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SOFT TOPOLOGY AND SOFT PROXIMITY AS FUZZY

PREDICATES BY FORMULAE OF  LUKASIEWICZ LOGIC

O. R. SAYED AND R. A. BORZOOEI

This paper is dedicated to Professor L. A. Zadeh on the occasion of his 95th birthday
and the 50th year of the birth of fuzzy logic

Abstract. In this paper, based in the  Lukasiewicz logic, the definition of

fuzzifying soft neighborhood structure and fuzzifying soft continuity are intro-

duced. Also, the fuzzifying soft proximity spaces which are a generalizations
of the classical soft proximity spaces are given. Several theorems on classical

soft proximities are special cases of the theorems we prove in this paper.

1. Introduction

Many disciplines, including engineering, medicine, economics, and sociology, are
highly dependent on the task of modeling uncertain data. When the uncertainty is
highly complicated and difficult to characterize, classical mathematical approaches
are often insufficient to derive effective or useful models. Testifying to the im-
portance of uncertainties that cannot be defined by classical means, researchers
are introducing alternative theories every day. In addition to classical probability
theory, some of the most important results on this topic are fuzzy sets [23], intu-
itionistic fuzzy sets [3, 4], vague sets [6], interval mathematics [4, 7], and rough sets
[12]. However, all of these new theories have inherent difficulties which are pointed
out in [11]. A possible reason is that these theories possess inadequate parame-
terizations tools [10-11]. Molodtsov [11] introduced soft sets as a mathematical
tool for dealing with uncertainties which is free from the above difficulties. Soft
set theory has rich potential for practical applications in several domains, a few of
which are indicated by Molodtsov in his pioneer work [11]. Maji et al. [9] described
an application of soft set theory to a decision-making problem. Pei and Miao [13]
investigated the relationships between soft sets and information systems. In 2001,
Maji et al. [8] expanded the soft set to fuzzy soft set theory. To continue the inves-
tigation on fuzzy soft sets, Ahmad and Kharal [1] presented some more properties
of fuzzy soft sets. Yang et al.[20] combined the interval-valued fuzzy set and soft
set models and introduced the concept of interval-valued fuzzy soft set. Algebraic
structures of soft sets and fuzzy soft sets have been studied increasingly in recent
years.In[2] introduced fuzzy soft groups by using a t-norm. Feng [5] defined soft
semirings and investigated several related properties. Varol et al. [19] studied fuzzy
soft rings. Topological structures of soft set and fuzzy soft set have been studied
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by some authors in recent years. Shabir and Naz [15] introduced the notion of
soft topological spaces which are defined over an initial universe with a fixed set of
parameters. In [24], Zorlutuna et al. introduced some other new concepts in soft
topological spaces. The soft topological structures of soft set theories dealing with
uncertainties were studied by Tanay and Kandemir [16]. In [17] Fuzzy soft topology
was studied. As a different approach to soft topology Varol et al. [19] interpreted
categories related to categories of topological spaces as special categories of soft
sets. In [18] the authors considered the soft interpretation of topological spaces.
They defined soft topology and L-fuzzy soft topology, which are mappings from

the parameter set E to 22X and from E to LL
X

respectively (where L is a fuzzy
lattice). Based on paper [24], in paper [22], the authors introduced the definitions
of L-fuzzifying soft topological spaces and L-fuzzifying soft interior spaces .
In 1952, Rosser and Turquette [14] proposed emphatically the following problem: If
there are many-valued theories beyond the level of predicates calculus, then what
are the detail of such theories ? As an attempt to give a partial answer to this
problem in the case of point set soft topology, we use a semantical method of
continuous-valued logic to develop systematically fuzzifying soft topology. Briefly
speaking, a fuzzifying soft topology on a set X assigns each crisp soft subset of X
to a certain degree of being soft open, other than being definitely soft open or not.
Roughly speaking, the semantical analysis approach transforms formal statements
of interest, which are usually expressed as implication formulas in logical language,
into some inequalities in the truth value set by truth valuation rules, and then
these inequalities are demonstrated in an algebraic way and the semantic validity
of conclusions is thus established. In this paper, based in the  Lukasiewicz logic, the
definition of fuzzifying soft neighborhood structure and fuzzifying soft continuity
are introduced. Also, the fuzzifying soft proximity spaces which are a generaliza-
tions of the classical soft proximity spaces are given. Several theorems on classical
soft proximities are special cases of the theorems we prove in this paper.

2. Preliminaries

First, we display the  Lukasiewicz logic and corresponding set theoretical nota-
tions used in this paper in the following definition (see [21]).

Definition 2.1. For any formula ϕ, the symbol [ϕ] means the truth value of ϕ,
where the set of truth values is the unit interval [0, 1]. We write � ϕ if [ϕ] = 1
for any interpretation. The original formulae of fuzzy logical and corresponding set
theoretical notations are:

(1) (a) [α] = α(α ∈ [0, 1]);
(b) [ϕ ∧ ψ] = min([ϕ], [ψ]);
(c) [ϕ→ ψ] = min(1, 1− [ϕ] + [ψ]);

(2) If Ã ∈ =(X), [x ∈ Ã] := Ã(x).

(3) If X is the universe of discourse, then [∀xϕ(x)] := inf
x∈X

[ϕ(x)].

In addition the following derived formulae are given,
(1) [¬ϕ] := [ϕ→ 0] = 1− [ϕ];
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(2) [ϕ ∨ ψ] := [¬(¬ϕ ∧ ¬ψ)] = max([ϕ], [ψ]);
(3) [ϕ↔ ψ] := [(ϕ→ ψ) ∧ (ψ → ϕ)];
(5) [∃xϕ(x)] := [¬∀x¬ϕ(x)] := sup

x∈X
[ϕ(x)];

(6) If Ã, B̃ ∈ =(X), then

(a) [Ã ⊆ B̃] := [∀x(x ∈ Ã→ x ∈ B̃)] = inf
x∈X

min(1, 1− Ã(x) + B̃(x)),

(b) [Ã ≡ B̃] := [Ã ⊆ B̃] ∧ [B̃ ⊆ Ã].
where F(X ) is the family of all fuzzy sets in X.

Often we do not distinguish the connectives and their truth value functions
and state strictly our results on formalization as Ying did.

Second we give some basic concepts related to soft sets, soft topology, L-fuzzifying
soft topology.

Definition 2.2. [11] (1) A soft set on an universe X is a pair (M,E) (here E is
a nonempty parameter set), and M : E → 2X (the set of all subset of X) is a
mapping. The set of all soft sets on X is denoted by S(X,E).
(2) For two given subsets (M,E), (N,E) ∈ S(X,E), we say that (M,E) is a soft
subset of (N,E), denoted by (M,E) v (N,E), if for all e ∈ E, M(e) ⊆ N(e).
If (M,E) v (N,E) and (M,E) w (N,E), we say (M,E) and (N,E) be soft equal.
We denote it by (M,E) = (N,E).

Definition 2.3. [10] The union of two soft sets (F,A)and (G,B) on X is the soft
set (H,C), where

C = A ∪B and H(e) =

 F (e)
G(e)

F (e) ∪G(e)

e ∈ A\B
e ∈ B\A
e ∈ A ∩B

(∀e ∈ C)

We write (F,A) t (G,B) = (H,C).

Definition 2.4. [15] The intersection of two soft sets (F,A)and (G,B) on X is
the soft set (H,C), where C = A ∩B and H(e) = F (e) ∩G(e) (∀e ∈ C). We write
(F,A) u (G,B) = (H,C).

Definition 2.5. [15] (1) For each A ∈ 2X , (Ã, E) ∈ S(X,E) is defined by Ã(e) = A

for each e ∈ E;we identify {̃x} with x̃ for each x ∈ X. For each (M,E) ∈ S(X,E),
(M c, E) ∈ S(X,E) is defined by M c(e) = X\M(e)(∀e ∈ E); sometimes we use

(M,E)c (resp. Ã) to replace (M c, E) (resp. (Ã, E)).
(2) For a given subset {(Hλ, E)}λ∈Λ ⊆ S(X,E), we call members (M,E) = tλ∈Λ(Hλ, E)

and (N,E) = uλ∈Λ(Hλ, E) of S(X,E) union and intersection of the family {(Hλ, E)}λ∈Λ,
respectively, which are defined by M(e) = ∪λ∈ΛHλ(e) (∀e ∈ E) and N(e) =
∩λ∈ΛHλ(e)(∀e ∈ E).

(3) For two given subsets (M,E), (N,E) ∈ S(X,E), then
(i) ((M,E) t (N,E))c = (M,E)cu (N,E)c.;
(ii) ((M,E) u (N,E))c = (M,E)ct (N,E)c.

Definition 2.6. [19] Defined soft function (f, g) : S(X,E)→ S(Y,F) by

(f, g)(M,E) = (−→g (M), f(E))
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for each (M,E) ∈ S(X,E) and

(f, g)−1(N,F ) = (←−g ◦N ◦ f, f−1(F ))

for each (N,F ) ∈ S(Y,F), where for every α ∈ f(E) and for every e ∈ f−1(F ) we
have

−→g (M)(α) = ∪
f(e)=α

g(M(e)), (←−g ◦N ◦ f)(e) =←−g (N(f(e)))

f(E) is the image of E in the category SET, f−1(F ) is the preimage of F in the
category SET. −→g (M) is defined by the Zadeh extension principle, ←−g (M) is the
backward operator induced by the mapping g : X → Y .

Definition 2.7. [24] (1) The soft set (M,E) ∈ S(X,E) is called a soft point in
X, denoted by eM , if for the element e ∈ E,M(e) 6= φ and M(e◦) = φ for all
e◦ ∈ E\{e}.
(2) The soft point eM is said to be in the soft set (N,E), for each e ∈ E, denoted
by eM ∈̃(N,E),we have M(e) ⊆ N(e).

(3) Let eM ∈ SP(X)and (N,E) ∈ S(X,E). If eM ∈̃(N,E), then eM /̃∈(N,E)c.

More Knowledge about the soft point can be founded in [24]. SP(X) denoted
the set of all soft points in X. Obviously, if eM ∈̃SP(X), then (idE , g)(eM )∈̃SP(Y).

3. Fuzzifying Soft Topologies

In this section, we use the semantics of fuzzy logic to investigate soft topology,
and to propose a soft topology whose logical fundament is fuzzy. Also, we dis-
cuss the soft neighborhood structures of a soft point and soft continuity in this
framework.

Definition 3.1. Let X be a universe of discourse, τ̃ ∈ =(S(X,E)) satisfy the
following conditions:

(1) |= φ̃ ∈ τ̃ and |= X̃ ∈ τ̃ ;
(2) ∀(M,E), (N,E) ∈ S(X,E), |= (M,E) ∈ τ̃ ∧ (N,E) ∈ τ̃ → (M,E)u (N,E) ∈ τ̃ ;
(3) ∀{(Fλ, E)}λ∈Λ ⊆ S(X,E), |= ∀λ(λ ∈ Λ→ (Fλ, E) ∈ τ̃)→ t

λ∈Λ
(Fλ, E) ∈ τ̃ .

Then τ̃ is called a soft fuzzifying topology and the triple (X, τ̃ , E) is called a
fuzzifying soft topological space. τ̃(M,E) can be interpreted as the degree to
which (M,E) is a soft open set. If (X, τ) is a soft topological space over X, define
χτ ∈ =(S(X,E)) as follows: χτ (M,E) = 1, if (M,E) ∈ τ ; if not, χτ (M,E) = 0.
Obviously, χτ is a special fuzzifying soft topology.

Remark 3.2. The conditions in Definition 3.1, may be rewritten respectively as
follows:
(1) τ̃(φ̃) = τ̃(X̃) = 1;
(2) ∀(M,E), (N,E) ∈ S(X,E), τ̃((M,E) u (N,E)) ≥ τ̃(M,E) ∧ τ̃(N,E));
(3) ∀{(Fλ, E)}λ∈Λ ⊆ S(X,E), τ̃( t

λ∈Λ
(Fλ, E)) ≥

∧
λ∈Λ

τ̃(Fλ, E).

Definition 3.3. The family of fuzzifying soft closed sets is denoted by z̃ ∈ =(S(X,E)),

and defined as (M,E) ∈ z̃ := (M,E)c ∈ τ̃ , i.e., z̃(M,E) = τ̃(M,E)c.
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Theorem 3.4. (1) |= φ̃ ∈ z̃ and |= X̃ ∈ z̃;
(2) ∀(M,E), (N,E) ∈ S(X,E), |= (M,E) ∈ z̃∧(N,E) ∈ z̃→ (M,E)t(N,E) ∈ z̃;
(3) ∀{(Fλ, E)}λ∈Λ ⊆ S(X,E), |= ∀λ(λ ∈ Λ→ (Fλ, E) ∈ τ̃)→ u

λ∈Λ
(Fλ, E) ∈ z̃.

Definition 3.5. Let eM ∈ SP(X). The fuzzifying soft neighborhood system of eM
is denoted by SNeM ∈ =(S(X,E)) and defined as SNeM (F,E) =

∨
eM ∈̃(G,E)v(F,E)

τ̃(G,E).

Lemma 3.6.
∧

eM ∈̃(F,E)

∨
eM ∈̃(F,E)v(G,E)

τ̃(G,E) = τ̃(F,E).

Proof. First, we have
∧

eM ∈̃(F,E)

∨
eM ∈̃(F,E)v(G,E)

τ̃(G,E) ≥ τ̃(F,E).

In the other hand, let βeM = {(G,E) : eM ∈̃(F,E) v (G,E)}. Then, for any
f ∈

∏
eM ∈̃(F,E)

βeM , we have
⊔

eM ∈̃(F,E)

f(eM ) = (F,E). Furthermore

∧
eM ∈̃(F,E)

τ̃(f(eM )) ≤ τ̃

 ⊔
eM ∈̃(F,E)

f(eM )

 = τ̃(F,E)

τ̃(F,E) ≥
∨

f∈
∏

eM ∈̃(F,E)

βeM

∧
eM ∈̃(F,E)

τ̃(f(eM )) =
∧

eM ∈̃(F,E)

∨
eM ∈̃(F,E)v(G,E)

τ̃(G,E)

�
Theorem 3.7. For any eM , (F,E),

|= (F,E) ∈ τ̃ ↔ ∀eM (eM ∈̃(F,E)→ ∃(G,E) (((G,E) ∈ SNeM ) ∧ ((G,E) v (F,E))) .

Proof.

[∀eM (eM ∈̃(F,E) → ∃(G,E) (((G,E) ∈ SNeM ) ∧ ((G,E) v (F,E)))]

=
∧

eM ∈̃(F,E)

∨
(F,E)v(G,E)

SNeM (G,E)

=
∧

eM ∈̃(F,E)

∨
(F,E)v(G,E)

∨
eM ∈̃(H,E)v(G,E)

τ̃(H,E)

=
∧

eM ∈̃(F,E)

∨
eM ∈̃(H,E)v(F,E)

τ̃(H,E)

= τ̃(F,E).

�
Theorem 3.8. The mapping SN : SP(X)→=N (S(X,E)),eM 7→ SNeM , where
=N (S(X,E)) is the set of all normal fuzzy soft subset of S(X,E), has the following
properties:

(1) for any eM , (F,E),

|= (F,E) ∈ SNeM → eM ∈̃(F,E)

(2) for any eM , (F,E), (G,E),

|= ((F,E) v (G,E))→ ((F,E) ∈ SNeM → (G,E) ∈ SNeM )
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(3) for any eM , (F,E), (G,E),

|= ((F,E) ∈ SNeM ) ∧ ((G,E) ∈ SNeM )→ (F,E) u (G,E) ∈ SNeM

(4) for any eM , (F,E),

|= ((F,E) ∈ SNeM )→ ∃(G,E)((G,E) ∈ SNeM ) ∧ ((G,E) v (F,E)) ∧ ∀eN (eN ∈̃(G,E)→ (G,E) ∈ SNeN ))

Conversely, if a mapping SN satisfies (2), (3), then τ̃ is a fuzzifying soft topology
which is defined as

(F,E) ∈ τ̃ := ∀eM (eM ∈̃(F,E)→ (F,E) ∈ SNeM )

Specially, if it satisfies (1), (4) also, then for any eM ∈ SP(X), SNeM is the
fuzzifying soft neighborhood system of eM with respect to τ̃ .

Proof. (A) (1) If [(F,E) ∈ SNeM ] =
∨

eM ∈̃(G,E)v(F,E)

τ̃(G,E) > 0, then there exists

(G◦, E) such that eM ∈̃(G◦, E) v (F,E). Now, we have [eM ∈̃(F,E)] = 1. Therefore
[(F,E) ∈ SNeM ] ≤ [eM ∈̃(F,E)] holds always.

(2) If [(F,E) v (G,E)] = 0, then the result holds. Now, suppose that [(F,E) v
(G,E)] = 1. Therefore

[(F,E) ∈ SNeM ] =
∨

eM ∈̃(H,E)v(F,E)

τ̃(H,E) ≤
∨

eM ∈̃(H,E)v(G,E)

τ̃(H,E) = [(G,E) ∈ SNeM ]

(3)

[(F,E) u (G,E) ∈ SNeM ] =
∨

eM ∈̃(H,E)v(F,E)u(G,E)

τ̃(H,E)

=
∨

eM ∈̃(H1,E)v(F,E),eM ∈̃(H2,E)v(G,E)

τ̃((H1, E) u (H2, E))

≥
∨

eM ∈̃(H1,Ev(F,E),eM ∈̃(H2,E)v(G,E)

(τ̃(H1, E) ∧ τ̃(H2, E))

=

 ∨
eM ∈̃(H1,E)v(F,E)

τ̃(H1, E)

 ∧
 ∨
eM ∈̃(H2,E)v(G,E)

τ̃(H2, E)


= [((F,E) ∈ SNeM ) ∧ ((G,E) ∈ SNeM )].

(4) From Lemma 3.6, we have∧
eN ∈̃(G,E)

SNeN (G,E) =
∧

eN ∈̃(G,E)

∨
eN ∈̃(H,E)v(G,E)

τ̃(H,E) = τ̃(G,E)

Therefore

[∃(G,E) ( (G,E) ∈ SNeM ∧ (G,E) v (F,E)) ∧ ∀eN (eN ∈̃(G,E)→ (G,E) ∈ SNeN ))]

=
∨

(G,E)v(F,E)

SNeM (G,E) ∧
∧

eN ∈̃(G,E)

SNeN (G,E)


=

∨
(G,E)v(F,E)

(SNeM (G,E) ∧ τ̃(G,E))

=
∨

(G,E)v(F,E)

τ̃(G,E) ≥
∨

eM ∈̃(G,E)v(F,E)

τ̃(G,E)

= SNeM ((F,E)).
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(B) Conversely, τ̃(F,E) =
∧

eM ∈̃(F,E)

SNeM (F,E).

(1) Clearly, τ̃
(
φ̃
)

= 1. For any eM ∈̃SP(X), there exists (F◦, E) such that SNeM (F◦, E) =

1 because SNeM is soft normal. From the second condition, we have SNeM (X̃) = 1.

Hence, τ̃(X̃) =
∧

eM ∈̃X̃
SNeM (X̃) = 1.

(2)

τ̃((F,E) u (G,E)) =
∧

eM ∈̃(F,E)u(G,E)

SNeM ((F,E) u (G,E))

≥
∧

eM ∈̃(F,E)u(G,E)

(SNeM (F,E) ∧ SNeM (G,E))

=
∧

eM ∈̃(F,E)u(G,E)

SNeM (F,E) ∧
∧

eM ∈̃(F,E)u(G,E)

SNeM (G,E)

≥
∧

eM ∈̃(F,E)

SNeM (F,E) ∧
∧

eM ∈̃((G,E)

SNeM (G,E)

= τ̃(F,E) ∧ τ̃(G,E).

(3)

τ̃

(
t
λ∈Λ

(Fλ, E)

)
=

∧
eM ∈̃ t

λ∈Λ
(Fλ,E)

SNeM

(
t
λ∈Λ

(Fλ, E)

)

=
∧
λ∈Λ

∧
eM ∈̃(Fλ,E)

SNeM

(
t
λ∈Λ

(Fλ, E)

)
≥

∧
λ∈Λ

∧
eM ∈̃(Fλ,E)

SNeM (Fλ, E)

=
∧
λ∈Λ

τ̃(Fλ, E).

(4) From the fourth condition, we have

SNeM (F,E) ≤
∨

(G,E)v(F,E)

SNeM (G,E) ∧
∧

eN ∈̃(G,E)

SNeN (G,E)

 ,

and from the first condition, we have SNeM (G,E) = 0, for any eN /̃∈(G,E). Conse-
quently,

SNeM (F,E) ≤
∨

eM ∈̃(G,E)v(F,E)

SNeM (G,E) ∧
∧

eN ∈̃(G,E)

SNeN (G,E)


≤

∨
eM ∈̃(G,E)v(F,E)

∧
eN ∈̃(G,E)

SNeN (G,E)

=
∨

eM ∈̃(H,E)v(F,E)

τ̃(H,E).

On the other hand, if eM ∈̃(H,E) v (F,E), then∧
eN ∈̃(H,E)

SNeN (H,E) ≤ SNeN (H,E) ≤ SNeN (F,E)
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Now, we know that∨
eM ∈̃(H,E)v(F,E)

τ̃(H,E) =
∨

eM ∈̃(H,E)v(F,E)

∧
eN ∈̃(H,E)

SNeN (H,E) ≤ SNeM (F,E)

�
Definition 3.9. Let (X, τ̃ , E), (Y, σ̃, F ) be two fuzzifying soft topological spaces
and f : (X, τ̃ , E)→ (Y, σ̃, F ) be a mapping. For any eM ∈ SP(X),
(1) f is said to be a fuzzifying soft continuous at eM , if

|= (G,E) ∈ SN σ̃
f(eM ) → f−1(G,E) ∈ SN τ̃

eM

(2) f is called fuzzifying soft continuous if it is fuzzifying soft continuous at every
point eM ∈ SP(X).

Theorem 3.10. A mapping f : (X, τ̃ , E)→ (Y, σ̃, F ) is fuzzifying soft continuous
if and only if |= (G,E) ∈ σ̃ → f−1(G,E) ∈ τ̃ .

Proof. If f is a fuzzifying soft continuous, then

τ̃
(
f−1(G,E)

)
=

∧
eM ∈̃f−1(G,E)

SNeM (f−1(G,E)) ≥
∧

eM ∈̃f−1(G,E)

SNf(eM )(G,E)

≥
∧

eN ∈̃(G,E)

SNeN (G,E) = σ̃(G,E)

Conversely, assume that the condition is satisfied. Then

SNeM (f−1(G,E)) =
∨

eM ∈̃(H,E)vf−1(G,E)

τ̃(H,E) ≥
∨

f(eM )∈̃(F,E)v(G,E)

τ̃(f−1(F,E))

≥
∨

f(eM )∈̃(F,E)v(G,E)

σ̃(F,E) = SNf(eM )(G,E)

which completes the proof. �

As a direct consequence of the definitions, we have the following

Theorem 3.11. Let (X, τ̃ , E), (Y, σ̃, F ), (Z, θ̃, G) be three fuzzifying soft topologi-

cal spaces and f : (X, τ̃ , E)→ (Y, σ̃, F ) and g : (Y, σ̃, F )→ (Z, θ̃, G) be a mapping.
For any eM ∈ SP(X),
(1)If f is fuzzifying soft continuous at eM and g is fuzzifying soft continuous at
f(eM ), then the composition h = g ◦ f is fuzzifying soft continuous at eM .
(2) If f, g are fuzzifying soft continuous, then h = g ◦f is fuzzifying soft continuous.

4. Fuzzifying Soft Proximities

Definition 4.1. Let X be a universe of discourse, δ̃ ∈ =(S(X,E)× S(X,E)), i.e.,

δ̃ : S(X,E)× S(X,E)→I satisfies the following conditions:
(δ̃1) |= (F,E) u (G,E) 6= φ̃→ ((F,E), (G,E)) ∈ δ̃;
(δ̃2) |= ¬

(
(F,E), φ̃

)
∈ δ̃, |= ¬

(
φ̃, (F,E)

)
∈ δ̃;

(δ̃3) |= ((F,E) t (G,E), (H,E)) ∈ δ̃ → ((F,E), (H,E)) ∈ δ̃∨ ((G,E), (H,E)) ∈ δ̃
and
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|= ((F,E), (G,E) t (H,E)) ∈ δ̃ → ((F,E), (G,E)) ∈ δ̃∨ ((F,E), (H,E)) ∈ δ̃.
(δ̃4) For every (F,E), (G,E) ∈ S(X,E) there exists (H,E) ∈ S(X,E),

|= ((F,E), (G,E)) ∈ δ̃ ←→
(

((F,E), (H,E)) ∈ δ̃ ∨ ((H,E)c, (G,E)) ∈ δ̃
)

Then δ̃ is called a fuzzifying soft quasi-proximity on X and (X, δ̃) is called a
fuzzifying soft quasi-proximity space.

A fuzzifying soft proximity is a fuzzifying soft quasi-proximity δ̃ which satisfies also

(δ̃5) |= ((F,E), (G,E)) ∈ δ̃ → ((G,E), (F,E)) ∈ δ̃

Theorem 4.2. Let δ̃ be a fuzzifying soft quasi-proximity on a set X and define
τ̃δ̃ ∈ =(S(X,E)) as follows:

(F,E)) ∈ τ̃δ̃ := ∀eM (({eM}, (F c, E)) ∈ δ̃ → eM /̃∈(F,E)).

Then:
(1) τ̃δ̃ is a fuzzifying soft topology on X.

(2) SN
τ̃
δ̃
eM ((F,E)) = 1− δ̃({eM}, (F c, E)).

Proof. (1) Clearly, τ̃δ̃(φ̃) = τ̃δ̃(X̃) = 1. Also, ∀(M,E), (N,E) ∈ S(X,E),

τ̃
δ̃
((M,E) u (N,E)) =

∧
eM ∈̃(M,E)u(N,E)

(
1− δ̃({eM}, (Mc, E) t (Nc, E))

)
≥

∧
eM ∈̃(M,E)u(N,E)

((
1− δ̃({eM}, (Mc, E))

)
∧
(

1− δ̃({eM}, (Nc, E))
))

≥ τ̃
δ̃
(M,E) ∧ τ̃

δ̃
(N,E)

Analogously we have that ∀{(Fλ, E)}λ∈Λ ⊆ S(X,E), τ̃δ̃(
⊔
λ∈Λ

(Fλ, E)) ≥
∧
λ∈Λ

τ̃δ̃(Fλ, E).

(2) If eM ∈̃(G,E) v (F,E), then τ̃δ̃(G,E) ≤ 1− δ̃({eM}, (Gc, E)) ≤ 1− δ̃({eM}, (F c, E))

and hence SN
τ̃
δ̃
eM ((F,E)) ≤ 1 − δ̃({eM}, (F c, E)). On the other hand, let 1 −

δ̃({eM}, (F c, E)) > ε > 0, i.e., δ̃({eM}, (F c, E)) < 1 − ε. Let (H,E) = {eN :

δ̃({eN}, (F c, E)) < 1 − ε}. Then eM ∈̃(H,E) v (F,E). For each eH ∈̃(H,E), there

exists (H◦, E) ∈ S(X,E) such that δ̃({eH}, (Hc
◦, E)) ∨ δ̃((H◦, E), (F c, E)) < 1− ε.

Clearly, (H◦, E) v (H,E). Also, for each eH ∈ SP(X), we have eH ∈̃(H◦, E) since

δ̃({eH}, (H◦, E)) < 1. Thus (H,E) = t
eH ∈̃(H,E)

(H◦, E). For eH ∈̃(H,E), we have

δ̃({eH}, (Hc, E)) ≤ δ̃({eH}, (Hc
◦, E)) < 1− ε and hence

τ̃δ̃(H,E) =
∧

eH ∈̃(H,E)

(
1− δ̃({eH}, (Hc, E))

)
≥ ε

which implies that SN
τ̃
δ̃
eM ((F,E)) ≥ τ̃δ̃(H,E) ≥ ε. This proves that SN

τ̃
δ̃
eM ((F,E)) ≥

1− δ̃({eM}, (F c, E)) and hence (2) follows. �

If δ̃ is a fuzzifying soft quasi-proximity on a set X, we will refer to τ̃δ̃ as the

fuzzifying soft topology corresponding to δ̃.

Definition 4.3. A fuzzifying soft quasi-proximity δ̃1 on a set X is said to be finer

than another one δ̃2 if |= ((F,E), (G,E)) ∈ δ̃1 → ((F,E), (G,E)) ∈ δ̃2 for all
(F,E), (G,E) ∈ S(X,E).
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Theorem 4.4. Let δ̃1, δ̃2 be two fuzzifying soft quasi-proximities on a set X. If δ̃1
is finer than δ̃2, then τ̃δ̃1 is finer than τ̃δ̃2 .

Proof. It is direct consequence of (2) in Theorem 4.2. �

Theorem 4.5. Let τ̃ be a fuzzifying soft topology on X and define the mapping

δ̃ : S(X,E)× S(X,E)→I as follows:

δ̃((F,E), (G,E)) = 1−

 ∨
(F,E)v(H,E)v(G,E)c

τ̃((H,E))

 ,

Then δ̃ is a fuzzifying soft quasi-proximity on X and |= τ̃δ̃ ≡ τ̃ .

Proof. It is clear that δ̃((F,E), (G,E)) = 1 if (F,E) u (G,E) 6= φ̃ and that

δ̃(φ̃, (G,E)) = δ̃((F,E), φ̃) = 0. Let (F,E) = (F1, E)t (F2, E). Clearly, for i = 1, 2,

we have δ̃((Fi, E), (G,E)) ≤ δ̃((F,E), (G,E)). On the other hand, suppose that

δ̃((Fi, E), (G,E)) < θ < 1 . There are (H1, E), (H2, E), (Fi, E) v (Hi, E) v (G,E)c

and 1 − τ̃ ((Hi, E)) < θ for i = 1, 2. If (H,E) = (H1, E) t (H2, E), then 1 −
τ̃ ((H,E)) < θ and (F,E) v (H,E) v (G,E)c which implies that δ̃((F,E), (G,E)) <
θ. Thus

δ̃((F1, E) t (F2, E), (G,E)) = δ̃((F1, E), (G,E)) ∨ δ̃((F2, E), (G,E)).

In a similar way we prove that

δ̃((F,E), (G1, E) t (G2, E)) = δ̃((F,E), (G1, E)) ∨ δ̃((F,E), (G2, E)).

Finally, let δ̃((F,E), (G,E)) < θ < 1. There exists (H,E) ∈ 2S(X,E), (F,E) v
(H,E) v (G,E)c, 1− τ̃ ((H,E)) < θ. Now δ̃((F,E), (H,E)c) < 1− τ̃ ((H,E)) < θ

and δ̃((H,E), (G,E)) < 1 − τ̃ ((H,E)) < θ, which proves that δ̃ satisfies also(δ̃4).

Therefore δ̃ is a fuzzifying soft quasi-proximity. If |= τ̃1 ≡ τ̃δ̃, then (by Theorem

4.2) we have SN τ̃1
eM ((F,E)) = 1− δ̃({eM}, (F c, E)). Since

δ̃({eM}, (F c, E)) = 1−

 ∨
eM ∈̃(H,E)v(F,E)

τ̃((H,E))

 = 1− SN τ̃
eM ((F,E)),

it follows that SN τ̃
eM ((F,E)) = SN τ̃1

eM ((F,E)) and hence |= τ̃ ≡ τ̃1. This completes
the proof. �

Definition 4.6. Let (X, δ̃1), (Y, δ̃2) be fuzzifying soft quasi-proximity spaces. A

mapping f : (X, δ̃1)→ (Y, δ̃2) is said to be fuzzifying soft quasi-proximally contin-

uous if δ̃1((F,E), (G,E)) ≤ δ̃2(f(F,E), f(G,E)), for any (F,E), (G,E) ∈ 2S(X,E).

Theorem 4.7. Let (X, δ̃1) and (Y, δ̃2) be two fuzzifying soft quasi-proximity spaces

and let f : (X, δ̃1)→ (Y, δ̃2) be a fuzzifying soft quasi-proximally continuous. Then
f is fuzzifying soft (τ̃δ̃1 , τ̃δ̃2)-continuous.
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Proof. Let eM ∈ SP(X),(G,E) ∈ 2S(Y,E). In view of Theorem 4.2, we have that

SN
τ̃
δ̃1
eM (f−1(G,E)) = 1− δ̃1({eM},

(
f−1(G,E)

)c
) = 1− δ̃1({eM}, f−1(Gc, E)).

If (H,E) = f
(
f−1(Gc, E)

)
, (G,E) v (H,E)c. Thus

δ̃1({eM},
(
f−1(G,E)

)c
) ≤ δ̃2(f({eM}), (H,E)) = 1− SN

τ̃
δ̃2
f(eM )

((H,E)c) ≤ 1− SN
τ̃
δ̃2
f(eM )

((G,E))

and hence SN
τ̃
δ̃1
eM (f−1(H,E)) ≥ SN

τ̃
δ̃2

f(eM )((G,E)), which proves that f is a fuzzi-

fying soft (τ̃δ̃1 , τ̃δ̃2)-continuous. �

Theorem 4.8. Let f : X → Y be a mapping and δ̃ be a fuzzifying soft quasi-
proximity on Y. Then δ̃′ ∈ S(X,E)× S(X,E)→I, δ̃′((F,E), (G,E)) = δ̃(f(F,E), f(G,E)) is
a fuzzifying soft quasi-proximity on X.

Proof. Since the rest follow easily, we will only prove that δ̃′ satisfies (δ̃4). If

δ̃′((F,E), (H,E)) ∨ δ̃′((H,E)c, (G,E)) < θ < 1, then (F,E) v (H,E)c and so
δ̃′((F,E), (G,E)) ≤ δ̃′((H,E)c, (G,E)) < θ. On the other hand, let δ̃′((F,E), (G,E)) <

θ < 1. There exists (K,E) ∈ 2S(Y,E) such that δ̃(f(F,E), (K,E))∨ δ̃((K,E)c, f(G,E))
< θ. If (H,E) = f−1(K,E), f(H,E) v (K,E) and f((H,E)c) v (K,E)c. Thus

δ̃′((F,E), (H,E)) = δ̃(f(F,E), f(H,E)) < θ and δ̃′((H,E)c, (G,E)) = δ̃′(f((H,E)c), f(G,E)) < θ

which implies that δ̃′ satisfies (δ̃4). �

We will denote δ̃′ by f−1(δ̃).

Theorem 4.9. Let f : X → Y be a function and δ̃ be a fuzzifying soft quasi-
proximity on Y. Then:

(a) f−1(δ̃) is the weakest fuzzifying soft quasi-proximity on X for which f is a
fuzzifying soft proximally continuous.

(b) If δ̃ is a fuzzifying soft proximity, so is f−1(δ̃).

(c) If (Z, δ̃◦) is a fuzzifying soft quasi-proximity space and g : (Z, δ̃◦)→ (X, f−1(δ̃))
is a function, then g is a fuzzifying soft proximally continuous if and only if the
composition f ◦ g is a fuzzifying soft proximally continuous.
(d) |= τ̃f−1(δ̃) ≡ f

−1(τ̃δ̃).

Proof. (a) and (b) are direct consequences of the definitions.
(c) Necessity: It is clear that the composition of two fuzzifying soft proximally
continuous is a fuzzifying soft continuous.
Sufficiency:

δ̃◦((F,E), (G,E)) ≤ δ̃(f ◦ g(F,E), f ◦ g(G,E)) = f−1(δ̃)(g(F,E), g(G,E))

and thus g is fuzzifying soft proximally continuous.

(d) Let |= τ̃1 ≡ τ̃f−1(δ̃). Then

SN
τ̃
1
eM ((F,E)) = 1− f−1(δ̃)({eM}, (F,E)c) = 1− δ̃(f(eM ), f(F c, E))

Also,

SN
f−1(τ̃

δ̃
)

eM ((F,E)) = SN
τ̃
δ̃
f(eM )(f(F c, E))c = 1− δ̃(f(eM ), f(F c, E)) = SN

τ̃
1
eM ((F,E))

and thus |= f−1(τ̃δ̃) ≡ τ̃1. This completes the proof. �
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Theorem 4.10. Let (Xλ, δ̃λ)λ∈Λ be a family of fuzzifying soft quasi-proximity

space, X a set and for each λ ∈ Λ, fλ : X → Xλ be a mapping. Define δ̃ :
S(X,E)× S(X,E)→I by

δ̃((F,E), (G,E)) =
∧∨

i,j

∧
λ∈Λ

δ̃λ ((Fi, E), (Gj , E))

 ,

where the infimum is taken over the family of all finite collections (Fi, E), (Gj , E)
of soft subsets of X with (F,E) = t(Fi, E), (G,E) = t(Gj , E). Then:

(1) δ̃ is a fuzzifying soft quasi-proximity on X.

(2) Every fλ is a fuzzifying soft
(
δ̃, δ̃λ

)
-proximally continuous and δ̃ is the weakest

of all fuzzifying soft quasi-proximities δ̃′ on X for which each fλ is a fuzzifying soft(
δ̃′, δ̃λ

)
-proximally continuous.

(3) A mapping f , from a fuzzifying soft quasi-proximity space (Y, δ̃1) to (X, δ̃), is
a fuzzifying soft proximally continuous if and only if each composition fλ ◦ f is a
fuzzifying soft proximally continuous.
(4) τ̃δ̃ coincides with the weakest fuzzifying soft topology τ̃ on X for which each fλ

is a fuzzifying soft
(
τ̃ , τ̃δ̃λ

)
- continuous.

(5) If each δ̃λ is a fuzzifying soft proximity, so is δ̃.

Proof. (1) It is easy to see that δ̃((F,E), (G,E)) = 1 when (F,E) u (G,E) 6= φ̃

and that δ̃(φ̃, (G,E)) = δ̃((F,E), φ̃) = 0. Assume now that δ̃((F,E), (G,E)) < θ <
1. There are sets (F1, E), ..., (Fn, E), (G1, E), ..., (Gm, E) with (F,E) = t(Fi, E),
(G,E) = t(Gj , E), and for each pair (i, j ) there exists λ = λ(i, j) ∈ Λ with

δ̃λ (fλ(Fi, E), fλ(Gj , E)) < θ. Let (F ′, E) v (F,E) and (G′, E) v (G,E). Set

(F ′i , E) = (Fi, E) u (F ′, E), (G′j , E) = (Gj , E) u (G′, E).

Then (F ′, E) = t(F ′i , E), (G′, E) = t(G′j , E), and for each pair (i, j ) there exists
λ = λ(i, j) ∈ Λ such that

δ̃λ
(
fλ(F ′i , E), fλ(G′j , E)

)
≤ δ̃λ (fλ(Fi, E), fλ(Gj , E)) ≤ θ

and so δ̃((F,E), (G,E)) ≤ θ. This proves that δ̃((F ′, E), (G′, E)) ≤ δ̃((F,E), (G,E)).
In analogous way, we prove that

δ̃((F1, E) t (F2, E), (G,E)) ≤ δ̃((F1, E), (G,E)) ∨ δ̃((F2, E), (G,E))

and

δ̃((F,E), (G1, E) t (G2, E)) ≤ δ̃((F,E), (G1, E)) ∨ δ̃((F,E), (G2, E))

Finally we prove that δ̃ satisfies (δ̃4). So, assume that δ̃((F,E), (G,E)) < θ < 1. There
are sets (F1, E), ..., (Fn, E), (G1, E), ..., (Gm, E), (F,E) = t(Fi, E), (G,E) = t(Gj , E),

such that , for each pair (i, j ) there exists λ = λ(i, j) with δ̃λ (fλ(Fi, E), fλ(Gj , E)) < θ.

Now, given the pair (i, j ) and λ = λ(i, j), there exists (Hij , E) ∈ 2S(Xλ,E) such

that δ̃λ (fλ(Fi, E), (Hij , E)) < θ and δ̃λ ((Hij , E)c, fλ(Gj , E)) < θ. Let (Kij , E) =
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f−1
λ (Hij , E). Set (H,E) = tmj=1 unk=1 (Kkj , E). For each pair (i, j ) and λ = λ(i, j),

we have that

δ̃λ (fλ(Fi, E), fλ(unk=1(Kkj , E))) ≤ δ̃λ (fλ(Fi, E), fλ((Hij , E))) < θ

and hence δ̃((F,E), (H,E))) < θ. Also, (H,E)c = umj=1 tnk=1 (Kkj , E)c. Let (Mj , E) =

tnk=1(Kkj , E)c. We have δ̃((H,E)c, (Gj , E)) ≤ δ̃((Mj , E), (Gj , E)). For each pair (i, j )
and λ = λ(i, j), we have
δ̃(fλ(Kkj , E)c, fλ(Gj , E)) < θ and hence δ̃((Mj , E), (Gj , E)) ≤ θ. Thus δ̃((H,E)c, (Gj , E)) ≤
θ. for all j, which implies that δ̃((H,E)c, (G,E)) ≤

∨
δ̃((H,E)c, (Gj , E)) ≤ θ. Thus

δ̃ satisfies (δ̃4) and therefore it is a fuzzifying quasi-proximity. In case each δ̃λ is a

fuzzifying proximity so is δ̃.

(2) Since δ̃((F,E), (G,E)) ≤ δ̃λ(fλ(F,E), fλ(G,E)), each fλ is a fuzzifying soft(
δ̃, δ̃λ

)
-proximally continuous. On the other hand, let δ̃′ be a fuzzifying soft quasi-

proximity on X such that each fλ is a fuzzifying soft
(
δ̃′, δ̃λ

)
-proximally continuous

and assume that δ̃((F,E), (G,E)) < θ < 1. There are sets (F1, E), ..., (Fn, E),
(G1, E), ..., (Gm, E), (F,E) = t(Fi, E), (G,E) = t(Gj , E), and for each pair (i, j )

there exists λ = λ(i, j) such that δ̃λ (fλ(Fi, E), fλ(Gj , E)) < θ. Now δ̃′((F,E), (G,E)) ≤
maxi,j δ̃

′ ((Fi, E), (Gj , E)) . For each pair (i, j ) and λ = λ(i, j), we have

δ̃′ ((Fi, E), (Gj , E)) ≤ δ̃ (fλ(Fi, E), fλ(Gj , E)) < θ

So δ̃′((F,E), (G,E)) ≤ θ. This proves that δ̃′((F,E), (G,E)) ≤ δ̃((F,E), (G,E)).

Therefore δ̃′ is finer than δ̃.
(3) The condition is necessary since a composition of two fuzzifying proximally

continuous mappings is a fuzzifying proximally continuous. Conversely suppose that
the condition is satisfied. We need to show that δ̃1((F,E), (G,E)) ≤ δ̃(f(F,E), f(G,E))

for all (F,E), (G,E) ∈ 2S(Y,E). So, assume that δ̃(f(F,E), f(G,E)) < θ < 1. There are
sets (H1, E), ..., (Hn, E), (K1, E), ..., (Km, E), f(F,E) = t(Hi, E), f(G,E) = t(Kj , E), such
that, for each pair (i, j ) there exists λ = λ(i, j) in Λ with δ̃λ (fλ(Hi, E), fλ(Kj , E)) < θ.

Let (Fi, E) = f−1(Hi, E), (Gj , E) = f−1(Kj , E). Since (F,E) v t(Fi, E), (G,E) v
t(Gj , E), we have that

δ̃1((F,E), (G,E)) ≤ δ̃1(t(Fi, E),t(Gj , E)) ≤ max
i,j

δ̃1((Fi, E), (Gj , E))

For each pair (i, j ) there exists λ = λ(i, j), we have

δ̃1((Fi, E), (Gj , E)) ≤ δ̃λ(fλ ◦ f(Fi, E), fλ ◦ f(Gj , E)) ≤ δ̃λ (fλ(Hi, E), fλ(Kj , E)) < θ

and hence δ̃1((F,E), (G,E)) < θ. This proves that δ̃1((F,E), (G,E)) ≤ δ̃(f(F,E), f(G,E)).

Therefore f is a fuzzifying soft (δ̃1, δ̃)-proximally continuous.

(4) Let |= τ̃ ≡ τ̃δ̃ and |= τ̃λ ≡ τ̃δ̃λ . Since fλ is a fuzzifying soft (δ̃, δ̃λ)-proximally

continuous, it follows that fλ is soft (τ̃ , τ̃λ)- continuous and so f−1(τ̃λ) ≤ τ̃ .Thus,
for τ̃ ′ =

∨
λ∈Λ f

−1
λ (τ̃λ), we τ̃ ′ ≤ τ̃ . To prove that τ̃ ≤ τ̃ ′, it suffices to show that

SN τ̃
eM ((F,E)) ≤ SN τ̃ ′

eM ((F,E)) for all eM ∈ SP(X) and (F,E) ∈ 2S(X,E). So, as-

sume that SN τ̃
eM ((F,E)) > θ > 0. By Theorem 4.2, we have that δ̃({eM}, (F c, E)) <
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1− θ. Thus there are (G1, E), ..., (Gm, E) ∈ 2S(X,E), with (F,E)c = t(Gj , E), such

that, for each j there exists λ = λ(j) in Λ with δ̃λ (fλ({eM}), fλ(Gj , E)) < 1 − θ
and so SNfλ(eM )(fλ(Gcj , E)) > θ. Now,

(Kj , E) = f−1
λ (fλ(Gcj , E)) =

(
f−1
λ (fλ(Gj , E))

)c v (Gcj , E)

Since τ̃ ′ ≥ f−1
λ (τ̃λ), we have that SN τ̃ ′

eM ((Kj , E)) ≥ SNf−1(τ̃λ)
eM ((Kj , E)) > θ. Now,

uj(Kj , E) v uj(Gcj , E) = (F,E) and hence

SN τ̃ ′

eM ((F,E)) ≥ SN τ̃ ′

eM (uj(Kj , E)) ≥
∧
j

SN τ̃ ′

eM ((Kj , E)) > θ

This proves that SN τ̃ ′

eM ((F,E)) ≥ SN τ̃
eM ((F,E)) and hence τ̃ ′ is finer than τ̃ , which

completes the proof. �

As a corollary we have the following theorem

Theorem 4.11. Let (Xλ, δ̃λ)λ∈Λ be a family of fuzzifying soft quasi-proximity

spaces on X. Define δ̃ : S(X,E)× S(X,E)→I by

δ̃((F,E), (G,E)) =
∧∨

i,j

∧
λ∈Λ

δ̃λ ((Fi, E), (Gj , E))

 ,

where the infimum is taken over the family of all finite collections (Fi, E), (Gj , E)
of soft subsets of X with (F,E) = t(Fi, E), (G,E) = t(Gj , E). Then:

(1) δ̃ is a fuzzifying soft quasi-proximity on X. If each δ̃λ is a fuzzifying soft prox-

imity, so is δ̃.

(2) δ̃ is the weakest of all fuzzifying soft quasi-proximities on X which are finer than

each δ̃λ.
(3) A mapping f , from a fuzzifying soft quasi-proximity space (Y, δ̃1) to (X, δ̃),
is a fuzzifying soft proximally continuous if and only if f is a fuzzifying soft

(δ̃1, δ̃λ)−proximally continuous for all λ ∈ Λ.
(4) τ̃ coincides with the weakest fuzzifying soft topology on X finer than each τ̃δ̃λ .

Definition 4.12. Let (Xλ, δ̃λ)λ∈Λ be a family of a fuzzifying soft quasi-proximity
spaces, X = ΠXλ and for each λ ∈ Λ, pλ : X → Xλ the λth projection. The
product fuzzifying soft quasi-proximity space on X is the weakest fuzzifying soft
quasi-proximity space on X for which pλ is a fuzzifying proximally continuous.

We denote this by Πδ̃λ

In view of Theorem 4.10, we have the following

Theorem 4.13. Let Let (Xλ, δ̃λ)λ∈Λ and X be as above and let δ̃ = Πδ̃λ. Then:

(1) δ̃((F,E), (G,E)) =
∧{∨

i,j

∧
λ∈Λ

δ̃λ (Πλ(Fi, E),Πλ(Gj , E))

}
, where the infimum is taken

over the family of all finite families (Fi, E), (Gj , E) of soft subsets of X with (F,E) =
t(Fi, E), (G,E) = t(Gj , E).
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(2) A mapping f , from a fuzzifying soft quasi-proximity space (Y, δ̃1) to (X, δ̃), is
a fuzzifying soft proximally continuous if and only if each composition Πλ ◦ f is a
fuzzifying soft proximally continuous.

(3) If each δ̃λ is a fuzzifying soft proximity, so is δ̃.
(4) |= τ̃δ̃ ≡

∏
τ̃δ̃λ .
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