International Journal of Pure and Applied Mathematics

Volume 106 No. 6 2016, 57-73 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v106i6.7

AN EXTENSIVE STUDY OF SUPRA GENERALIZED PRE-REGULAR CLOSED SETS

O.R. Sayed¹, Gnanambal Ilango², Vidhya Menon³ ¹Department of Mathematics Assiut University 71516, Assiut, EGYPT ²Department of Mathematics Govt. Arts College Coimbatore, INDIA ³Department of Mathematics CMS College of Science and Commerce Coimbatore, INDIA

Abstract: The purpose of this paper is to study the concept of gpr^{μ} - closure and gpr^{μ} - interior. Also some more results of gpr^{μ} - continuous functions are investigated.

AMS Subject Classification: 54A05, 54F65

Key Words: supra topological space, supra closed set, gpr^{μ} -closure, gpr $^{\mu}$ -interior, gpr^{μ} -continuous function

1. Introduction

The notion of g-continuous functions was introduced and studied by Balachandran, Sundaram and Maki [2]. The research work in the field of continuity was further developed and many topologists introduced and investigated different types of continuous functions in general topology. The study of gpr-continuous functions in topological spaces was initiated by Gnanambal and Balachandran [3] in 1999. Also, in supra topological spaces, the study on continuity was discussed by many researchers. In 1983, Mashour et al [7] initiated the study of S-continuous maps and S*-continuous maps in supra topological spaces. This

Received: February 15, 2016 Published: April 2, 2016 © 2016 Academic Publications, Ltd. url: www.acadpubl.eu made the other topologists to inculcate various types of continuous functions in supra topological spaces. In this paper, we shall continue the investigation carried out in [11] and study the notion of gpr^{μ} -closure and gpr^{μ} -interior. Throughout this paper, (X, τ) , (Y, σ) and (Z, η) represents topological spaces on which no separation axioms are assumed unless explicitly stated. A sub collection $\mu \subset P(X)$ is called a supra topology [7] on X if $X \in \mu$ and μ is closed under arbitrary union. (X, μ) is called a supra topological space. The elements of μ are said to be supra open in (X, μ) and the complement of a supra open set is called supra closed set. The supra closure of a set A, denoted by $cl^{\mu}(A)$, is the intersection of supra closed sets including A. The supra interior of a set A, denoted by $int^{\mu}(A)$, is the union of supra open sets included in A. We call μ a supra topology associated with the topology τ if $\tau \subset \mu$.

2. Preliminaries

Definition 1. A subset A of a supra topological space (X, μ) is called:

(i) supra pre-closed [11] if $cl^{\mu}(int^{\mu}(A)) \subseteq A$.

(ii) supra α -closed [1] cl^{μ} $(int^{\mu} (cl^{\mu}(\mathbf{A}))) \subseteq A$.

(iii) supra semi-closed [1] if $int^{\mu}(cl^{\mu}(A)) \subseteq A$.

(iv)supra regular closed [1] $A = int^{\mu} (cl^{\mu}(A)).$

The complements of above mentioned closed sets are called their respective open sets.

The collection of all supra pre-open, supra pre-closed, supra semi-closed, supra regular open, supra generalized pre-regular closed and supra generalized pre-regular open subsets of X will be denoted by $PO^{\mu}(X)$, $PC^{\mu}(X)$, $SC^{\mu}(X)$, $RO^{\mu}(X)$, $GPRC^{\mu}(X)$ and $GPRO^{\mu}(X)$ respectively.

Definition 2. [11] Let A be a subset of (X, μ) . Then:

(i) the supra pre-closure of a set A is defined as $pcl^{\mu}(A) = \bigcap (B; B \text{ is a supra pre-closed set and } A \subseteq B).$

(ii) the supra pre-interior of a set A is defined as $pint^{\mu}(A) = \bigcup (B: B \text{ is a supra pre-open set and } B \subseteq A).$

Definition 3. A subset A of a space (X, μ) is called:

(i) supra generalized closed (briefly g^{μ} -closed) [1] if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in (X, μ) .

(ii) supra generalized pre-closed (briefly gp^{μ} -closed) if $pcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in (X, μ) .

(iii) supra generalized pre-regular closed (briefly gpr^{μ} -closed) if $pcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra regular open in (X, μ) .

Definition 4. Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f: (X, \tau) \to (Y, \sigma)$ is called:

(i) supra-continuous [8] if $f^{-1}(V)$ is supra closed in X for every closed set V of Y.

(ii) supra α -continuous [8] if $f^{-1}(V)$ is supra α -closed in X for every closed set V of Y.

(iii) supra pre-continuous [10] if $f^{-1}(V)$ is supra pre-closed in X for every closed set V of Y.

(iv) g^{μ} -continuous [8] if $f^{-1}(V)$ is g^{μ} -closed in X for every closed set V of Y.

(v) gp^{μ} -continuous if $f^{-1}(V)$ is gp^{μ} -closed in X for every closed set V of Y.

(vi) gpr^{μ} -continuous [11] if $f^{-1}(V)$ is gpr^{μ} -closed in X for every closed set V of Y.

3. gpr^{μ} -Closed Sets

Theorem 5. In a supra topological space (X, μ) , let A be a subset of X. Then $x \in cl^{\mu}(A)$ iff every supra open set containing x intersects A.

Proof. Let $x \notin cl^{\mu}(A)$, then the set $U = X - cl^{\mu}(A)$ is a supra open set containing x such that $U \cap A = \phi$.

Conversely if there exist a supra open set U containing x which does not intersect A, then X - U is a supra closed set containing A. By definition of $cl^{\mu}(A), X - U$ must contain $cl^{\mu}(A)$. Thus $cl^{\mu}(A) \subset X - U$ which implies $U \cap cl^{\mu}(A) = \phi$. Hence $x \notin cl^{\mu}(A)$.

Definition 6. [11] A space (X, μ) is called supra pre-regular $T_{1/2}$ space if every gpr^{μ} -closed set is supra pre-closed.

Lemma 7. (i) For an $x \in X$ in (X, μ) , its complement $X - \{x\}$ is gpr^{μ} closed or supra regular open.

(ii) (X, μ) is supra pre-regular $T_{1/2}$ iff for each $\{x\}$ of (X, μ) , $\{x\}$ is supra pre-open or X- $\{x\}$ is supra regular open.

Proof. (i) Let X- $\{x\}$ is not supra regular open. Then X is the only supra regular open set containing X- $\{x\}$. Thus $pcl^{\mu}(X - \{x\}) \subseteq X$. Hence X- $\{x\}$ is gpr^{μ} -closed.

(ii) Suppose X-{x} is not supra regular open. Then X is the only supra regular open set containing X-{x}. Thus $pcl^{\mu}(X - \{x\}) \subseteq X$. Hence X-{x} is gpr^{μ} -closed. Therefore X-{x} is supra pre-closed by definition 6. Hence {x } is supra pre-open.

Conversely suppose that A is gpr^{μ} -closed such that $A = X - \{x\}$ and $X - \{x\}$ is supra regular open. Since A is gpr^{μ} -closed, $pcl^{\mu}(A) \subset X - \{x\} = A$. This implies $pcl^{\mu}(A) \subset A$ holds. Hence A is supra pre-closed.

Theorem 8. If $PO^{\mu}(X) = PC^{\mu}(X)$, then $GPRC^{\mu}(X)$ equals the power set of X.

Proof. Suppose $A \subseteq O$, where O is supra regular open in (X, μ) . Since O is supra pre-open, it is supra pre-closed by hypothesis. Hence $pcl^{\mu}(A) \subseteq O$ and so A is gpr^{μ} -closed. Thus $GPRC^{\mu}(X)$ equals the power set of (X, μ)

Theorem 9. Let $PO^{\mu}(X)$ be closed under finite intersections. If A is gpr^{μ} -open and B is gpr^{μ} open then $A \cap B$ is gpr^{μ} -open.

Proof. Let

$$X - (A \bigcap B) = (X - A) \bigcup (X - B) \subseteq Q,$$

where Q is supra regular open. Then $X - A \subseteq Q$ and $X - B \subseteq Q$. Since A and B are gpr^{μ} -open, $pcl^{\mu}(X - A) \subseteq Q$ and $pcl^{\mu}(X - B) \subseteq Q$. By hypothesis $pcl^{\mu}((X - A) \bigcup (X - B)) = pcl^{\mu}(X - A) \bigcup pcl^{\mu}(X - B) \subseteq Q$. That is $pcl^{\mu}(X - (A \cap B)) \subseteq Q$. Hence $A \cap B$ is gpr^{μ} -open.

Definition 10. Let (X, μ) be a supra topological space and $A \subset X$. A point $x \in A$ is called an supra interior point of A, iff there exist a supra open set G with $x \in G$ such that $G \subset A$.

Definition 11. [11] Let (X, μ) be a supra topological space, $A \subset X$ and $x \in X$. x is said to be a supra limit point of A iff every supra open set containing x contains a point of A different from x. The supra derived set of A denoted by $D^{\mu}[A]$ is the set of all supra limit points of A.

Theorem 12. Let (X, μ) be a supra topological space and $A \subset X$. Then A is supra closed iff $D^{\mu}[A] \subset A$.

Proof. Let (X, μ) be a supra topological space and $A \subset X$ be supra closed. By hypothesis X - A is supra open. Let $x \in X - A$ be arbitrary. Then X - A is a supra open set containing x such that $(X - A) \bigcap A = \phi$. This implies $x \notin D^{\mu}[A]$. Thus $(X - A) \in (X - D^{\mu}[A])$. Hence $D^{\mu}[A] \subset A$.

Conversely suppose that A is a subset of (X, μ) such that $D^{\mu}[A] \subset A$. Let $x \in (X - A)$ be arbitrary. Then $x \notin A$. This implies $x \notin D^{\mu}[A]$. Then there exist a supra open set G with $x \in G$ such that $(G - \{x\}) \cap A = \phi$. That is $G \cap A = \phi$. Thus $G \subset X - A$. Hence x is a supra interior point of X - A. This implies X - A is a supra open set. Hence A is supra closed.

Theorem 13. In a supra topological space, $D^{\mu}[A]$ is supra closed for every supra closed set $A \subset X$.

Proof. Let (X, μ) be a supra topological space and $A \subset X$. By theorem 12, A is supra closed iff $D^{\mu}[A] \subset A$. Hence $D^{\mu}[A]$ is supra closed iff $D^{\mu}[D^{\mu}[A]] \subset$ $D^{\mu}[A]$. Let $x \in D^{\mu}[D^{\mu}[A]]$ be arbitrary. This implies for every supra open set G containing x such that $(G - \{x\}) \cap D^{\mu}[A] \neq \phi$. That is $(G - \{x\}) \cap A \neq \phi$. This shows that $x \in D^{\mu}[A]$. Thus $D^{\mu}[D^{\mu}[A]] \subset D^{\mu}[A]$. Hence $D^{\mu}[A]$ is supra closed.

Definition 14. Let (X, μ) be a supra topological space with supra topology μ . If Y is a subset of X, the collection $\mu_Y = \{Y \cap U | U \in \mu\}$ is a supra topology on Y called the supra subspace topology. With this supra topology, Y is called supra subspace of X; its supra open sets consists of all intersection of supra open sets of X with Y.

Theorem 15. Let Y be a supra subspace of X. Then the set A is supra closed in Y iff it equals intersection of a supra closed set of X with Y.

Proof. Let $A = C \cap Y$, where C is supra closed in X. Then X - C is supra open in X. Thus $(X - C) \cap Y$ is supra open in Y by the definition of supra subspace topology. But $(X - C) \cap Y = Y - A$. Hence Y - A is supra open in Y, so that A is supra closed in Y.

Conversely, let A be supra closed in Y. Then Y - A is supra open in Y, it equals the intersection of a supra open set U of X with Y. Thus X - U is supra closed in X and $A = Y \bigcap (X - U)$, so that A equals the intersection of a supra closed set of X with Y.

Theorem 16. Let Y be a supra subspace of X; let A be subset of Y. Then $cl_Y^{\mu}(A) = cl^{\mu}(A) \cap Y$, where cl_Y^{μ} denotes the supra closure operator in the supra subspace Y.

Proof. Let B denote $cl_Y^{\mu}(A)$. The set $cl^{\mu}(A)$ is supra closed in X, so $cl^{\mu}(A) \cap Y$ is supra closed in Y by theorem 15. Since $A \subset cl^{\mu}(A) \cap Y$ and by definition B equals intersection of all supra closed subsets of Y containing A, we have $B \subset (cl^{\mu}(A) \cap Y)$.

Conversely, we know that B is supra closed in Y, by the theorem $15,B = C \cap Y$, for some supra closed set C in X. Then C is a supra closed set of X containing A. Thus $cl^{\mu}(A) \subset C$. Hence $cl^{\mu}(A) \cap Y \subset C \cap Y = B$.

Lemma 17. Let A be supra closed in (X, μ) and $B \subset A$. Then $cl^{\mu}(B) = cl^{\mu}_{A}(B)$ where cl^{μ}_{A} denotes the supra closure operator in the supra subspace A.

Proof. As by hypothesis, A is a supra subspace of X and $B \subset A$. By theorem 16, $cl_A^{\mu}(B) = cl^{\mu}(B) \bigcap A = cl^{\mu}(B) \bigcap cl^{\mu}(A) = cl^{\mu}(B)$.

Lemma 18. Let A be supra open in (X, μ) and $B \subset A$. Then $int^{\mu}(B) = int^{\mu}_{A}(B)$ where int^{μ}_{A} denotes the supra interior operator in the supra subspace A.

Proof.

$$int^{\mu}(B) = int^{\mu}(B \bigcap A) \subset int^{\mu}(B) \bigcap int^{\mu}(A) \subset int^{\mu}(B) \bigcap A = int^{\mu}_{A}(B).$$

$$int_{A}^{\mu}(B) = int^{\mu}(B) \bigcap A = int^{\mu}(B \bigcap A) \bigcap A \subset int^{\mu}(B) \bigcap int^{\mu}(A) \bigcap A \subset int^{\mu}(B) \bigcap int^{\mu}(A) \subset int^{\mu}(B).$$

Hence $int^{\mu}(B) = int^{\mu}_{A}(B)$.

Lemma 19. Let Y be a supra subspace of X. If U is supra closed in Y and Y is supra closed in X, then U is supra closed in X.

Proof. Since U is supra closed in $Y, U = Y \bigcap V$ for some set V supra closed in X. Since Y and V are both supra closed in X, so is $V \bigcap Y$. This implies U is supra closed in X.

Lemma 20. Let Y be a supra subspace of X. If U is supra open in Y and Y is supra open in X, then U need not be supra open in X.

Example 21. Let $X = \{a,b,c,d\}, \mu = \{\phi, X, \{a\}, \{a,b\}, \{c,d\}, \{a,d\}, \{a,b,d\}, \{a,c,d\}\}, Y = \{a, d\}, \mu_Y = \{\phi, Y, \{a\}, \{d\}\}. U = \{d\}$ is supra open in Y and Y is supra open in X but U is not supra open in X.

Lemma 22. Let $A \subset Y \subset X$, Y be supra open and supra closed in (X, μ) . Then $A \in PC^{\mu}(X)$ iff $A \in PC^{\mu}(Y)$.

Proof. Let $A \in PC^{\mu}(X, \mu)$. Then $cl^{\mu}(int^{\mu}(A)) \subseteq A$. Since Y is supra open, $cl^{\mu}(int^{\mu}_{Y}(A)) \subseteq A$ by lemma 18. Then $cl^{\mu}(int^{\mu}_{Y}(A)) \cap Y \subseteq A \cap Y = A$. That is $cl^{\mu}_{Y}(int^{\mu}_{Y}(A)) \subseteq A$. Thus $A \in PC^{\mu}(Y)$.

Conversely, let $A \in PC^{\mu}(Y)$. Then $cl_Y^{\mu}(int_Y^{\mu}(A)) \subseteq A$. Since Y is supra closed and supra open, $cl^{\mu}(int^{\mu}(A)) = cl_Y^{\mu}(int_Y^{\mu}(A)) \subseteq A$ by lemmas 17 & 18. Thus $A \in PC^{\mu}(X,\mu)$.

Definition 23. In a supra topological space (X, μ) , let A be a subset of X. Then $x \in pcl^{\mu}(A)$ iff every supra pre-open set containing x intersects A.

Theorem 24. In a supra topological space $(X, \mu), A \cup cl^{\mu}(int^{\mu}(A))$ is supra pre-closed.

Proof. $A \bigcup cl^{\mu}(int^{\mu}(A))$ is supra pre-closed iff

$$pcl^{\mu}(A\bigcup cl^{\mu}(int^{\mu}(A))) = A\bigcup cl^{\mu}(int^{\mu}(A)).A\bigcup cl^{\mu}(int^{\mu}(A))$$
$$\subset pcl^{\mu}(A\bigcup cl^{\mu}(int^{\mu}(A))).$$

Now to prove that

$$pcl^{\mu}(A \bigcup cl^{\mu}(int^{\mu}(A))) \subset A \bigcup cl^{\mu}(int^{\mu}(A)).$$

Let $x \notin (A \bigcup cl^{\mu}(A))$. Then $x \notin A$, $x \notin cl^{\mu}(A)$. This implies by definition 23, there exist a supra open set U with $x \in U$ such that $U \bigcap A = \phi$. That is, there exist a supra pre-open set U with $x \in U$ such that $U \bigcap A = \phi$.

By hypothesis $x \notin (A \bigcup cl^{\mu}(A))$, implies that $x \notin (A \bigcup cl^{\mu}(int^{\mu}(A)))$. Thus $x \notin A, x \notin cl^{\mu}(int^{\mu}(A))$. As $cl^{\mu}(cl^{\mu}(A)) = cl^{\mu}(A), x \notin cl^{\mu}(cl^{\mu}(int^{\mu}(A)))$. Hence $x \notin pcl^{\mu}(cl^{\mu}(int^{\mu}(A)))$. That is there exist a supra pre-open set U with $x \in U$ such that $U \bigcap cl^{\mu}(int^{\mu}(A)) = \phi$. Also $U \bigcap A = \phi$. Thus there exist a supra pre-open set U containing x such that $U \bigcap (A \bigcup cl^{\mu}(int^{\mu}(A))) = \phi$. This implies $x \notin pcl^{\mu}(A \bigcup cl^{\mu}(int^{\mu}(A)))$. Thus

$$pcl^{\mu}(A\bigcup cl^{\mu}(int^{\mu}(A)))\subset A\bigcup cl^{\mu}(int^{\mu}(A)).$$

Hence $A \bigcup cl^{\mu}(int^{\mu}(A))$ is supra pre-closed.

Proposition 25. Let A be a subset of a supra topological space (X, μ) . Then:

(i)
$$pcl^{\mu}(A)$$
 is supra preclosed.

(ii)
$$pcl^{\mu}(A) = A \bigcup cl^{\mu}(int^{\mu}(A)).$$

Proof. (i) By definition 2 (i) $pcl^{\mu}(A) = \bigcap (B : B \text{ is a supra pre-closed set and } A \subseteq B)$. Also by theorem 2.3(i)[10], arbitrary intersection of supra pre-closed sets is always supra pre-closed, $pcl^{\mu}(A)$ is supra preclosed.

(ii)

$$cl^{\mu}(int^{\mu}(A\bigcup cl^{\mu}(int^{\mu}(A)))) \subset A\bigcup cl^{\mu}(int^{\mu}(A))$$

as $A \bigcup cl^{\mu}(int^{\mu}(A))$ is supra pre-closed by theorem 24. Thus

$$pcl^{\mu}(A \bigcup cl^{\mu}(int^{\mu}(A))) = A \bigcup cl^{\mu}(int^{\mu}(A)).$$

Hence $pcl^{\mu}(A) \subset pcl^{\mu}(A \bigcup cl^{\mu}(int^{\mu}(A))) = A \bigcup cl^{\mu}(int^{\mu}(A))$. On the other hand $pcl^{\mu}(A)$ is supra pre-closed. Therefore

 $cl^{\mu}(int^{\mu}(A)) \subset cl^{\mu}(int^{\mu}(pcl^{\mu}(A))) \subset pcl^{\mu}(A).$

Hence $A \bigcup cl^{\mu}(int^{\mu}(A)) \subset pcl^{\mu}(A)$. That is

$$pcl^{\mu}(A) = A \bigcup cl^{\mu}(int^{\mu}(A)).$$

Lemma 26. If $A \subset Y \subset X$ and Y be supra open in (X, μ) , then $pcl_Y^{\mu}(A) = pcl_X^{\mu}(A) \cap Y$

Proof.

$$pcl_Y^{\mu}(A) = A \bigcup (cl_Y^{\mu}(int_Y^{\mu}(A))) = A \bigcup (cl_Y^{\mu}(int^{\mu}(A)))$$
$$= A \bigcup (cl^{\mu}(int^{\mu}(A)) \bigcap Y) = (A \bigcup cl^{\mu}(int^{\mu}(A))) \bigcap (A \bigcup Y) = pcl_X^{\mu}(A) \bigcap Y.$$

Lemma 27. If Y is supra open and supra pre-closed in (X, μ) , then $pcl^{\mu}_{Y}(A) = pcl^{\mu}_{X}(A)$.

Proof. By lemma 26, $pcl_{X}^{\mu}(A) = pcl_{X}^{\mu}(A) \cap Y$. Since Y is supra pre-closed, $pcl_{X}^{\mu}(A) \subseteq Y$. Therefore $pcl_{Y}^{\mu}(A) = pcl_{X}^{\mu}(A)$.

Lemma 28. In a supra topological space (X, μ) , let $A \subset X$. If A is supra open then $RO^{\mu}(A, \mu|A) = \{ V \bigcap A : V \in RO^{\mu}(X, \mu) \}.$

Proof. Let A be a supra open set in X and let $W \in RO^{\mu}(A, \mu|A)$. Then $int^{\mu}_{A}(cl^{\mu}_{A}(W)) = int^{\mu}(cl^{\mu}(W) \cap A) \cap A \subset int^{\mu}(cl^{\mu}(W)) \cap int^{\mu}(A) \cap A =$ $int^{\mu}(cl^{\mu}(W)) \cap A = V \cap A$ where $V \in RO^{\mu}(X, \mu)$.

Conversely let $V \in RO^{\mu}(X, \mu)$ and $W = V \bigcap A$. Then

$$int_{A}^{\mu}(cl_{A}^{\mu}(W)) = int^{\mu}(cl^{\mu}(W) \bigcap A) \bigcap A = int^{\mu}(cl^{\mu}(V \bigcap A) \bigcap A) \bigcap A$$
$$\subset int^{\mu}(cl^{\mu}(V) \bigcap A) \bigcap A \subset int^{\mu}(cl^{\mu}(V)) \bigcap int^{\mu}(A) \bigcap A$$
$$= int^{\mu}(cl^{\mu}(V)) \bigcap A = V \bigcap A = W$$

Therefore $W \in RO^{\mu}$ $(A, \mu|A)$.

Lemma 29. In a supra topological space (X, μ) , let $A \subset Y \subset X$. Then:

(i) if Y is supra open in (X, μ) then $A \in GPRC^{\mu}(X)$ implies $A \in GPRC^{\mu}(Y)$; and

(ii) if Y is supra open & supra pre-closed in (X, μ) then $A \in GPRC^{\mu}(Y)$ implies $A \in GPRC^{\mu}(X)$.

Proof. (i) Let A be gpr^{μ} -closed in (X, μ) . Let $A \subseteq O$ where O is supra regular open in Y. Then $O = O^* \cap Y$ where O^* is supra regular open in (X, μ) by lemma 28. That is $A \subseteq O^*$. Since $A \in GPRC^{\mu}(X), pcl_X^{\mu}$ $(A) \subseteq O^*$. Then $pcl_X^{\mu}(A) \cap Y \subseteq O^* \cap Y$. That is $pcl_Y^{\mu}(A) \subseteq O$. Hence $A \in GPRC^{\mu}(Y)$.

(ii) Let $A \in GPRC^{\mu}(Y)$. Then $A \subseteq U$ where U is supra regular open in X. Now $A = A \bigcap Y \subseteq U \bigcap Y$ where $U \bigcap Y$ is supra regular open in Y by lemma 28. By hypothesis $pcl_Y^{\mu}(A) \subseteq U \bigcap Y$. Then by lemma 27, $pcl_X^{\mu}(A) \subseteq U \bigcap Y \subseteq U$. Hence $A \in GPRC^{\mu}(X)$.

The following example shows that the assumption Y is supra open and supra pre-closed in lemma 29 (ii) cannot be removed.

Example 30. Let $X = \{a,b,c,d\}$, $Y = \{a, b, d\}$ and $\mu = \{\phi, X, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a, b,c\}\}$. Then $GPRC^{\mu}(X, \mu) = \{\phi, X, \{b\}, \{d\}, \{c,d\}, \{a,d\}, \{b,d\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}, \{b,c,d\}, \{a,c,d\}\}$ and $GPRC^{\mu}(Y, \mu|Y) = \{\phi, Y, \{a\}, \{b\}, \{d\}, \{a,b\}, \{a,d\}, \{b,d\}\}$. $\{a\} \in GPRC^{\mu}(Y, \mu|Y)$ but $\{a\}$ does belongs to $GPRC^{\mu}(X, \mu)$. Here, Y is supra pre-closed but not supra open in (X, μ) .

Corollary 31. If Y is supra open and supra pre-closed in (X, μ) then $A \in GPRC^{\mu}(X)$ iff $A \in GPRC^{\mu}(Y)$.

Proof. It follows from lemma 29 (i) and (ii).

4. gpr^{μ} -Closure and gpr^{μ} -Interior

Definition 32. Let (X, μ) be a supra topological space and $A \subset X$. Then:

(i) $gpr^{\mu} - cl(A) = \bigcap [F : A \subset F, F \text{ is } gpr^{\mu}\text{-closed set in } (X, \mu)].$

(ii) $gpr^{\mu} - int(A) = \bigcup [M : M \subset A, M \text{ is } gpr^{\mu}\text{-open set in } (X, \mu)].$

Lemma 33. Let A and B be subsets of the supra topological space (X, μ) . Then:

- (i) $gpr^{\mu} cl(\phi) = \phi$ and $gpr^{\mu} cl(X) = X$.
- (ii) $A \subset gpr^{\mu} cl(A)$.
- (iii) If B is any gpr^{μ} -closed set containing A, then $gpr^{\mu} cl(A) \subset B$.
- (iv) If $A \subset B$, then gpr^{μ} - $cl(A) \subset gpr^{\mu} cl(B)$.
- (v) $qpr^{\mu} cl(A) = qpr^{\mu} cl(qpr^{\mu} cl(A)).$

(vi)
$$gpr^{\mu} - cl(A \bigcup B) \supset gpr^{\mu} - cl(A) \bigcup gpr^{\mu} - cl(B).$$

$$(\text{vii})gpr^{\mu} - cl(A \cap B) \subset gpr^{\mu} - cl(A) \cap gpr^{\mu} - cl(B).$$

Proof. Obvious.

Remark 34. The equality does not hold in lemma 33(vi & vii) as per the following examples.

Example 35. i) Let $X = \{a,b,c,d,e\}$. Consider $\mu = \{X, \phi, \{a,b\}, \{b,c,d\}, \{a,b,c,d\}, \{a\}\}$. Consider $A = \{b\}, B = \{c,d\}$. $A \bigcup B = \{b,c,d\}$. $gpr^{\mu} - cl(A \bigcup B) = \{b,c,d,e\}$. $gpr^{\mu} - cl(A) = \{b\}, gpr^{\mu} - cl(B) = \{c,d\}.gpr^{\mu} - cl(A) \bigcup gpr^{\mu} - cl(B) = \{b,c,d\}$.

ii) Let $X = \{a, b, c, d, e\}$. Consider $\mu = \{X, \phi, \{a, b\}, \{b, c, d\}, \{a, b, c, d\}, \{a\}\}$. Consider $A = \{b, c, d\}, B = \{e, b, d\}$. $A \cap B = \{d, b\}$. $gpr^{\mu} - cl(A) = \{b, c, d, e\}$, $gpr^{\mu} - cl(B) = \{e, d, b\}$. $gpr^{\mu} - cl(A \cap B) = \{b, d\}$. $gpr^{\mu} - cl(A) \cap gpr^{\mu} - cl(B) = \{e, d, b\}$.

Lemma 36. For an $x \in X$, $x \in gpr^{\mu} - cl(A)$ iff $V \cap A \neq \phi$ for every gpr^{μ} -open set V containing x.

Proof. Necessity: Let $x \in gpr^{\mu} - cl(A)$. Suppose that there exist a gpr^{μ} -open set V containing x such that $V \bigcap A = \phi$. Since $A \subset X - V$, $gpr^{\mu} - cl(A) \subset X - V$, implies $x \notin gpr^{\mu} - cl(A)$, a contradiction. Therefore $V \bigcap A \neq \phi$ for every gpr^{μ} -open set V containing x.

Sufficiency: Let $x \notin gpr^{\mu} - cl(A)$. Then there exist a gpr^{μ} -closed subset F containing A such that $x \notin F$. Then $x \in X - F$ and X - F is gpr^{μ} -open. Also $(X - F) \bigcap A = \phi$ which is a contradiction. Hence the lemma.

Remark 37. In a supra topological space (X, μ) , if $A \subset X$ is gpr^{μ} -closed then $gpr^{\mu} - cl(A) = A$.

Proof. Obvious.

Remark 38. If $gpr^{\mu} - cl(A) = A$, then A need not be gpr^{μ} -closed in (X, μ) .

Examble 39. Let $X = \{a,b,c,d\}$. Consider $\mu = \{X, \phi, \{a\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$. $GPRC^{\mu}(X) = \{X, \phi, \{b\}, \{c\}, \{d\}, \{a,b\}, \{c,d\}, \{a,c\}, \{b,d\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{b,c,d\}, \{c,d,a\}\}$. $gpr^{\mu} - cl\{a\} = \{a,b\} \cap \{a,c\} \cap \{a,b,c\} \cap \{a,b,c\} \cap \{a,b,d\} \cap \{a,c,d\} \cap X = \{a\}$. But $\{a\}$ is not gpr^{μ} -closed.

Lemma 40. Let A and B be the subsets of the supra topological space (X, μ) . Then:

Proof. Follows from definitions.

Lemma 41. $(X - gpr^{\mu} - int(A)) = gpr^{\mu} - cl(X - A).$

Proof. Let $x \in X - (gpr^{\mu} - int(A))$. Then $x \notin gpr^{\mu} - int(A)$. That is every gpr^{μ} -open set B containing x is such that $B \not\subset A$. This implies every gpr^{μ} -open set B containing x intersects X - A. So $x \in gpr^{\mu} - cl(X - A)$. Hence $(X - gpr^{\mu} - int(A)) \subset gpr^{\mu} - cl(X - A)$.

Conversely, let $x \in gpr^{\mu} - cl(X - A)$. Then every gpr^{μ} -open set D containing x intersect X - A. That is, every gpr^{μ} -open set D containing x is such that $D \not\subset A$. This implies $x \notin gpr^{\mu} - int(A)$. Thus $gpr^{\mu} - cl(X - A) \subset X - gpr^{\mu} - int(A)$. Hence $(X - gpr^{\mu} - int(A)) = gpr^{\mu} - cl(X - A)$.

Proposition 42. If $GPRC^{\mu}(X,\mu)$ is closed under finite unions, then $gpr^{\mu} - cl(A \bigcup B) = gpr^{\mu} - cl(A) \bigcup gpr^{\mu} - cl(B).$

Proof. Let A and B be gpr^{μ} -closed in (X, μ) . Then by remark 37, $gpr^{\mu} - cl(A) = A$ and $gpr^{\mu} - cl(B) = B$. Thus $gpr^{\mu} - cl(A) \bigcup gpr^{\mu} - cl(B) = A \bigcup B$. Also by hypothesis $A \bigcup B$ is gpr^{μ} -closed. That is $gpr^{\mu} - cl(A \bigcup B) = A \bigcup B = gpr^{\mu} - cl(A) \bigcup gpr^{\mu} - cl(B)$.

Theorem 43. If $PC^{\mu}(X, \mu)$ is closed under finite unions, then $GPRC^{\mu}(X, \mu)$ is closed under finite unions.

Proof. Let $PC^{\mu}(X, \mu)$ be closed under finite unions. Let $A, B \in GPRC^{\mu}(X, \mu)$ and let $A \bigcup B \subseteq U$, where U is supra regular open in (X, μ) . Then $A \subseteq U$ and $B \subseteq U$. Hence, $pcl^{\mu}(A) \subseteq U$ and $pcl^{\mu}(B) \subseteq U$. This implies $pcl^{\mu}(A) \bigcup pcl^{\mu}(B) \subseteq U$. By hypothesis, $pcl^{\mu}(A \bigcup B) = A \bigcup B \subseteq U$. That is $pcl^{\mu}(A \bigcup B) \subseteq U$. Hence $A \bigcup B \in GPRC^{\mu}(X, \mu)$.

Corollary 44. If $PO^{\mu}(X,\mu)$ is closed under finite intersections, then $GPRO^{\mu}(X,\mu)$ is closed under finite intersections.

Proof. Let $PO^{\mu}(X,\mu)$ be closed under finite intersections. Let $A, B \in GPRO^{\mu}(X,\mu)$ and let $U \subseteq A \cap B$, where U is supra regular closed in (X,μ) . Then $U \subseteq A$ and $U \subseteq B$. Hence, $U \subseteq pint^{\mu}(A)$ and $U \subseteq pint^{\mu}(B)$. This implies $U \subseteq pint^{\mu}(A) \cap pint^{\mu}(B)$. By hypothesis, $pint^{\mu}(A \cap B) = A \cap B \supseteq U$. That is $U \subseteq pint^{\mu}(A \cap B)$. Hence $A \cap B \in GPRO^{\mu}(X,\mu)$.

Lemma 45. Let (X, μ) be a supra topological space.

(i) If $U \in X$ is supra closed and $V \in PC^{\mu}(X)$ then $U \cap V \in PC^{\mu}(X)$.

(ii) If $V \in PC^{\mu}(X)$ and $U \in SC^{\mu}(X)$ then $U \cap V \in PC^{\mu}(U)$.

Proof. (i)

$$cl^{\mu}(int^{\mu}(U \bigcap V)) \subset cl^{\mu}(int^{\mu}(U) \bigcap int^{\mu}(V)) \subset cl^{\mu}(int^{\mu}(U))$$

 $\bigcap cl^{\mu}(int^{\mu}(V)) \subset cl^{\mu}(U) \bigcap V = U \bigcap V.$

Therefore $cl^{\mu}int^{\mu}(U \cap V)) \subset U \cap V$.

(ii)

$$\begin{split} cl^{\mu}_{U}(int^{\mu}_{U}(U\bigcap V)) &= cl^{\mu}_{U}(int^{\mu}(U\bigcap V)\bigcap U) \subset cl^{\mu}_{U}(int^{\mu}(U)\bigcap int^{\mu}(V)\bigcap U) \\ &\subset cl^{\mu}_{U}(int^{\mu}(U)\bigcap int^{\mu}(V)) = cl^{\mu}(int^{\mu}(U)\bigcap int^{\mu}(V))\bigcap U \\ &\subset cl^{\mu}(int^{\mu}(U))\bigcap cl^{\mu}(int^{\mu}(V))\bigcap U \subset cl^{\mu}(int^{\mu}(cl^{\mu}(U)))\bigcap cl^{\mu}(int^{\mu}(V))\bigcap U \\ &\subset cl^{\mu}(U)\bigcap cl^{\mu}(int^{\mu}(V))\bigcap U \subset U\bigcap cl^{\mu}(int^{\mu}(V)) \subset U\bigcap V. \end{split}$$

Therefore $U \cap V \in PC^{\mu}(U)$.

Lemma 46. If $U \in PC^{\mu}(X)$ and $V \in PC^{\mu}(U)$ then $V \in PC^{\mu}(X)$ in (X, μ) .

Proof. Since $V \in PC^{\mu}(U)$, $cl_{U}^{\mu}(int_{U}^{\mu}(V)) \subseteq V$ and $cl_{U}^{\mu}(int_{U}^{\mu}(V))$ is supra closed in U, there exist an supra closed set $W \subset X$ such that $U \cap W = cl_{U}^{\mu}(int_{U}^{\mu}(V))$. This implies

$$V \supset U \bigcap W \supseteq cl^{\mu}(int^{\mu}(U)) \bigcap W \supseteq cl^{\mu}(int^{\mu}(U)) \bigcap cl^{\mu}(W)$$
$$\supseteq cl^{\mu}(int^{\mu}(U)) \bigcap cl^{\mu}(int^{\mu}(W)) \supseteq cl^{\mu}(int^{\mu}(U) \bigcap int^{\mu}(W))$$
$$\supseteq cl^{\mu}(int^{\mu}(U \bigcap W)) = cl^{\mu}(int^{\mu}(cl^{\mu}_{U}(int^{\mu}_{U}(V))))$$
$$\supset cl^{\mu}(int^{\mu}(int^{\mu}_{U}(V))) \supset cl^{\mu}(int^{\mu}(int^{\mu}(V))) = cl^{\mu}(int^{\mu}(V)).$$

Therefore $cl^{\mu}(int^{\mu}(V)) \in V$. So $V \in PC^{\mu}(X)$.

5. gpr^{μ} -Continuous Functions

Definition 47 (11). Let (X, τ) , (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f : (X, \tau) \to (Y, \sigma)$ is called gpr^{μ} -continuous if $f^{-1}(V)$ is gpr^{μ} -closed in X for every closed set V of Y.

Theorem 48. Let (X, τ) , (Y, σ) be two topological spaces and μ be an associated supra topology with τ . Let f be a map from X into Y. Then the following are equivalent:

(i) f is gpr^{μ} -continuous;

- (ii) The inverse image of every open set in Y is gpr^{μ} -open in X;
- (iii) gpr^{μ} - $cl(f^{-1}(V)) \subset f^{-1}(cl(V))$, for every $V \subset Y$;
- (iv) $f(gpr^{\mu} cl(A)) \subset cl(f(A))$ for every $A \subset X$.

Proof. (i) \iff (ii) Obviously:

(i) \Longrightarrow (iii) Since cl(V) is a closed set for every V of Y, then $f^{-1}(cl(V))$ is gpr^{μ} -closed. $f^{-1}(cl(V)) = gpr^{\mu} - cl(f^{-1}(cl(V))) \supset gpr^{\mu} - cl(f^{-1}(V))$.

(iii) \implies (iv) Let $A \subset X$ and f(A) = V. Then $gpr^{\mu} - cl(f^{-1}(V)) \subset f^{-1}(cl(V))$. Thus $gpr^{\mu} - cl(f^{-1}(f(A))) \subset f^{-1}(cl(f(A)))$. This implies $gpr^{\mu} - cl(A) \subset f^{-1}(cl(f(A)))$. Hence $f(gpr^{\mu} - cl(A)) \subset cl(f(A))$.

(iv) \Longrightarrow (i) Let $V \subset Y$ be a closed set and $U = f^{-1}(V)$. Then $f(gpr^{\mu} - cl(U)) \subset cl(f(U)) = cl(f(f^{-1}(V))) \subset cl(V) = V$. $gpr^{\mu} - cl(U) \subset f^{-1}(f(gpr^{\mu} - cl(U)) \subset f^{-1}(V) = U$. Thus U is gpr^{μ} -closed.

Theorem 49. Let (X, τ) , (Y, σ) be two topological spaces and μ be an associated supra topology with τ . Let $f : (X, \tau) \to (Y, \sigma)$ be a function. For $A \subset X$, if $gpr^{\mu} - int(A) = A$ implies that A is gpr^{μ} -open then, the following are equivalent:

- (i) f is gpr^{μ} -continuous;
- (ii) $f^{-1}(int(B)) \subset gpr^{\mu} int(f^{-1}(B))$ for every $B \subset Y$.

Proof. (i) \Longrightarrow (ii). Let $B \subset Y$. This implies $f^{-1}(int(B))$ is gpr^{μ} -open in X. Therefore $f^{-1}(int(B)) = gpr^{\mu} - int(f^{-1}(int(B))) \subset gpr^{\mu} - int(f^{-1}(B))$.

(ii) \implies (i). Let $V \subset Y$ be an open set, then $f^{-1}(V) = f^{-1}(int(V)) \subset gpr^{\mu} - int(f^{-1}(V))$. Hence $f^{-1}(V)$ is gpr^{μ} -open. Thus f is gpr^{μ} -continuous.

Theorem 50. (i) Every supra continuous function is gpr^{μ} -continuous function.

- (ii) Every supra α -continuous function is gpr^{μ} -continuous function.
- (iii) Every supra pre-continuous function is gpr^{μ} -continuous function.
- (iv) Every g^{μ} -continuous function is gpr^{μ} -continuous function.
- (v) Every gp^{μ} -continuous function is gpr^{μ} -continuous function.

Proof. Obvious.

However, the converse of the above theorems are not true as seen in the following examples.

Examble 51. (i) Let $X = \{a,b,c,d\}, \tau = \{\phi, X, \{a\},\{a,b\}\}, \mu = \{\phi, X, \{a\},\{a,b\},\{b,c,d\}\}$ and $\sigma = \{\phi, X, \{a\},\{a,b,c\}\}$. Define $f : (X, \tau) \to (X, \sigma)$ by $f(a) = b, f(b) = c, f(c) = d, f(d) = a. f^{-1}(b, c, d) = \{a, b, c\}$ is not supra closed in X. Therefore the function is not supra continuous but gpr^{μ} -continuous.

(ii) Let $X = \{a,b,c\}, \tau = \{\phi, X, \{a,b\}\}, \mu = \{\phi, X, \{a,b\}, \{a,c\}\}$ and $\sigma = \{\phi, X, \{a\}\}$. Define $f : (X, \tau) \to (X, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. $f^{-1}(b,c) = \{a, b\}$ is not supra pre-closed. Therefore the function is not supra pre-continuous but gpr^{μ} -continuous.

(iii) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{b, c\}\}, \mu = \{\phi, X, \{a, c\}, \{b, c\}\}$ and $\sigma = \{\phi, X, \{a\}\}$. Define $g : (X, \tau) \to (X, \sigma)$ by $g(a) = b, g(b) = a, g(c) = c, g^{-1}(b,c) = \{a, c\}$ is not supra α -closed, therefore the given function is not supra α -continuous but gpr^{μ} -continuous.

(iv)Let $X = \{a, b, c\}, \tau = \{\phi, X, \{b, c\}\}, \mu = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $\sigma = \{\phi, X, \{a\}\}$. Define $f : (X, \tau) \to (X, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. $f^{-1}(b, c) = (a, b)$ is not gp^{μ} -closed, therefore the function is not gp^{μ} -continuous but gpr^{μ} -continuous.

(v) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, \mu = \{\phi, X, \{a\}, \{a,b\}, \{a,c\}, \{b,c\}\}, \sigma = \{\phi, X, \{a\}\}$. Define $f : (X, \tau) \to (X, \sigma)$ by f (a) = b, f (b) = c, f (c) = a. f^{-1} (b,c) =(a,b) is not g^{μ} -closed, therefore the function is not g^{μ} -continuous but gpr^{μ} -continuous.

Theorem 52. (i) Every continuous function is gpr^{μ} -continuous.

(ii) If a function $f: (X, \tau) \to (Y, \sigma)$ is gpr^{μ} -continuous and $g: (Y, \sigma) \to (Z, \eta)$ is continuous then g of is gpr^{μ} -continuous.

(iii) Every gpr^{μ} -continuous function defined on a supra pre-regular $T_{1/2}$ space is supra pre-continuous.

Proof. (i) Let $f : (X, \tau) \to (Y, \sigma)$ be a continuous function and A be an open set in Y. Then $f^{-1}(A)$ is an open set in X. Since μ is an associated supra topology with τ , then $\tau \subset \mu$. Therefore $f^{-1}(A)$ is a supra open set in X which is a gpr^{μ} -open set in X. Hence f is gpr^{μ} -continuous function.

(ii) Let V be closed set in (Z, η) . Since $g : (Y, \sigma) \to (Z, \eta)$ is a continuous function, $g^{-1}(V)$ is closed in (Y, σ) . Also gpr^{μ} -continuity of f implies that

 $f^{-1}(g^{-1}(V))$ is gpr^{μ} -closed in X. That is $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is gpr^{μ} -closed in X. Hence gof is gpr^{μ} -continuous.

(iii) Let $f : (X, \tau) \to (Y, \sigma)$ be gpr^{μ} -continuous function. Then $f^{-1}(V)$ is gpr^{μ} -closed in X for every closed set V of Y. Since X is supra pre-regular $T_{1/2}$ space, every gpr^{μ} -closed set is supra pre-closed. Hence $f^{-1}(V)$ is supra pre-closed in X for every closed set V in Y. Hence f is supra pre-continuous. \Box

Theorem 53. Consider the map $f : (X, \tau) \to (Y, \sigma)$. If for each $x \in X$ and each open set V containing f(x) there exist a gpr^{μ} -open set U containing x such that $f(U) \subset V$, then $f(gpr^{\mu} - cl(A)) \subset cl(f(A))$ for every subset A of X and hence f is gpr^{μ} -continuous by theorem 48.

Proof. Let $y \in f(gpr^{\mu} - cl(A))$. Let V be an open set containing y. Then by hypothesis, there exist an $x \in X$ such that f(x) = y and a gpr^{μ} -open set U containing x such that $f(U) \subset V$ and $x \in gpr^{\mu} - cl(A)$. Therefore, by lemma 36, $U \bigcap A \neq \phi$. Then $f(U \bigcap A) \neq \phi$. Thus $V \bigcap f(A) \neq \phi$. Hence, $y \in cl(f(A))$. \Box

Theorem 54. (i) If $f : X \to Y$ is supra pre-continuous and $U \subset X$ is supra closed, then the restriction $f|U: U \to Y$ is gpr^{μ} -continuous.

(ii) If $f : X \to Y$ is supra pre-continuous and $U \in SC^{\mu}(X)$, then the restriction $f|U: U \to Y$ is gpr^{μ} -continuous.

Proof. (i) Let $V \subset Y$ be a closed set. Then $f^{-1}(V) \in PC^{\mu}(X)$. Since $U \subset X$ is supra closed, by lemma 45 (i), $f^{-1}(V) \cap U = (f|U)^{-1}(V) \in PC^{\mu}(X)$. Hence f|U is supra pre-continuous. That is f|U is gpr^{μ} -continuous.

(ii) Let $V \subset Y$ be a closed set. Then $f^{-1}(V) \in PC^{\mu}(X)$. Since $U \in SC^{\mu}(X)$, by lemma 45 (ii), $f^{-1}(V) \cap U = (f|U)^{-1}(V) \in PC^{\mu}(U)$. Hence f|U is supra pre-continuous. That is f|U is gpr^{μ} -continuous.

References

- I. Arockiarani and M. Trinita Pricilla, On generalized b-regular closed sets in supra topological spaces, Asian Journal of Current Engineering and Maths, 1(1) (2012), 1-4.
- [2] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem Fac. Sci. Kochi Univ. Ser A. Math, 12 (1991), 5-13.
- [3] Y. Gnanambal and K. Balachandran, On gpr-continuous functions in topological spaces, Indian J. Pure Appl Math, 30(6) (1999), 581-593.
- [4] Kangweon-Kyungki, The generalized open sets on supra topology, Math. Jour, 10(1) (2002), 25-28.

- [5] N. Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palermo*, **19** (1970), 89-96.
- [6] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T_{1/2}, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 17 (1996), 33-42.
- [7] A. S. Mashour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supra topological spaces, *Indian J. Pure and Appl. Math*, **14(4)** (1983), 502-510.
- [8] O. Ravi, G. Ramkumar and M. Kamaraj, On supra g-closed sets, International Journal of Advances in Pure and Applied Mathematics, 1 (2011), 52-66.
- [9] O. Ravi, G. Ramkumar and M. Kamaraj, Two classes of supra generalized closed sets, Global Journal of Advances in Pure and Applied Mathematics, 1 (2012), 24-33.
- [10] O. R. Sayed, Supra pre-open sets and supra pre continuity on topological spaces, Scientific Studies and Research, Series Mathematics and Informatics, 20(2) (2010), 79-88.
- [11] Vidhya Menon, On generalized preregular closed sets in supra topological spaces, International Journal of Scientific & Engineering Research, 3(11) (2012), 2229-5518.