra closed set of X
containing A. Thus clµ(A) ⊂ C. Hence clµ(A)

⋂
Y ⊂ C

⋂
Y = B.

Lemma 17. Let A be supra closed in (X,µ) and B ⊂ A. Then clµ(B) =
clµA(B) where clµA denotes the supra closure operator in the supra subspace A.

Proof. As by hypothesis, A is a supra subspace of X and B ⊂ A. By
theorem 16, clµA(B) = clµ(B)

⋂
A = clµ(B)

⋂
clµ(A) = clµ(B).

Lemma 18. Let A be supra open in (X,µ) and B ⊂ A. Then intµ(B) =
intµA(B) where intµA denotes the supra interior operator in the supra subspace
A.

Proof.

intµ(B) = intµ(B
⋂

A) ⊂ intµ(B)
⋂

intµ(A) ⊂ intµ(B)
⋂

A = intµA(B).

intµA(B) = intµ(B)
⋂

A = intµ(B
⋂

A)
⋂

A ⊂ intµ(B)
⋂

intµ(A)
⋂

A

⊂ intµ(B)
⋂

intµ(A) ⊂ intµ(B).

Hence intµ(B) = intµA(B).

Lemma 19. Let Y be a supra subspace of X. If U is supra closed in Y
and Y is supra closed in X, then U is supra closed in X.
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Proof. Since U is supra closed in Y , U = Y
⋂

V for some set V supra closed
in X. Since Y and V are both supra closed in X, so is V

⋂
Y . This implies U

is supra closed in X.

Lemma 20. Let Y be a supra subspace of X. If U is supra open in Y
and Y is supra open in X, then U need not be supra open in X.

Examble 21. Let X = {a,b,c,d},µ = {φ,X, {a}, {a,b}, {c,d}, {a,d},
{a,b,d}, {a,c,d}}, Y = {a, d}, µY = { φ, Y , {a}, {d}}. U = {d} is supra open
in Y and Y is supra open in X but U is not supra open in X.

Lemma 22. Let A ⊂ Y ⊂ X, Y be supra open and supra closed in (X,µ).
Then A ∈ PCµ(X) iff A ∈ PCµ(Y ).

Proof. Let A ∈ PCµ(X,µ). Then clµ(intµ(A)) ⊆ A. Since Y is supra open,
clµ (intµY (A)) ⊆ A by lemma 18. Then clµ(intµY (A))

⋂
Y ⊆ A

⋂
Y = A. That

is clµY (intµY (A)) ⊆ A. Thus A ∈ PCµ(Y ).

Conversely, let A ∈ PCµ(Y ). Then clµY (intµY (A)) ⊆ A. Since Y is supra
closed and supra open, clµ (intµ(A)) = clµY (intµY (A)) ⊆ A by lemmas 17 &
18. Thus A ∈ PCµ(X,µ).

Definition 23. In a supra topological space (X,µ), let A be a subset of
X. Then x ∈ pclµ(A) iff every supra pre-open set containing x intersects A.

Theorem 24. In a supra topological space (X,µ), A ∪ clµ(intµ(A)) is
supra pre-closed.

Proof. A
⋃

clµ(intµ(A)) is supra pre-closed iff

pclµ(A
⋃

clµ(intµ(A))) = A
⋃

clµ(intµ(A)).A
⋃

clµ(intµ(A))

⊂ pclµ(A
⋃

clµ(intµ(A))).

Now to prove that

pclµ(A
⋃

clµ(intµ(A))) ⊂ A
⋃

clµ(intµ(A)).

Let x /∈ (A
⋃

clµ(A)). Then x /∈ A, x /∈ clµ(A). This implies by definition 23,
there exist a supra open set U with x ∈ U such that U

⋂
A = φ. That is, there

exist a supra pre-open set U with x ∈ U such that U
⋂

A = φ.

By hypothesis x /∈ (A
⋃

clµ(A)), implies that x /∈ (A
⋃

clµ(intµ(A)). Thus
x /∈ A, x /∈ clµ(intµ(A)). As clµ(clµ(A)) = clµ(A), x /∈ clµ(clµ(intµ (A))).
Hence x /∈ pclµ(clµ(intµ(A))). That is there exist a supra pre-open set U with
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x ∈ U such that U
⋂

clµ(intµ(A)) = φ. Also U
⋂

A = φ. Thus there exist a
supra pre-open set U containing x such that U

⋂
(A

⋃
clµ(intµ(A))) = φ. This

implies x /∈ pclµ(A
⋃

clµ(intµ(A))). Thus

pclµ(A
⋃

clµ(intµ(A))) ⊂ A
⋃

clµ(intµ(A)).

Hence A
⋃

clµ(intµ(A)) is supra pre-closed.

Proposition 25. Let A be a subset of a supra topological space (X,µ).
Then:

(i) pclµ(A) is supra preclosed.

(ii) pclµ(A) = A
⋃

clµ(intµ(A)).

Proof. (i) By definition 2 (i)pclµ(A) =
⋂
( B : B is a supra pre-closed set and

A ⊆ B). Also by theorem 2.3(i)[10], arbitrary intersection of supra pre-closed
sets is always supra pre-closed, pclµ(A) is supra preclosed.

(ii)

clµ(intµ(A
⋃

clµ(intµ(A)))) ⊂ A
⋃

clµ(intµ(A))

as A
⋃

clµ(intµ(A)) is supra pre-closed by theorem 24. Thus

pclµ(A
⋃

clµ(intµ(A))) = A
⋃

clµ(intµ(A)).

Hence pclµ(A) ⊂ pclµ(A
⋃

clµ(intµ(A))) = A
⋃

clµ (intµ(A)). On the other
hand pclµ(A) is supra pre-closed. Therefore

clµ(intµ(A)) ⊂ clµ(intµ(pclµ(A))) ⊂ pclµ(A).

Hence A
⋃

clµ(intµ (A)) ⊂ pclµ(A). That is

pclµ(A) = A
⋃

clµ(intµ(A)).

Lemma 26. If A ⊂ Y ⊂ X and Y be supra open in (X,µ), then pclµY (A) =
pclµX(A)

⋂
Y

Proof.

pclµY (A) = A
⋃

(clµY (int
µ
Y (A))) = A

⋃
(clµY (int

µ(A)))

= A
⋃

(clµ(intµ(A))
⋂

Y ) = (A
⋃

clµ(intµ(A)))
⋂

(A
⋃

Y ) = pclµX(A)
⋂

Y.



AN EXTENSIVE STUDY OF... 65

Lemma 27. If Y is supra open and supra pre-closed in (X,µ), then
pclµY (A) = pclµX(A).

Proof. By lemma 26, pclµY (A) = pclµX(A)
⋂

Y . Since Y is supra pre-closed,
pclµX(A) ⊆ Y . Therefore pclµY (A) = pclµX(A).

Lemma 28. In a supra topological space (X,µ), let A ⊂ X. If A is supra
open then ROµ(A,µ|A) = { V

⋂
A : V ∈ ROµ(X,µ)}.

Proof. Let A be a supra open set in X and let W ∈ ROµ(A,µ|A). Then
intµA (clµA(W )) = intµ (clµ(W )

⋂
A)

⋂
A ⊂ intµ(clµ(W ))

⋂
intµ(A)

⋂
A =

intµ(clµ(W ))
⋂

A = V
⋂

A where V ∈ ROµ (X,µ).

Conversely let V ∈ ROµ(X,µ) and W = V
⋂

A. Then

intµA(cl
µ
A(W )) = intµ(clµ(W )

⋂
A)

⋂
A = intµ(clµ(V

⋂
A)

⋂
A)

⋂
A

⊂ intµ(clµ(V )
⋂

A)
⋂

A ⊂ intµ(clµ(V ))
⋂

intµ(A)
⋂

A

= intµ(clµ(V ))
⋂

A = V
⋂

A = W.

Therefore W ∈ ROµ (A,µ|A).

Lemma 29. In a supra topological space (X,µ), let A ⊂ Y ⊂ X. Then:

(i) if Y is supra open in (X,µ) thenA ∈ GPRCµ(X) implies A ∈ GPRCµ(Y );
and

(ii) if Y is supra open & supra pre-closed in (X,µ) then A ∈ GPRCµ (Y )
implies A ∈ GPRCµ(X).

Proof. (i) Let A be gprµ-closed in (X,µ). Let A ⊆ O where O is supra
regular open in Y . Then O = O∗

⋂
Y where O∗ is supra regular open in (X,µ)

by lemma 28. That is A ⊆ O∗. Since A ∈ GPRCµ(X), pclµX (A) ⊆ O∗. Then
pclµX(A)

⋂
Y ⊆ O∗

⋂
Y. That is pclµY (A) ⊆ O. Hence A ∈ GPRCµ(Y ).

(ii) Let A ∈ GPRCµ(Y ). Then A ⊆ U where U is supra regular open in X.
Now A = A

⋂
Y ⊆ U

⋂
Y where U

⋂
Y is supra regular open in Y by lemma 28.

By hypothesis pclµY (A) ⊆ U
⋂

Y. Then by lemma 27, pclµX(A) ⊆ U
⋂

Y ⊆ U.
Hence A ∈ GPRCµ(X).

The following example shows that the assumption Y is supra open and
supra pre-closed in lemma 29 (ii) cannot be removed.
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Examble 30. Let X = {a,b,c,d}, Y = {a, b, d} and µ ={ φ, X, {a},
{c}, {a,b}, {a, c}, {b, c},{a, b, c}}. Then GPRCµ (X, µ) = { φ, X, {b}, {d},
{c,d}, {a,d}, {b,d}, {a,c}, {a,b,c}, {a,b,d}, {b,c,d}, {a,c,d}} and GPRCµ (Y ,
µ|Y ) = { φ, Y , {a}, {b}, {d}, {a,b}, {a,d}, {b,d}}. {a} ∈ GPRCµ (Y , µ|Y )
but {a} does belongs to GPRCµ (X, µ). Here, Y is supra pre-closed but not
supra open in (X, µ).

Corollary 31. If Y is supra open and supra pre-closed in (X, µ) then
A ∈ GPRCµ(X) iff A ∈ GPRCµ(Y ).

Proof. It follows from lemma 29 (i) and (ii).

4. gprµ-Closure and gpr
µ-Interior

Definition 32. Let (X,µ) be a supra topological space and A ⊂ X. Then:

(i) gprµ − cl(A) =
⋂

[F : A ⊂ F , F is gprµ-closed set in (X,µ)].

(ii)gprµ − int(A) =
⋃

[M : M ⊂ A,M is gprµ-open set in (X,µ)].

Lemma 33. Let A and B be subsets of the supra topological space (X,µ).
Then:

(i) gprµ − cl(φ) = φ and gprµ − cl(X) = X.

(ii) A ⊂ gprµ − cl(A).

(iii) If B is any gprµ-closed set containing A, then gprµ − cl(A) ⊂ B.

(iv) If A ⊂ B, then gprµ-cl(A) ⊂ gprµ − cl(B).

(v) gprµ − cl(A) = gprµ − cl(gprµ − cl(A)).

(vi) gprµ − cl(A
⋃

B) ⊃ gprµ − cl(A)
⋃

gprµ − cl(B).

(vii)gprµ − cl(A
⋂

B) ⊂ gprµ − cl(A)
⋂

gprµ − cl(B).

Proof. Obvious.

Remark 34. The equality does not hold in lemma 33( vi & vii) as per
the following examples.
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Examble 35. i) Let X = {a,b,c,d,e}. Consider µ = {X, φ, {a,b},
{b,c,d}, {a,b,c,d}, {a}}. Consider A = {b}, B = {c,d}. A

⋃
B= {b,c,d}.

gprµ− cl(A
⋃

B) = {b,c,d,e}. gprµ− cl(A) = {b}, gprµ − cl(B) = {c, d}.gprµ −
cl(A)

⋃
gprµ − cl(B) = {b,c,d}.

ii) Let X= {a,b,c,d,e}. Consider µ = {X, φ, {a,b}, {b,c,d}, {a,b,c,d}, {a}}.
Consider A = {b,c,d}, B = {e,b,d}. A

⋂
B = {d,b}. gprµ − cl(A) = {b,c,d,e},

gprµ− cl(B) = {e,d,b}. gprµ− cl(A
⋂

B) = {b,d}. gprµ− cl(A)
⋂

gprµ− cl(B)
= {e,d,b}.

Lemma 36. For an x ∈ X, x ∈ gprµ − cl(A) iff V
⋂

A 6= φ for every
gprµ-open set V containing x.

Proof. Necessity: Let x ∈ gprµ − cl(A). Suppose that there exist a gprµ-
open set V containing x such that V

⋂
A = φ. Since A ⊂ X−V, gprµ−cl(A) ⊂

X−V, implies x /∈ gprµ−cl(A), a contradiction. Therefore V
⋂

A 6= φ for every
gprµ-open set V containing x.

Sufficiency: Let x /∈ gprµ − cl(A). Then there exist a gprµ-closed subset F
containing A such that x /∈ F. Then x ∈ X − F and X − F is gprµ-open. Also
(X − F )

⋂
A= φ which is a contradiction. Hence the lemma.

Remark 37. In a supra topological space (X,µ), if A ⊂ X is gprµ-closed
then gprµ − cl(A) = A.

Proof. Obvious.

Remark 38. If gprµ − cl(A) = A, then A need not be gprµ-closed in
(X,µ).

Examble 39. Let X = {a,b,c,d}.Consider µ = {X, φ, {a}, {a,c}, {b,c},
{a,b,c}}. GPRCµ(X) = {X, φ, {b}, {c}, {d}, {a,b}, {c,d}, {a,c}, {b,d}, {a,d},
{a,b,c}, {a,b,d}, {b,c,d}, {c,d,a}}. gprµ − cl{a}= {a,b}

⋂
{a,c}

⋂
{a,b,c}

⋂

{a,b,d}
⋂

{a,c,d}
⋂

X = {a}. But {a} is not gprµ-closed.

Lemma 40. Let A and B be the subsets of the supra topological space
(X,µ). Then:

(i) gprµ − int(φ) = φ and gprµ − int(X) = X.

(ii)gprµ − int(A) ⊂ A.
(iii) If B is a gprµ-open set contained in A, then B ⊂ gprµ − int(A).

(iv) If A ⊂ B, then gprµ − int(A) ⊂ gprµ − int(B).

(v) gprµ − int(gprµ − int(A)) = gprµ − int(A).
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Proof. Follows from definitions.

Lemma 41. (X − gprµ − int(A)) = gprµ − cl(X −A).

Proof. Let x ∈ X − (gprµ − int(A)). Then x /∈ gprµ − int(A)). That is
every gprµ-open set B containing x is such that B 6⊂ A. This implies every
gprµ-open set B containing x intersects X−A. So x ∈ gprµ−cl(X−A). Hence
(X − gprµ − int(A)) ⊂ gprµ − cl(X −A).

Conversely, let x ∈ gprµ−cl(X−A). Then every gprµ-open set D containing
x intersect X−A. That is, every gprµ-open set D containing x is such that D 6⊂
A. This implies x /∈ gprµ− int(A). Thus gprµ−cl(X−A) ⊂ X−gprµ− int(A).
Hence (X − gprµ − int(A)) = gprµ − cl(X −A).

Proposition 42. If GPRCµ (X,µ) is closed under finite unions, then
gprµ − cl(A

⋃
B) = gprµ − cl(A)

⋃
gprµ − cl(B).

Proof. Let A and B be gprµ-closed in (X,µ). Then by remark 37, gprµ −
cl(A) = A and gprµ − cl(B) = B.Thus gprµ − cl(A)

⋃
gprµ − cl(B) = A

⋃
B.

Also by hypothesis A
⋃

B is gprµ-closed. That is gprµ − cl(A
⋃

B) = A
⋃

B =
gprµ − cl(A)

⋃
gprµ − cl(B).

Theorem 43. If PCµ(X,µ) is closed under finite unions, then GPRCµ(X,
µ) is closed under finite unions.

Proof. Let PCµ(X,µ) be closed under finite unions. Let A,B ∈ GPRCµ(X,
µ) and let A

⋃
B ⊆ U, where U is supra regular open in (X,µ). Then A ⊆ U and

B ⊆ U . Hence, pclµ(A) ⊆ U and pclµ(B) ⊆ U . This implies pclµ(A)
⋃

pclµ(B) ⊆
U. By hypothesis, pclµ(A

⋃
B) = A

⋃
B ⊆ U . That is pclµ(A

⋃
B) ⊆ U . Hence

A
⋃

B ∈ GPRCµ(X,µ).

Corollary 44. If POµ(X,µ) is closed under finite intersections, then
GPROµ(X,µ) is closed under finite intersections.

Proof. Let POµ(X,µ) be closed under finite intersections. Let A,B ∈
GPROµ(X,µ) and let U ⊆ A

⋂
B, where U is supra regular closed in (X,µ).

Then U ⊆ A and U ⊆ B. Hence, U ⊆ pintµ(A) and U ⊆ pintµ(B). This
implies U ⊆ pintµ(A)

⋂
pintµ(B). By hypothesis, pintµ(A

⋂
B) = A

⋂
B ⊇ U .

That is U ⊆ pintµ(A
⋂

B). Hence A
⋂

B ∈ GPROµ(X,µ).

Lemma 45. Let (X,µ) be a supra topological space.

(i) If U ∈ X is supra closed and V ∈ PCµ(X) then U
⋂

V ∈ PCµ(X).

(ii) If V ∈ PCµ(X) and U ∈ SCµ(X) then U
⋂

V ∈ PCµ(U).
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Proof. (i)

clµ(intµ(U
⋂

V )) ⊂ clµ(intµ(U)
⋂

intµ(V )) ⊂ clµ(intµ(U))
⋂

clµ(intµ(V )) ⊂ clµ(U)
⋂

V = U
⋂

V.

Therefore clµintµ(U
⋂

V )) ⊂ U
⋂

V.

(ii)

clµU (int
µ
U (U

⋂
V )) = clµU (int

µ(U
⋂

V )
⋂

U) ⊂ clµU (int
µ(U)

⋂
intµ(V )

⋂
U)

⊂ clµU (int
µ(U)

⋂
intµ(V )) = clµ(intµ(U)

⋂
intµ(V ))

⋂
U

⊂ clµ(intµ(U))
⋂

clµ(intµ(V ))
⋂

U ⊂ clµ(intµ(clµ(U)))
⋂

clµ(intµ(V ))
⋂

U

⊂ clµ(U)
⋂

clµ(intµ(V ))
⋂

U ⊂ U
⋂

clµ(intµ(V )) ⊂ U
⋂

V.

Therefore U
⋂

V ∈ PCµ(U).

Lemma 46. If U ∈ PCµ(X) and V ∈ PCµ(U) then V ∈ PCµ(X) in
(X,µ).

Proof. Since V ∈ PCµ(U), clµU (int
µ
U (V )) ⊆ V and clµU (int

µ
U (V )) is supra

closed in U , there exist an supra closed set W ⊂ X such that U
⋂

W =
clµU (int

µ
U (V )). This implies

V ⊃ U
⋂

W ⊇ clµ(intµ(U))
⋂

W ⊇ clµ(intµ(U))
⋂

clµ(W )

⊇ clµ(intµ(U))
⋂

clµ(intµ(W )) ⊇ clµ(intµ(U)
⋂

intµ(W ))

⊇ clµ(intµ(U
⋂

W )) = clµ(intµ(clµU (int
µ
U (V ))))

⊃ clµ(intµ(intµU (V ))) ⊃ clµ(intµ(intµ(V ))) = clµ(intµ(V )).

Therefore clµ(intµ(V )) ∈ V. So V ∈ PCµ(X).

5. gpr
µ-Continuous Functions

Definition 47 (11). Let (X, τ), (Y, σ) be two topological spaces and µ be
an associated supra topology with τ . A function f : (X, τ) → (Y, σ) is called
gprµ-continuous if f−1(V ) is gprµ-closed in X for every closed set V of Y .
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Theorem 48. Let (X, τ), (Y, σ) be two topological spaces and µ be an
associated supra topology with τ . Let f be a map from X into Y . Then the
following are equivalent:

(i) f is gprµ-continuous;

(ii) The inverse image of every open set in Y is gprµ-open in X;

(iii)gprµ-cl(f−1(V )) ⊂ f−1(cl(V )), for every V ⊂ Y ;

(iv) f(gprµ − cl(A)) ⊂ cl(f(A)) for every A ⊂ X.

Proof. (i) ⇐⇒ (ii) Obviously:

(i) =⇒ (iii) Since cl(V ) is a closed set for every V of Y , then f−1(cl(V )) is
gprµ-closed. f−1(cl(V )) = gprµ − cl(f−1(cl(V ))) ⊃ gprµ − cl(f−1(V )).

(iii) =⇒ (iv) Let A ⊂ X and f(A) = V. Then gprµ − cl(f−1(V )) ⊂
f−1(cl(V )). Thus gprµ − cl(f−1(f(A))) ⊂ f−1(cl(f(A))). This implies gprµ −
cl(A) ⊂ f−1(cl(f(A))). Hence f(gprµ − cl(A)) ⊂ cl(f(A)).

(iv) =⇒ (i) Let V ⊂ Y be a closed set and U = f−1(V ). Then f(gprµ −
cl(U)) ⊂ cl(f(U)) = cl(f(f−1(V ))) ⊂ cl(V ) = V . gprµ − cl(U) ⊂
f−1(f(gprµ − cl(U)) ⊂ f−1(V ) = U. Thus U is gprµ-closed.

Theorem 49. Let (X, τ), (Y, σ) be two topological spaces and µ be an
associated supra topology with τ . Let f : (X, τ) → (Y, σ) be a function. For
A ⊂ X, if gprµ − int(A) = A implies that A is gprµ-open then, the following
are equivalent:

(i) f is gprµ-continuous;

(ii) f−1(int(B)) ⊂ gprµ − int(f−1(B)) for every B ⊂ Y.

Proof. (i)=⇒ (ii). Let B ⊂ Y. This implies f−1(int(B)) is gprµ-open in X.
Therefore f−1(int(B)) = gprµ − int(f−1(int(B))) ⊂ gprµ − int(f−1(B)).

(ii) =⇒ (i). Let V ⊂ Y be an open set, then f−1(V ) = f−1(int(V )) ⊂
gprµ−int(f−1(V )). Hence f−1(V ) is gprµ-open. Thus f is gprµ-continuous.

Theorem 50. (i) Every supra continuous function is gprµ-continuous
function.

(ii) Every supra α-continuous function is gprµ-continuous function.

(iii) Every supra pre-continuous function is gprµ-continuous function.

(iv) Every gµ-continuous function is gprµ-continuous function.

(v) Every gpµ-continuous function is gprµ-continuous function.
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Proof. Obvious.

However, the converse of the above theorems are not true as seen in the
following examples.

Examble 51. (i) Let X = {a,b,c,d}, τ = { φ, X, {a},{a,b}}, µ = { φ, X,
{a},{a,b},{b,c,d}} and σ={ φ, X, {a},{a,b,c}}. Define f : (X, τ) → (X,σ) by
f(a) = b, f(b) = c, f(c) = d, f(d) = a. f−1(b, c, d) = {a, b, c} is not supra closed
in X. Therefore the function is not supra continuous but gprµ-continuous.

(ii) Let X = {a,b,c}, τ = { φ, X, {a,b}}, µ = { φ, X, {a,b},{a,c}} and
σ = { φ, X,{a}}. Define f : (X, τ) → (X,σ) by f(a) = b, f (b) = c, f (c) = a.
f−1(b, c) = {a, b} is not supra pre-closed. Therefore the function is not supra
pre-continuous but gprµ-continuous.

(iii) Let X = {a, b, c}, τ={ φ, X, {b, c}}, µ = { φ,X,{a, c},{b, c}} and
σ={ φ, X, {a}}. Define g : (X, τ) → (X,σ) by g(a) = b, g (b) = a, g (c) =
c, g−1 (b,c) = {a, c} is not supra α-closed, therefore the given function is not
supra α-continuous but gprµ-continuous.

(iv)Let X = {a, b, c}, τ = { φ, X, {b, c}}, µ = { φ, X, {a},{a,b}, {a,c},
{b,c}} and σ = { φ, X, {a}}. Define f : (X, τ) → (X,σ) by f(a) = b, f (b)
= c, f (c) = a. f−1 (b,c) =(a,b) is not gpµ-closed, therefore the function is not
gpµ-continuous but gprµ-continuous.

(v) Let X = {a, b, c}, τ = { φ, X, {a}}, µ = { φ, X, {a},{a,b},{a,c},
{b,c}}, σ = { φ, X, {a}}. Define f : (X, τ) → (X,σ) by f (a) = b, f (b) =
c, f (c) = a. f−1 (b,c) =(a,b) is not gµ-closed, therefore the function is not
gµ-continuous but gprµ-continuous.

Theorem 52. (i) Every continuous function is gprµ-continuous.

(ii) If a function f : (X, τ) → (Y, σ) is gprµ-continuous and g : (Y, σ) →
(Z, η) is continuous then g o f is gprµ-continuous.

(iii) Every gprµ-continuous function defined on a supra pre-regular T1/2

space is supra pre-continuous.

Proof. (i) Let f : (X, τ) → (Y, σ) be a continuous function and A be an
open set in Y . Then f−1(A) is an open set in X. Since µ is an associated supra
topology with τ , then τ ⊂ µ. Therefore f−1(A) is a supra open set in X which
is a gprµ-open set in X. Hence f is gprµ-continuous function.

(ii) Let V be closed set in (Z, η). Since g : (Y, σ) → (Z, η) is a continuous
function, g−1(V ) is closed in (Y, σ). Also gprµ-continuity of f implies that
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f−1(g−1(V )) is gprµ-closed in X. That is f−1(g−1(V )) = (gof)−1(V ) is gprµ-
closed in X. Hence gof is gprµ-continuous.

(iii) Let f : (X, τ) → (Y, σ) be gprµ-continuous function. Then f−1(V ) is
gprµ-closed in X for every closed set V of Y . Since X is supra pre-regular T1/2

space, every gprµ-closed set is supra pre-closed. Hence f−1(V ) is supra pre-
closed in X for every closed set V in Y . Hence f is supra pre-continuous.

Theorem 53. Consider the map f : (X, τ) → (Y, σ). If for each x ∈ X
and each open set V containing f(x) there exist a gprµ-open set U containing
x such that f(U) ⊂ V, then f(gprµ − cl(A)) ⊂ cl(f(A)) for every subset A of
X and hence f is gprµ-continuous by theorem 48.

Proof. Let y ∈ f(gprµ − cl(A)). Let V be an open set containing y. Then
by hypothesis, there exist an x ∈ X such that f(x) = y and a gprµ-open set U
containing x such that f(U) ⊂ V and x ∈ gprµ−cl(A). Therefore, by lemma 36,
U
⋂

A 6= φ. Then f(U
⋂

A) 6= φ. Thus V
⋂

f(A) 6= φ. Hence, y ∈ cl(f(A)).

Theorem 54. (i) If f : X → Y is supra pre-continuous and U ⊂ X is
supra closed, then the restriction f |U : U → Y is gprµ-continuous.

(ii) If f : X → Y is supra pre-continuous and U ∈ SCµ(X), then the
restriction f |U : U → Y is gprµ-continuous.

Proof. (i) Let V ⊂ Y be a closed set.Then f−1(V ) ∈ PCµ(X). Since U ⊂ X
is supra closed, by lemma 45 (i), f−1(V )

⋂
U = (f |U)−1(V ) ∈ PCµ(X). Hence

f |U is supra pre-continuous. That is f |U is gprµ-continuous.

(ii) Let V ⊂ Y be a closed set. Then f−1(V ) ∈ PCµ(X). Since U ∈
SCµ(X), by lemma 45 (ii), f−1(V )

⋂
U = (f |U)−1(V ) ∈ PCµ(U). Hence f |U

is supra pre-continuous. That is f |U is gprµ-continuous.
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