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1. Introduction

In 1952, Rosser and Turquette [8] proposed the fol-
lowing unsolved problem: If there are many-valued
theories beyond the level of predicate calculus, then
what are the details of such theories ? As an at-
tempt to give a partial answer to this problem in the
case of point set topology, Ying in 1991-1993 [13-
15] used a semantical method of continuous-valued
logic to develop systematically fuzzifying topology.
Briefly speaking, a fuzzifying topology on a sEtas-
signs each crisp subset &f to a certain degree of be-
ing open, other than being definitely open or not. So
far, there has been significant research on fuzzifying
topologies [3, 9- 16]. For example, Ying [16] intro-
duced the concepts of compactness and established
generalization of Tychonoff’s theorem in the frame-
work of fuzzifying topology. In [12] the concept of lo-
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cal compactness in fuzzifying topology is introduced
and some of its properties are established. The no-
tion of B-open sets [1] was introduced by Abd EI-
Monsef, El-Deeb and Mahmoud in 1983 which was
studied in Andrijevic [5] under the name semi-preopen
sets. Dontchev and Przemiski [6] replaced the term
semi-preopen by the term pre-semiopen. The concept
of B-compact topological spaces was studied in [2,
4]. In [3] the concepts of fuzzifyings-open sets and
fuzzifying -continuity were introduced and studied.
Also, Sayed in [10] introduced some concepts of fuzzi-
fying §-separation axioms and clarified the relations
of these axioms with each other as well as the re-
lations with other fuzzifying separation axioms. Fur-
thermore, Sayed and Abd-Allah [11] characterized the
aconcepts of fuzzifyings-irresolute functions and used
the finite intersection property to give a character-
ization of fuzzifying g-compact spaces. In this pa-
per, the concepts of-base and3-subbase of fuzzi-
fying g-topology are introduced. Other characteriza-
tions of fuzzifying 5-compactness are given, includ-

0000-0000/16/$00.0® 2016 — 10S Press and the authors. All rights reserved



2 Local 3 compactness as fuzzy predicates defined in Lukasiewicz logic

ing characterizations in terms of nets gfiubbase.
Several characterizations of locali)compactness in
the framework of fuzzifying topology are introduced
and the mapping theorems are obtained. Thus we fill
a gap in the existing literature on fuzzifying topology.
We use the terminologies and notations in [3, 9- 16]
without any explanation. We note that the set of truth
values is the unit interval and we do often not distin-
guish the connectives and their truth value functions
and state strictly our results on formalization as Ying
does. We will use the symba} instead of the second
"AND" operationA as dot is hardly visible. This mean

that[a] < [¢ — ¥] © [a] ® [¢] < [¢]. All of the con-
tributions in General Topology in this paper which are
not referenced may be original.

2. Preliminaries

We now give some definitions and results which are
useful in the rest of the present paper.

Definition 2.1 [13] Let X be a set and € S(P(X))
is called a fuzzifying topology if it satisfies the follow-
ing conditions

MEXeT;

(T2) foranyA,B € P(X), = (A e T)A(A €
7)—= ((ANB€eT);

(T3) forany{Ar | A e A}, EVA(A e A — A, €
7) = Usea Ax €T

The pair (X, 7) is called a fuzzifying topological
space.

(1) The fuzzifying neighborhood system of a point
x € X isdefinedasv,(A)= V 7(B).

2€BCA
(2) The fuzzifying closure of a set C X is defined

asCl(A)(z) =1 — N (X — A).

(3) The fuzzifying interior of a set: € (X)) is
defined adnt(u) = U{U € P(X) | 1y < p}, where
1y is a characteristic function.

Definition 2.2 [3] The family of all fuzzifying 3-open
sets, denoted by; € S(P(X)), is defined as

Aerg:=Ve(r € A— z e Cl(Int(Cl(A)))), .
e.,73(A) = A Cli(Int(Cl(A)))(z)).

z€A
(1) The farenily of all fuzzifying 5-closed sets, de-
noted byl's € J(P(X)), is defined asA € T'g :=
X—-Ae 73-
(2) The fuzzifying g-neighborhood system of a
pointz € X is denoted byVA™ (or N?) € S(P(X))

and defined a&’?(A) = \/ 75(B).
z€BCA

(3) The fuzzifying 5-closure of a sed C X, de-
noted byCiz € $(X), is defined agllg(A4)(z) =
1 - NB(X — A).

(4) (19)) If N(X) is the class of all nets iX, then
the binary fuzzy predicates’, ¢ I(N(X) x X)
are defined as % z := VA(A € NP — SCA),

S o x:=VA(A € NP — S=<A), where 'S " 2",

"S P 2" stand for'S 3-converges ta:" , "z is anf-
accumulation point of", respectively; and&", " <"
are the binary crisp predicates "almost in ","often in",
respectively. The degree to whiahis an3-adherence
point of S is adhpS(x) = [S ” z].

(5) ([3, 11)) If (X, 7) and (Y, o) are two fuzzify-
ing topological spaces anfl € Y, the unary fuzzy
predicatesCy, I € S(Y¥), called fuzzifying -
continuity , fuzzifying g-irresoluteness, are given as
Ca(f) = VBB € 0 — [71(B) € 1), Is(f) =
VB(B € o — [~1(B) € 13), respectively.

Definition 2.3 Let Q be the class of all fuzzifying
topological spaces.

(1) ([10]) A unary fuzzy predicatd’y € S(Q),
called fuzzifying-Hausdorffness, is given

Tf(X,T):VxVy((xeX/\yeX/\x#y)
~3BIC(Be NP AC € NP ABNC =)

(2) ([16]) A unary fuzzy predicatd® € S(Q),
called fuzzifying compactness , is givenlasx, 7) :=
(FR) (Ko R, X) — (Fp)((p < R) AK(p,4) ®
FF(p)))andifA C X, thenT'(A4) :=T(A,7/A).

(3) ([26]) A unary fuzzy predicat¢l € I(S(P(X))),
called fuzzy finite intersection property, is given as
FIMR) =Vp(p <R)ANFF(p) — JaVB(B € p —

x € B)).

(4) ([11]) A fuzzifying topological spac€X,7)
is said to be fuzzifyings-topological space [11] if
Tg(A n B) > Tg(A) AN Tg(B).

(5) ([11]) A binary fuzzy predicaté(s € I(S(P(X))x
P(X)), called fuzzifying-open covering, is given as
Kg(R,A)=K(R,A) @ RC713).

(6) ([11]) A unary fuzzy predicatd’s € (),
called fuzzifyings—compactness, is given 8%, 1) €
Ty = (WR)(Es( RX) — Fp)((p < B) A
K(p,X)® FF(p))) andifA C X, thenI'3(A) :=
Is(A,7/A).

(7) ([12]) A unary fuzzy predicatd.C € (),
called fuzzifying locally compactness, is given
LCO(X,7):= (Y2)(3B)((z € Int(B) @ T'(B, 7/B)).

as
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3. Fuzzifying 8-base ands-subbase

Definition 3.1 Let (X, 7) be a fuzzifying topological
space andd; C 75. ThenB; is called 3-base ofrg
if B, fulfils the condition:= U € N — 3V((V €
Bg) A (x €V CU)).

Remark 3.2 In above definition, we can obtain that
7 ={U € P(X) | 7(U) > r} is a classical topology
for eachr € [0, 1], similarly, (B5), (7). Then(B;),

is a B-base of(rs), if for eachU € (NZ), , there
existsV € (B;), such thatr € V C U.

Example 3.3Let X = {x,y,z} and we define a
fuzzifying topologyr € S(P(X)) as follows:

7(X) =7(0) =1,7({z}) = 08,
T({y}) = 0.6,7({z}) = 04,
T({z,y}) =0.6,7({y, 2}) = 0.6, 7({2,2}) = 0.4.

SinceN,(4)= \/ 7(B),we have

rzeBCA
N,(X)=1Vz € X,
N:({z}) = Na({=, y}) N:({z,2}) = 0.8,
N,({y}) = Ny({y, 2}) = 0.6, Ny({z,y}) = 0.8,
N.({z}) = N.({z, 2}) = 0.4, N.({y, z}) = 0.6.

Cl({z})(z) =1 = No({y, 2}) =

Cl({z})(y) = 1 Ny({y, z}) = 0 4,

Cl({z})(2) = 1 = N.({y, 2}) = 0.4,

cl{y)) = (0.2,1,0.6 C’l({z}) (0.2,0.2,1),
Cl({z,y}) = (1,1,0.6), Cl({z, 2}) = (1,04, 1),
Cl({y, z}) = (0.2,1,1),CI(X) = (1,1,1),
Cl(0) = (0,0,0).

Then Int(Cl(A)) = A and Ci(Int(Cl(A))) =
Cl(A) forall A € P(X). From Definition 2.2, we ob-
tain a fuzzifying topologys € (P (X)) as follows:

5(X) = 75(0) = 1, 73({z}) = 0.4,
8({y}) = 0.2, 73({z}) = 0.2
ms({z,y}) = 0.6, 75({z, 2}) = 0.4, 75({y, 2}) = 0.2,

(1) We definel3; € S(P(X)) as follows:

Bs(X) = Bs(0) = 1,B5({z}) = 0.4,
Bs({y}) = 0.2,B5({z}) = 0.2,
Bs({z,y}) = 0.6,B5({z, 2}) = Bs({y, 2}) = 0.

SinceB; C 75 and N (U) < V,cycyy Bs(V) from
Definition 3.1, ther3; is a3-base ofrs.
(2) We definecg € S(P(X)) as follows:

cs(X) =cs(0) = 1,c5({z}) = 0.2,
cs({y}) =0.2,¢c5({z}) =0.2
cs({z,y}) = 0.6,c5({z, 2}) = cs({y, 2}) = 0.

We havecs C 75 and NP ({xz,z}) = m5({z,2}) =
0.4 £ Vyeycis,.y cs(V) = 0.2. Hencecy is not a
(-base ofrg. Moreover,(cz)o.s = {X,0,{z,y}} is
not ag-base of(73)0.3 = {X,0,{z}, {z,y},{z, 2}}

in Remark 3.2.

Theorem 3.4 33 is an5-base ofrs if and only ifrg =

By where 87 (U) =\ A Bs(Va).
U Va=U XeA
AEA

Proof. Suppose that3; is an §-base of7g. If

U V. = U, then from Theorem 3.1 (1) (b) in [3],

AEA

) =i (UW) 2 Am() 2 ABOA)
AEA AEA

Consequentlyrﬁ( )> VvV A Bz (Vy).
U Va=U €A
AEA
To prove thatrg(U) <V A Bz (Vy), we
U Va=U AEA
AEA
first provers(U) = AV 73(V). (Indeed, as-

zeU zeVCU
sumed, = {V : z € V C U}. Then for any

fe€ Iléx U f(z)="U,and furthermore

zelU zeU
r(U) = 75 ( gUf(w)> > N\ lf@)
> NV AU = AV TV,
fe Il 6 z€U zeU 2zeVCU

zeU

Alsorg(U)< AV
zeU zeVCU
sU)= AV 7).
zeU zeVCU
Now, sinceN?(U) < \/
zeVCU

73(V). Therefore
Bs(V),

sU)= A V 7(V)= A\ NJU)
zeU xzeVCU xzeU
A Bs(f(@)).

<AV B(V)=V

zeU zeVCU fe 1l 6 ZEU,g
zeU
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Then 73(U) < V A Bz (Vy). Therefore

U Va=U XeA
AEA

sU)= V A B(W)
)\LEJAVA=U)\€A

Conversely, we assumg(U) =

Vo A Bg(Va)
U Va=U AeA
AEA

and we will show thaf}s is an §-base ofrg, i.e., for
anyU C X, N2(U) < '\  RBg(V). Indeed, if
xeVCU
x €V CU |V, =1V, then there exista, € A
AEA
such thatz € Vy, and A B (Vh) <Bg(Vy,) <
A€A

V  Bz(V). Therefore
zeVCU

NJ(U) = EyCU 75(V)

=V Voo AR (W)

z€VCU |J Va=U A€A

AEA
< V I'S[,(V).
zeVCU

Theorem 3.5Let 3 € $(P(X)). Then [} is an -
base for some fuzzifyingrtopologyrs if and only if it
has the following properties:

(1) B (X) = 1;

2= (U eBg) AN(V eg) ANz e UNV) —
AW (W eBg)A(xeW CUNV).

Proof. If B3 is an (-base for some fuzzifying
B-topology 73, then 75(X) = B%”(X). Clearly,
B, (X) = 1. In addition, if z € U NV, then

Bs(U) ABy(V) <
< N(UNnV) <

Conversely, ifi3s satisfies (1) and (2), then we hawge
is a fuzzifyings-topology. In facty3(X) = 1. For any
{Ux: A€ A} C P(X),we set

Oy = {{‘/q)A 1P, € A,\}I

U Ve, :UA}.

<I>>\€A>\
Thenforanyf € [[dox, U U Va, = U Ux.
AEA AEA Vo, €f(N) AEA

Therefore

m(u UA) — VA BV
AEA U Va= U Ux ®EA

PEA AEA

>V A A Bs(Va,)
feHS,\ XEA Vi, €f(N)

> /\ \% A Bs(Vay) = A 75 (Un).
NEA [V, i@y eAy fesy PAEAN AEA

Finally, we need to prove tha(U N V) > 73(U) A

3(V). If 73(U) > t,73(V) > t, then there exists

{Va, : M € A1}, {V), : A2 € Ax}suchthat | V), =

AEA

U, |UJ Vi, =Vandforany\; € Ay, Bg(Vy,) > ¢,
A2€A2

for any Ay € As, Bg(Vy,) > t. Now, for any

x € UNYV,there exists\1, € A1, A2, € Ay such that

x € Vy,, NVy,,. From the assumption, we know that

t <Ba(Va,,)ABs(Va,,) < \% B (W)

TEWC VA, NV,
and furthermore, there existd/, such thatz ¢
W, C Vy,, NVy,, CUNV, B(W,) > t. Since

U Wo=UnV,wehavet < A Bg(W,) <
zxeUnNv zeUNV
V A Rs(Va) = 75(U N V). Now, let

U Va=UNV XeA
AEA

3(U) A 73(V)) = k. For any natural numben, we
have 75(U) > k — +, 73(V) > k — 1 and so
3(UNV) > k— . Thereforerg(UNV) > k =
m(U) ATa(V).

Sl |

Definition 3.6 93 € (P(X)) is called an3-subbase
of 75 if ¢j is anB-base ofrs, whereapﬁ( ﬂ ) =

Vo A es(W), {Va:AeA} ¢ P( ) with
m Va=U AEA
AEA

” Cy 7 standing for "a finite subset of".

Remark 3.7 From Remark 3.2 and Definition 3.6,
since(X, 7,) is a classical topology for eache [0, 1]
and(7g), is the collection of al3-open sets in X, then
a -subbase of73), is a collection(yg), of G-open
sets such that everg-open set of(73), is the union
of sets that are finite intersectionsgf : A € A} C
(ps), with a finite indexA.

Theorem 3.8¢3 € $(P(X)) is an B-subbase of
some fuzzifying-topology if and only if@éu) (X) =
1.

Proof. We only demonstrate that; satisfies the
second condition of Theorem 3.5, and others are obvi-
ous. In fact
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PpU) Apg(V) = v A es(Van) | A
MQAIVM:U ey
v A es(Va,)

N Vapg=V A2€A;
Ap€Ag

( A m(%))
N Va=U N Via=V \ ey

/\< A @ﬁ(%))
A2€A2

<

Il
<
<

m Va=UnV < AEA
AEA

Therefore ifx € U NV, thenpQ(U) A p3(V) <

PRUNV)<  V  oR(W).
rEWCUNV

4. Fuzzifying S-compact spaces

Theorem 4.1Let (X, 7) be a fuzzifying topological
spaceyg be ang-subbase of, and

Bioi= (VR)(Kp, (R, X) — Fp((p < R) A
K(p,X) ® FF(p))),
whereK,, (R, X) := K(R,X) ® (R C ¢3);

B2 = (VS)((S is auniversal netin') — Jz((x €
X) A (S5 2));
B == (VS)((S € N(X) — @T)E)((T < 8) A
(x € X) A (TP ),
where ”T < §” stands for "T is a subnet of S";
B4 := (VS)((S € N(X) — —(adhgS = ¢));
Bs = (VR)R € S(P(X)ARCTIg® fIR) —
JaVA(A e R — z € A)).
Then= (X,7) €T« §;,i=1,2,...,5.

Proof. (1) Sinceps C 73, [R C ¢ < [R C
5] for any R € I(P(X)). Then [K,, (R, X)] <
[Ks(R, X)]. ThereforeI'g(X, 1) < [B1].

@) [B2] = A\ { é/X[S >f 2] : S is a universal net id(} .

(2.1) AssumeX is finite. We setY — {x1, ., ).
For any universal netS in X, there existsi, €
{1,...,m} with SC{x; }. In fact, if not, then for

anyi € {1,..,m}, S¢{z;, }, SCX — {z;,} and

SC N (X — {x;}) = ¢, a contradiction. Therefore
=1

zi, ¢ AandNJ (A) = 0 (see[3],Theorem 4.2

(1)) provided SZ A, and furthermorelS % ;] =
A (1 ~ NS (A)) = 1. Therefore3] = 1 > [B4].
SZA

(2.2) In general, to prove thab;] < [B:2] we prove
that for any\ € [0, 1], if [82] < A, then[51] < A. As-
sume for any\ € [0, 1], [82] < A. Then there exists a

universal netS in X such that\/ [S>”z] < A and for
zeX

anyz € X, [SpPa] = A (1-NE(A) < A e,
SZ A

there existsd C X with SZA and NP (A4) > 1 — \.

Since g is an 3-subbase Ong,(pg is an 3-base of

75 and from Definition 3.1, we have \/  ¢j3(B) >
z€BCA

NB(A) > 1 — A, i.e., there exist83 C A such that
r € BC Aand

V{Inin@g(B)\): nB)\B,B)\gX,)\GA}
AEA A€A
=p3(B) > 1=,

whereA is finite. Therefore there exists a finite set

and B, C X (X € A) suchthat(| B, = B and for
xeA

anyA € A,pg(By) > 1— A Since SZ A and A is

finite, there exists\(xz) € A such thatS¢ B, (,). We

setRo(Br) = V ¢s(Ba@))If p < R, then for
zeX

anyé > 0, ps C {Bx() : © € X}. Consequently, for

any B € ps, S¢ B and SC B¢ becauses is a univer-
salnet. If [FF(p)] =1—inf{d €[0,1]: F(ps)} =
t, then for anyn € w (the non-negative integer),
inf {6 € [0,1] : F(ps)} < 1 — ¢+ %, and there ex-
istsd, < 1 — ¢+ L such thatF(ps.). If 4, = 0,then
P(X) = g, is finite and it is proved in (2.1). B, >
0, then for anyB € ps., SCB®. Since F(ps.), we
haveSC(N{B*: B € gs0} # ¢.1.e.,|J pso # X and
there existr, € X such thatforany € p;.,z, ¢ B.
Therefore, ifr, € B, thenB ¢ ps., i.e., p(B) < do,
K(p,X) = N VeB) < V p(B) < do <
zeX z€B T, EB
1—t+ L. Letn — oco. We obtainK(p, X) <
1 —tand[K(p,X) ® FF(p)] = 0. In addition,
(Ko, (Ro, X)] > 1 — A Infact, [R, C ¢g] = 1and
[K(Ro, X)] = AV Re(B) 2 A\ Re(Baw)) =
zeX z€B rzeX
N ¢s(Bx@)) > 1 — X becauser € By(,). Now, we

have
[51] (VR)(Kp, (R, X) — Fpl(p < R) A
K(p,X)® FF(p)))
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= min(1,1 — K, (R, X) + V [K(p,X)®

P<Ro
FF(p))< A
By noticing that\ is arbitrary, we havésd;] < [Bs].
(3) Itis immediate thatss] < [5s].
(4) To prove that[3s] < [B4], first we prove that
BT (T < S)A (TP )] <[S «” z], where
BT (T < S)ATP )= VA (1-NE(A)
T<S T(ZA
A (1= N£Z(A)). Indeed, for any
5%A
T < S one can deduc@Ad : SAA} C {A: TZA}
as follows. Supposé& = So K . If S;ZA, then there
existsmm € D such thatS(n) ¢ A whenn > m,
where > directs the domainD of S. Now, we will
show thatT'Z A. If not, then there existp € E such
thatT(q) € A wheng > p, where> directs the do-
main E of T. Moreover, there exista; € FE such
that K(n1) > m becausel’ < S, and there exists
ny € E such thatny > nq,p becaus€FE, >) is di-
rected. SoK(nz) > K(ny) > m, SoK(ng) ¢ A
and S o K(n2) = T(ngz) € A. They are contrary.
Hence {A : SAA} C {A : TZA}. Therefore
3T (T < S)ATH 2))]= VA (1-NE(A) =
T<S TZA
V. A @=-N@)< A
T<S {A:TZA}

{A:S£A}
= A (1-NE(A) z]. Therefore for any
SAA

x € X andS € N(X) we have

[Bs]= AV BT{T <A

SEN(X) z€X

< A VIiSaq]

SEN(X) z€X

= - 1S oB
(A -1sea))
= A [~(adhgS = ¢)] = [B4].

SEN(X)
(5) We want to show thafs,] < [Bs]. For any
R € H(P(X)), assumdfI(R)] = A. Then for any
6>1—A, if Aq, ,An S §R§, A1NAsN...NA, 7é ¢
In fact, we seto(4;) = \/_, R(4;). Thenp < R and
FF(p) =1.By puttinge = A+ —1 > 0, we obtain
A—e < AN <[FF(p) — (F2)(VB)(B € p —

and[S o? x| =

(1= NJ(4))

:[S O(ﬁ

(o7 )]

x € B)]l= V A0 - p(B)). There exists
z€X z¢B
o € X such thath — e < A (1 — p(B)),
ro¢B

z, ¢ B impliesp(B) < 1 - X+ ¢ = ¢ and
To € Npsg = A1 N AN ...N A,. Now, we setds =
{AiNAsnN..NA,:neN, Ay, ..., A, €Rs} and
S :9s — X,B— zp € B,B € 9Ys and know

that (Js,
Therefore[3,] <

C) is a directed set and' is a net inX.
[H(adhgS = ¢)] = V N\ (1 -
zeX S;A
NB(A)). Assume[R C T'g] = p. Then for any
B € P(X),R(B) < 1+ T4(B) —p, and[R C
Ty fIR) — (F2)(VA)(A € R) — = € A)]
=min(L,2—-p—-X+ \V A (1—-%R(A))). There-
ze€X z¢ A
fore it suffices to show that for any € X, A (1 —
SZA
NZ(A) <2-p=2+ N\ (1-R(A)) e, V R(A) <
¢ A ¢ A
2—pu— XA+ \/ NZ(A)for somes > 1 — \.For any
SAA
t € 10,1],if \/ R(A) > t, then there existsl, such
thatz, ¢ A, gnd R(As) > t.
Case1lt <1-—\thent<2—pu— X+ \/ NP(A).
SHA
Case 2t >1— X. Herewe sef = 1(t +1 — A) and
have A, € R5, A, € ¥5. In addition,t < R(A,) <
14+Tp(Ac) =, t+p—1 < T'g(As) = 75(AS).
Since A, € Y5, we know thatSp € A, i.e.,
Sp ¢ AS whenB C A, andS A AS. Therefore
2—p—XA+ V NJ(A) 22— p— A+ NJ(4AS) =
SZA
2 —p— A+ T75(AS) >t + (1 — \) > t. By noticing
that t is arbitrary, we have completed the proof.
(6) To prove thafgs] = [(X,7) € T'g] see [10, Theo-
rem 4.3].

As a sense in Remarks 3.2 and 3.7, the above theo-
rem is a generalization of the following corollary.

Corollary 4.2 The following are equivalent for a
topological spac€ X, 7).

(a) X is ang-compact space.

(b) Every cover of X by members of afi-subbase of
73 has a finite subcover.

(c) Every universal net in X-converges to a point in
X.

(d) Each net in X has a subnet thatconverges to
some point in X.

(e) Each net in X has afi-adherent point.

() Each family ofg-closed sets in X that has the finite
intersection property has a non-void intersection.

Definition 4.3 Let {(X,,75) : s € S} be a family of

fuzzifying topological spaces] [ X be the cartesian
ses
:s € Standy = {p;}(

product of { X, Us) : s €
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S,Us € p(Xs)}, wherep, : [[Xs — Xi(t € S)is
seS
a projection. For C ¢, S(®) stands for the set of
indices of elements i®. The3-base B € (] Xs)
ses
of T (73)s is defined as
ses
VeR:=30)(PCrpn(NP=V)) —Vs(se
S(®) — Vs € (18)s), i.€.,
Bs(V)= V A

DCrp,) 2=V s€S(P)

(78)s(V5).

Definition 4.4 Let (X, 1), (Y,0) be two fuzzifying
topological space. A unary fuzzy predicaf®; <

J(YX), is called fuzzifying3-openness, is given as:

Os(f) = YUU € 13 — f(U) € og). Intu-
itively, the degree to which f ig-open is[Og(f)] =
A min(1,1 —73(U) 4+ o5 (f(U))).

BCX

Lemma4.5Let (X,7) and (Y, o) be two fuzzifying
topological space. For any € Y,

Op(f) == VB(B e} — f(B) € ap), where §§ is
an -base ofrg.

Proof. Clearly, [O3(f)] < [VU(U eBf — f(U) €
og)]. Conversely, for anyU C X, we are go-
ing to prove min(1,1 — 73(U) + o5 (f(U))) >
[V (V ERY — f(V) € 05)]. If 75(U) < 0a(/(U)),
it is hold clearly. Now assume; (U) > o5(f(U)).

If C C P(X) with (JC = U, then{Jy .. f(V) =
F(UC) = f(U). Therefore

3(U) —op(f(U))

= V A BF (V)
CCP(X),Uc=U VeC
- V N o3(W)

KCP(Y),UKk=f(U) WeK
< \V A BF (V)
CCP(X),JcCc=UVecC

-V N os(f(V))

CCP(X),JCc=U VeC

< \% A (B5 (V) =os(£(V)

~ cCP(x)Uc=UVec

min(1,1 — 75(U) + og (f(U)))

> \V A min(1,1 - B (V) + o5 (f(V)))
cCP(X),Uc=U vec

> VV(V e Ry — f(V) € as)].

Lemma 4.6 For any family {(X§, 75)
fuzzifying topological spaces.
(1) (¥s)(s € 5 — ps € Op);
(@ F (¥s)(s € 5 — ps € Cp).

: s € S} of

Proof. (1) For anyt € S, we haveOg(p:) =

A mMLl(H@wQamﬂm»m@m»

UeP(]] Xs) s€S
sES

Then it suffices to show that for aily € P( ] Xs),
sesS

wwwwmmﬂmz(gmmyw.
Assume ’

(I ) @ -

VoA V A
AgABA:U AEA @ACng,ﬂ‘I’)\=B)\ SES((I))\)
where®, = {p;1(V;) : s € S(®))}(\ € A).

Hence there exist§By : A € A} C P(]] Xs)

seS
such that | J B, = U and furthermore, for any
AEA

A € A, there existsPy Cy ¢ such thain®, = B,

and (N p;' (Vi) = By, where for anys €
seS(Py)

S(®y) we have(73)s(Vs) > p. Thus p,(U) =

(U N 7' (V)
AEA SES((I))\)

() Ifforany A € A,

U=¢,p(U)=¢ and(;;iq();t(U)) = 1. Therefore
<mme»z(gmm ).

(2) Ifthere exists\, € A, suchthaty # ()
SES(Py)

(Tﬁ)s(vs) >

p;'(Vs) = ¢, then

—

pst(Ve) =

B/\o7

(I) If ¢ ¢ S(q?,\o), i.e.,t e S—S(q)/\o),pt(B)\o) = X;.
Therefore(rs):(p:(Ba,)) = (18):(X¢) = 1.

(i) If t € S(®y,), thenp(By,) =V, C X;. Thus

pU) = p(C U Bx)U( U Ba)) =
teS(Pax,) tE€S(Px,)

(U pB)UC U pe(Br,)) =ViUX, =

teS(Py,) tES(Px,)

X;.

Hence(73)¢(p:(U)) = (78)¢(X¢) = Lor (18):(pe(U)) =
(t)e(Va) > A.

Therefore (73), (p:(U)) > (H (Tﬁ)s) (U). Thus

ses
Op(pt) = 1.
(2) From Lemma 3.1 in [15] we have= (Vs)(s €
S — ps € C). Furthermore, for any two fuzzifying
topological space€X, 7) and(Y, o) andf € YX, we
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haveC(f) < Cg(f) (Theorem 3.3 in [3]). Therefore
= (Vs)(s €S — ps € Cp).

Theorem 4.7 Let {(X, 75) : s € S} be the family of
fuzzifying topological spaces, then
=3U(U C H X AU, 7/U)AJz(x € Intg(U)) —

IT(T cy S /\Vt(t €S —TATp(Xe, 7))

Proof. It suffices to show that
V Ls(
UeP(]] Xs)
seS

<V A TpXe,m).
TC;S teS—T

Uur/U)A V  NJ(U)
z€ [[ Xs
sES

Indeed, if
% Ls(U,T/U)A N NZ(U)
UeP(]] Xs) z€ [] Xs
s€ES sSES
> p > 0, then there existd/ € P(]] Xs) such
sesS
that T's(U,7/U) > pwand \/ NZU) > p,
z€ [[ Xs
sES
whereN?(U) =V <H (Tﬂ)s> (V). Further-
2€VCU \s€S

more, there existd” such thatr ¢ V C U and

(o)

ses

H (Tﬁ)s;

seS

(o) )= VA B

s€S U Ba=V AeA
AEA

= VvV ANV N

ALéJABA:V AEA P\Crp,NPrx=Bx SES(‘I’A)

(V) > p. Since g is an (-base of

(78)s(Vs) >

K,
where®, = {p;1(Vy):s € S((I)A)}(/\ eN).
Hence there exist§B) : € A} C P(]]Xs)
seS
such thatALeJABA = V. Furthermore, for any\ee A,
there existsb, C; ¢ such thatn®, = B, and
for any s € S(®,), we have(rz)s(Vs) > p. Since
x € V, there existsB,, such thatxr € B,, C
V' C U. Hence there exist®,, C; ¢ such that
N®,, = By, and (| p;'(Vs) = Bx, C [] X,
SES (D) ses
and for anys € S(®,), we have(r)s(Vy) > 1 — p.
By N p:'(Vi) = Bx,, we haveps(B,,) =
s€S(Py)
Vs C Xs,if 0 € S(q))\x); pg(B)\I) = Xs,f 0 €
S — S(®,,). SinceB,, C U, foranyd € S —

S(®»,), we haveps(U) 2 ps(By,) = Xs and
ps(U) = Xs. On the other hand, since for any

s € SandU, € P(X,), (tlgs(Tﬂ)t) (p1(Uy)) =

(18)s(Us), we have ,

A i (11 (7,0 + L) (5(0) ) =
UseP(X,) tes
1. Furthermore, since by Theorem 5.3 in [11], we
have = I's3(X,7) @ Ig(f) — Dp(f(X)), then
L(U,7/U) =Tp(U,7/U)215(ps) < Lp(ps(U), 75) =
I's(Xs,75). Therefore \/ N Tpe(Xy,m) >
TCyS teS-T

Fﬁ(X(;,T(;) > FB(U, T/U) > .

5€S—S(®y)

for anys € S, Ig(ps) =

The above theorem is a generalization of the follow-
ing corollary.

Corollary 4.8 If there exists a coordinaté-neighborhood
(B-compact subséf of some point: € X of the prod-
uct space, then all except a finite number of coordinate
spaces args-compact.

Lemma 4.9 For any fuzzifying topological spa¢&, 7), A
X,
= T (X, 7) — T (A, 7/A).

Proof.
15 (X, 7)]

= A V (NE(U),NJ (V)
z,yeX,x#y U VEP(X),UNV=¢

< A Vo (NS Una), NS (VN
z,y€X,z#y (UNA)N(VNA)=¢ )

A)) ) )

< A V (NE(U"),NJ" (V"))
z,y€Ax#£Yy UNV'=¢,U’,V'€P(A) ’

=TJ(A,7/A),

whereNS* (U) = \/ 73/A(C) andr3/A(B) =

zeCCU

Vo (V).

B=VNA

Lemma 4.10 For any fuzzifyings—topological space
(X,7),

=Ty (X,7) @ Tg(X,7) — T (X, 7).

For the definition ofo(X, 7) see [10, Definition 2.1
].

Proof. If [T (X, 7)®'3(X,7)] = 0, then the result
holds. Now, suppose thal} (X, 7) ® [z(X,7)] >
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A > 0. ThenT?(X,7) + Tg(X,7) —1 > XA > 0.

Therefore from Theorem 5.4 in [11]

Ty (X,7) ® (Ds(A) AT3(B)) A (AN B = ¢) "

Ty (X,7) — @QU)EV)((U € 75) A(V € T5) A(A C

UYAN(B C V)A(AN B = ¢)). Then for any

A BCX,ANB = ¢,

Ty (X,7) ® (T(A) AT5(B))

< min(7g(U), T
UNV=¢,ACU,BCV

or equivalently T} (X,7) < Tjs(4) A T3(B) —

min(75(U), 75(V/

UNV=¢,ACU,BCV )
Hence foranyd, B C X, AN B = ¢,
1—[s(A) ATs(B)] +
min(7s(U), 75(V))
UNV=¢,ACU,BCV
(X, 7) — 1> A\

From Theorem 5.1 in [11] we have T's(X,7) ®
A E F@ — FQ(A) ThenFB(X T) + [TQ(AC) A
B)|=1= (g(X,7)+75(A°) = A (Dp(X, 7)+
B¢) = 1) < (Ip(X,7) @ 78(A°)A (Tp(X, 1) ®

[C3(A) A Tg(B)]. Thus I's(X,7) —

ATg(B)] — 1 < —[r3(A°) A 75(B)]. So,
1 — [m5(A°) A 7(B)] +

\/ min(Tg(U),Tg(V)) > /\, i.e.,
UNV=¢,ACU,BCV

Xmn= A (A% AT (B +

min(rg(U), 78(V))) > A.
UNV=¢,ACU,BCV

5(V))

min(1,1—]

The above lemma is a generalization of the follow-
ing corollary.

Corollary 4.11 Every -compact-Hausdorff topo-
logical space ig3-normal.

Lemma 4.12 For any fuzzifyings—topological space
(X,7),

=TS (X, r)®Ts(X,7) — T2(X, ). For the defini-
tion of

TS (X, 7) see [10, Definition 2.1].

Proof. Immediate, sel = {z} in the above lemma.

The above lemma is a generalization of the follow-
ing corollary.

Corollary 4.13 Every 3-compactg-Hausdorff topo-
logical space ig3-regular.

Theorem 4.14For any fuzzifying topological space
(X,7)andA C X,
= T2(X,7) @ T3(A) — A € I

Proof. For any{z} C A°, we have{z}NA = ¢ and
T's({z}) = 1. By Theorem 5.4 in [11]
(75 (X,7) ® (Ts(A4) AT5({z}))]

< V min(7g(G), 78(H,))). Assume
GNH,=¢,ACG,z€H,

Yo ={Hy : ANH, = ¢,x € Hy}, J f(z) D A°
rEAC
and U f(e)nA = U (f(z) mil) = ¢. So,
TEA® TEA®
U flz) = A
TrEAC
TherefordTy (X, )@ 3(A)] < 75(H,)
GNH,=¢,ACG,z€H,
< A Vo 7p(Hy)

z€EAC ANH,=¢,x€H,

=V  Amn(fe)s V
fe Il o€ fe Il
V' 7p(A°) =T'5(A).

fe Il e

rEAC

(U f(2)=

TEA®

The above theorem is a generalization of the follow-
ing corollary.

Corollary 4.15 -compact subspace gi-Hausdorff
topological space ig-closed.

5. Fuzzifying locally -compactness

Definition 5.1 Let 2 be a class of fuzzifying topolog-
ical spaces. A unary fuzzy predicaie;C € (),
called fuzzifying locally 5-compactness, is given as
follows:

(X,7) € LgC := (Vz)(3B)((z € Intsg(B) ®
T's(B,7/B)). Since[z € Ints(X)] = N}(X) =1,
thenLgC(X,7) > I'3(X, 7). Therefore)= (X, 1) €
Fﬁ — (X,T) S LBC.

Also, since= (X,7) e I' — (X,7) € LC [12]and
E (X,7) eIy — (X,7) e I'[11], = (X, 1) €
I's — (X,7) € LC.

Theorem 5.2 For any fuzzifying topological space
(X,7)andA C X,
E(X,7)eLgCAecTl's— (A ,7/A) € LgC.
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Proof. We have

LpC(X, )

= AV max(0,NJ"(B) +Ts(B,7/B) — 1)
z€X BCX
LsC(A,7/A)

= AV max(0, NS (G) +T4(G, (1/4)/G) - 1).
€A GCA

Now, suppose thgf{X,7) € LzgC @ A € T'g] > A >
0. Then for anyzr € A, there existd3 C X such that
NP (B) + T3(B,7/B) + 15(X — A) — 2 > A.
*)

SetE = AN B € P(A). Then N#"(E) =
\ NEY(C) > NP (B) and for anyU € P(E),
E=CnNnB
we have
(18/A)s/EU) =V 75/A(C)
U=CNE
= 73(D)
U=CNE C=DNA
=V mD)=_V D).
U=DNANE U=DNE
Similarly, (73/B)s/E(U) = \J 7s(D). Thus,
U=DNE

(18/B)p/E = (15/A)s/E andl's(E, (1/A)/E) =

I's(E,(r/B)/E). Furthermore,[E € Tz/B] =

73/ B(B—E) =73/ B(BNE®) V.  7(D) =

BNE¢=BND

78(X — A) = T'g(A). Since= (X,7) e s ® A €

I's — (A,7/A) € T3, from (*) we have for any

x € Athat B

G\C/A max(0, N?"(G) +T3(G, (1/A)/G) — 1)

> NJ* (B) + T(E, (7/A)/E) ~ 1

= N/ (E)+T4(E, (r/B)/E) -1

> NP (B)+ [[3(B,7/B)® E € T3/B] — 1

> NP (B)+T3(B,7/B)+[E €T3/B] — 2

> NP (B)+Ty(B,7/B)+[AcTs —2> A

ThereforeLsC(A,7/A) = AV max(0, NF* (G)+
z€EAGCA

T3(G, (1/A)/G) —1) > A.

Hence[(X,7) € LgC ® A € T'g] < LgC(A,7/A).

As a crisp result of the above theorem we have the
following corollary.

Corollary 5.3 Let A be ang-closed subset of locally
(#-compact spacd X, 7). Then A with the relative
topologyr/A is locally 5-compact.

Local 3 compactness as fuzzy predicates defined in Lukasiewicz logic

The following theorem is a generalization of the
statement "IfX is an g-Hausdorff topological space
and A is an-dense locally3-compact subspace, then
A is 5-open", whered is an3-dense in a topological
spaceX if and only if the 5-closure ofA is X.

Theorem 5.4 For any fuzzifyings-topological space
(X,7)andA C X,

= T (X,7) ® LsC(A,7/A) @ (Clg(4A)
Ae 73-

X) —

Proof. AssumdTy (X, 7)®LgC/(A, 7/A)®(Clz(A)
X)] > A >0.Then
LgC(A,7/A) > A — [TP(X,7) @ (Clzg(A) = X)] +
1=XN>\,ie, B
AV max(0,NJ"(B)+Ts(B,(1/A)/B)-1) >
r€A BCA
X. Thus for anyz € A, there existsB, C A such
that N8 (B,) + [3(B,, (1/A)/B,) — 1 > X.ie.,

V V' 71(K) +T5(By, (1/A)/By) — 1 >
HNA=B, z€KCH

N. Hence there exist&, such thatk, N A = B,,
18(Ky) +T8(By, (1/A)/B;) — 1 > X. Therefore
Tg(KQ;) > N

(1) If for any z € A there existsK, such that
x € K, € B, C A then K, = A and

r€A

75(A) = 75( LEJAKz) > /\ATﬂ(Km) >N > A
(2) If there existsr, € A such thati, N (BS.) + 6,
73(Kz,) 4T3(Ba,, (/A)/B,,) —1 > X. From the
hypothesigTy (X,7) © LsC(A,7/A) @ (Clg(A)
X)] > A > 0, we have[T¥ (X,7) ® (Clg(A)
X)] # 0. So73(Ka,) +1'3(Ba,, (7/4)/Bs,) — 1
+[T(X,7) ® (Clg(A) = X)] =1 > 0. Therefore
75(Ky,) +T6(Bs., (T/A)/By,) — 1+ Ty (X, 7) +
[(Clg(A) = X)]—1-1 > X.Since(13/A) /By, (U) =

V  m/AC)= V V mD)= "V

U=CNBy, U=CNB,,C=DNA U=DNBy,
=76/ B (U), Lp(Ba,, (1/A)/Ba,) = U'5(Ba,; 7/ Bu,)-
From Theorem 4.3 we have;(Bg_ ) > TV(X,7) @
s(By,,7/Bs,) = T25(X7 7)+13(Bs,,7/Bs,) — 1.
Hencers(K,,) +1(Bg, ) +[Clg(A) = X] -2 > A
Now, for anyy € A° we have[Clg(4) = X]
A (1-NZ"(A%) < 1-NJ™ (A°). Since(X, 7)isa
zeX
fuzzifying 5-topological spacers (K, ) +73(Bj, ) —
1 < 75(Ke,) @ 1(B;,) < 73(Ka,) ATa(B5,) <
7o(Ko, 0 B;) < NJ™(Ky, 0BS) < Nj©(4°),
wherey € K, N By C H,, N (Hy, NA° =
H,, N (HS U A°) = H,, N A° C A°. Therefore
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0 <A< 73(Ky,) +73(B5,) +[Clg(A) = X] -2 =
78(Ke,) + 73(Bg,) — 1+ [Clg(A) = X] -1 <
N7 (A%) +1— NP (A°) — 1 = 0, a contradiction.
So, case (2) does not hold. We complete the proof.

Theorem 5.5 For any fuzzifyings-topological space
(Xa 7_)7

= T2(X, 1)@ (LsC(X,7))2 — VavU(U € NF* —
AV (V e NESACIg(V) CUAT3(V))),
where(LgC (X, 71))? := LgC(X,7) ® LgC(X, 7).

Proof. We need to show that for any and U,
x e U,

T9(X, 7)®(LsC (X, 7)?@NE (U) <\ (N (V)A

VCX
A NEX (VAT 3(V,7/V)). Assume thal} (X, 7)®

yeUe

(LsC(X,7))> ® N (U) > XA > 0. Then for any

x € X there exi)§t$$' such that .

T)(X,7) + N (C) + (LsO(X,7))* + NI (U) —

3>\ *)

Since(X, 1) is fuzzifying 5-topological spacd,\fﬁx (C)+

NS (U) =1 < N (C) @ NE¥(U) < NI (C) A

NAY(U) < NEY(CnU)= \/  73(W). There-
zeWCCNU
fore there existd¥ such thatr ¢ W C C N U,

and T) (X, 7) + (LsC(X,7)2 + m5(W) — 2 >
A. By Lemmas 4.3 and 4.5 we haw (X,7) <
5 (C,7/C) and Ty (C,7/C) + Tg(C,7/C) — 1 <

2
T (C,7/C) ® Ts(C,7/C) < TJ(C,7/C).Thus
TV (X,7) 4+ T3(C,7/C) 4+ 75(W) — 2 > X. Since

foranyz € W C U, we haveTy (C,7/C) < 1 —

75/C(W)+ V <<N50<G>A A Nyﬂc(c—c:))),
GCC yeC—-W

so there exist_s}’, x € G C W such that

(NF@G)n N NF(C- G)))
yeC-Ww
> TP (C,7/C) 4+ 75/C(W) —1

> T2C,7/C) + 15(W) — 1,
A NF(C-@))

yeC—-W
+D5(C,7/C) —1 > A

(NE°(G) A

V. NZ(D) = NG U

x

Thus N (G) =
DNC=G
c)y > XN = A+1-T(C7r/C) > A Fur-

thermore, for anyy € C — W, NfC(C’ - Q) =
Vo NSY(Geu ) = NJT(GY) > X and
DNC=CNGe
NBY(G) = NP ((GuCe)NC) > N (GUCe) A
NE"(C) > X.SinceN/™ (G°) = IEB\C/CGCTQ(BC) >
N, foranyy € C — W, there existsB;, such that
y € By C G°and7s(By) > N. SetB® =
U By . ThenC — W C B¢ C G° andrz(B°) >
yeC—-W
A 71s(B;) > M. Again, setV = BN C, then
yeC—-W
Vi @-w)enC=Cuw)nC=CnW =
W C UNnC andVe = B°UC*°. Since(X,7) is
fuzzifying g-topological space,

NZY(V)=NZ(BnC) = NI (B) ANZ(C)
> NP (G) AN (C) > A (1)

By (*) and Theorem 4.375(C°) > TZ(X,7) ®
T(C,7/C) > TY (X, 7)+T3(C,7/C)—1> X.So
T5(V¢) = 15(B°UC®) > 15(B) A13(C°) > X, i.e.,
73(V¢) +s(C,7/C) —1 > Nand

La(V,7/V) =T(V, (1/C)/V)
> 14/C(C— V) +T5(C,7/C) — 1
> 15(Ve) +T(C,7/C) =1 > . (2)

AN (Wvey> N\ NF(Ve) = 75(VE) > A (3)

yeUe yeVe

Thus by (1), (2) and (3), for any € U, there exists

V C U such thatvf™ (V) > A, A NyﬁX(Vc) > A
yeue
andI'g(V,7/V) > A. So

\/ (NES(vyn N\ N (VO ATH(V,7/V)) = A

VCxX yeue

Theorem 5.6 For any fuzzifyings-topological space
(X,7),
T (X,7) @ (LpC(X,7))? — Ty (X, 7)

Proof. By Theorem 5.5, for any € U, we have
V. oNZTWV)A A NSV 2 X ) @
zeVCU yeue
(Ds(C,7/C))* @ NJ™(U)].



12 Local 3 compactness as fuzzy predicates defined in Lukasiewicz logic

Thusl—-NZ™()+ /(NPT (V)A
zEVCU
[17(X,7) ® (Ts(C,7/C))2,

e, [T2(X,7)] > [T2(X,7) ® (Ts(C,7/C))2].

A NFE(ve) >
yeUe

Theorem 5.7 For any fuzzifyings-topological space
(X’ T)7
= T(X,7) ® LgC(X,7) — VAYU(U € N @
FQ(A, T/A) —

JV(V CUAU € N2 Ars(VE) A
La(Vr/V))),
whereU € N := (Va)(z € AANU € N&Y).

Proof. We only need to show that for any, U €
P(X),
[T{(X, 1)@ LeC(X, 1) @ T5(A, /A) @ NY (U)] <
VN (V) ATs(VOATa(V,7/V))
Indeed, if[T0 (X, 7) ® LzC(X,7) @ [g(A,7/A) @
NﬁX(U)] > X > 0, then for anyx € A, there ex-
ists C € P(X) such that[T?(X,7) ® N (C) ®
T5(C,7/C) @ Ta(A, 7/A) @ NT (U)] > .
Since(X, 1) is fuzzifying 8-topological space,

Vo 7(W)

IGngﬁU . .
= NS (CnU) > N (C) AN (U)
> N (C)A NG (U) > N (0) e N (U).

Then there exist§V such thatr €¢ W C C N U, and

[T (X, 7)@7(W)@T5(C, 7/C)@T (A, 7/A)] > A,

Therefore

[T2(X,7)] +18(W) =1 > A+ 2 —Ts(C,7/C) —

La(A, /A =N =X (%)

Since for anyz € W, [T2(X,7)] < 1 — m5(W) +
V (NSY(B)A A N (B9)), we have

BCW yeWwe

\/ (WNEE(B)A N\ NET(B)) > N

BCW yeWe

Thus there exist®, suchthatt ¢ B, CW C CNU

and for anyy € W<, we havesz’X(B;) > N,

NS (B,) > N.SinceN/ ™ (BS) =V 15(G°) >
r€GC B¢

XN, then for anyy € W¢, there existsG,, such

that = € G5, C Bg and73(Gg,) > N. Set

G, = U Gg,, thenWe C G7, C Bj and

Iy’
yewe

8(G3) = A 78(G,) = N.SinceG, 2 By,
yeWwe
NP (Ge) = NPT (By) > Nie, V. mp(H) >
reHCG,

). Thus there existdd, such thatzr ¢ H, C G,
andr3(H,) > X. Hence for anyx € A, there ex-
ists H, and G, such thatzx ¢ H, C G, C U,
3(Hy) > NandW D> UG, 2 U H, 2 A We

z€A z€A
define € S(P(A)) as follows:

\  7s(H,),3H, with H,N A = D,

R(D) = { H.nA=D
0, otherwise
Let T'g(A,7/A) = u > pu—€( e > 0). Then
1 - KR, A)+ V [KWRA) @ FF(p)] > p— e,
p<R
where

[K®R,A)]= AV RB)

r€EA z€EB
= A\ VRD)
z€A xeD
=NV V mHy)zXN

R C75\A

S B/C\X min(1,1 — R(B) 4+ 75\ A(B))

— A min(l,1— \ r(H,)+ V 7(H) =1
BCX H,NA=B HNA=B

So,Kg(R, A) = [K(R, A)] > N.By (*),
[KR,A) @ FF(p)] > p—e—1+ Kg(R,A) >
p—e—14+XN>XA—e

Thus A V R(E)+1-A{0: F(ps)} —1>XA—¢,

r€EA z€EE
and AV R(E)>A—e+ A{0: F(ps)}-

z€A z€E
Hence there exist&x > 0 such thatF(p,) and
A VR(D) > A — e+ a. Therefore for any
z€A zeD

x € A, there existsD, C A such thatp(D,) >

A—e+aand | D, 2 A. Suitably choose such
TEA

thatA — ¢ > 0, thenp(D,) > a > 0. SinceR(D,,) >

o(Dy) >0,D, = Hy NA,ie,Hy NAE pg. By

F(pa), so there exists finitdf,,, H,;, ..., H,, such

that\J;_, H.y 2 AandU;_, H,, € U;Z, G- Set

V =UL Gy andVe = L, G5, ACV C U,

and7s(Ve) > A 75(GS) > N > A Since for
1<i<n *

anyr € A, G, C W C CnU C C, we have

V =L, Gy €W C C.Because\C(C — V) =

V. 7(D) > 713(V¢) > X. Thus by (%),
DNC=CNVe
5\C(C — V) + T'3(C,7/C) —1 > . By Theo-
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rem 5.1 in [11],T5(V,7/V) = T's(V,7/C/V) >
Cp(C,7/C)@m6\C(C —V)] > A
Finally, we have for any: € A,

NEX (V) = NS (UL, Guy) = NEY (U Hay) 2
Tﬁ“JZ:lfiﬁ) > /\ TB(EL%) Ei,Y > A So
1<i<n
BX ﬁiii Bx
Ny (V)= A N (V) > X ThereforeN; (V) A
A

o (V) AT5(Vir/V) > A
Thus \/ (N2" (V) As(VE) ATs(V,7/V)) > A
vCcU

Theorem 5.8 Let (X, 7) and (Y, o) be two fuzzifying
topological space angd € Y* be surjective. Then
E LgC(X,7) @ Cs(f) @ O(f) — LC(Y, o), where

O(f) == (VU)((U €7) = (f(U) € 0).

Proof. If [LgC(X,7) @ Cs(f) ® O(f)] > A > 0,
then for anyx € X there existd/ C X, such that
N2 (U) ®@T5(U, 7/U) © Cs(f) ®O(f)] > A Since
N (U) = \/ 73(V), so there existd” C X

2EVCU
such thatt € V' C U and[r3(V') @ I'3(U,7/U) @
Cs(f) ® O(f)] > A. By Theorem 5.2 in [11] ,

Ls(U,7/U) @ Ca(f)] < [L(f(U),o/f(U))] and

[r(V') @ O(f)] = max(0,7(V') + O(f) — 1)
=max (0, 7(V")+

V/C\Xmin(l,l —7(V)+o(f(V)))—1)
g_max(O, T(VHY+1-7(V')+ U(f(v)) 1)
= o (f(V)) < Ny (F(V) < Ny (F(0).

Sincef is surjective,

LOY,0) = LO(f(X),0)
= A VoIV U
YEF(@)CHX) U'=FU)CF(X)

) [Ny (f(0)) @ [D(f(U), 0/ F(U)))

<
m
=
)
>m>
=
>

yef(x)Sf(X)
> A

Theorem 5.9 Let (X, 7) and (Y, o) be two fuzzifying
topological space an € YX be surjective. Then
E LgC(X,7) @ I5(f) ® Op(f) — LgC(Y, 0).

;o /U]

[r(V) @ O(f) @ Ts(U,7/U) @ Cs(f)]

Proof. By Theorem 5.3 in [11], the proof is similar
to the proof of Theorem 5.8.

Theorems 5.8 and 5.9 are a generalization of the fol-
lowing corollary.

Corollary 5.10 Let (X, r) and(Y, o) be two topolog-
ical space andf : (X, 7) — (Y, o) be surjective map-
ping. If f is ang-continuous (resp3-irresolute), open
(resp.B-open) and X is locally3-compact, then Y is
locally compact (resp. locallg-compact) space.

Theorem 5.11Let {(X;,7s) : s € S} be a family of

fuzzifying topological spaces, then

= LsC( HSXS» HS<TB>s) — Vs(s € SALRC(Xs, (15)s)/
se sE

IT(T Cy SAVEE €S — T AT3(Xy, 7).

Proof. It suffices to show that
LeC(I] Xs, T (18)s) < A [LpC(Xs

seS ses sesS

\/ /\ F,B(Xtﬂ't)]

TCyS teS—T

From Theorem 5.8 and Lemma 4.5 we have for any
tes,

LaC(II Xs, I1 (78)s) = [LpC (]I X, TI (78)s) ®

seS SES SES ses
Cp(pt) ® Op(pr)] < LgC(Xy, 7).
So, A LgC(Xe, 1) > LgC([] Xs, [1 (78)s)

+(78)s) A

teS—-T seS seS
By Theorem 4.7 we have
AN Tp(Xe,7)
TCySteS-T
>[ VT, H (15)s/U)® | NJ°(U))]
UCTI Xs XC H X
sES
>V Vo [T, I1 (78)s /U) ® NPT (U))]
Uc 1‘[ X, XC [ X, s€S
seS
> /\ V' s, T1 (75)s/U) @ N (U))]
XCTI Xs UCTT Xs sES
seS seS
= LgC([] Xs, [ (78)s)-
seS ses
Therefore
LgCO(I] X, I1 (78)s)
seS seS
<[ A LgCXe,m)AN VA Tp(Xe, 7))
teS—-T TCyS teS-T

We can obtain the following corollary in crisp set-
ting.
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Corollary 5.12 Let {X, : A € A} be a family of

nonempty topological spaces. [f[ X, is locally 5-
XeA
compact, then eaclX, is locally 3-compact and all

but finitely manyX, are 5-compact.

6. Conclusion

The present paper investigates topological notions
when these are planted into the framework of Ying’s
fuzzifying topological spaces (in semantic method
of continuous valued-logic). The main contributions

of the present paper are to give characterizations of

fuzzifying g-compactness. Also, we define the con-
cept of locally 8-compactness of fuzzifying topolog-

ical spaces and obtain some basic properties of such
spaces. There are some open questions for further

study:

(1) One obvious problem is: our results are derived in
the tukasiewicz continuous logic. It is possible to gen-
eralize them to more general logic setting, like residu-
ated lattice-valued logic considered in [17-18].

(2) What is the justification for fuzzifying locally-
compactness in the setting of (2) topologies?

(3) What is the justification for fuzzifying locally
strong compactness {3/, L)-topologies etc?
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Answer to jifs15-1335

Dear, Dr. Referees for jifs15-1335

| wish to express my sincere thanks to referees for
their valuable suggestions.

The following statements are my answer for your
comments.

(A) Answer for Review 1

| investigate topological notions in semantic Ying's
method of Lukasiewicz continuous logic. | think it an
important results.

I revise introduction and conclusion.

(B) Answer for Review 2

[1] As your direction, | revise a title as " Lo-
cal 8§ compactness as fuzzy predicates defined in
tukasiewicz logic"

[2] As your direction, | simplify Introduction and
insert section 2 ( Preliminaries and definitions )
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[3,4] For readers, | insert Example 3.3, Remarks 3.2 tain a fuzzifying topologys € (P (X)) as follows:
and 3.7. Every corollaries are the corresponding results
in classical topology. 73(X) =713(0) =1,73({z}) = 0.4,

Remark 3.2 In above definition, we can obtain that ~ 75({y}) = 0.2, 75({2}) = 0.2
7. ={U € P(X) | 7(U) > r} is aclassical topology ~ 78({z,y}) = 0.6,75({z, 2}) = 0.4,75({y, 2}) = 0.2.
for eachr € [0, 1], similarly, (B5), (7). Then(B;), .
is a 3-base of(rs),. if for eachU € (NP), , there (1) We define3; € 3(P(X)) as follows:

existsV € (B3), such thatr € V C U.

Bs({y}) = 0.2,B5({z}) = 0.2,

Bs({z,y}) = 0.6,B5({z, 2}) = Bs({y, 2}) = 0.
Example 3.3Let X = {x,y,z} and we define a g ’ g

fuzzifying topologyr € 3(P(X)) as follows: SinceB; € 75 and N2 (U) < V,cycpy Bs(V) from
Definition 3.1, ther3, is a3-base ofrs.
T(X)=7(0)=1,7({z}) =08, (2) We definer; € S(P(X)) as follows:
T({y}) = 0.6,7({z}) = 0.4,
T({$7y}) = 0'677({?47 Z}) = 0'677({'2’ I}) =04. Cg(X) = Cﬁ(@) = 1,05({35}) =0.2,
_ cs({y}) = 0.2,¢5({z}) = 0.2
SinceN,(A) = E;/CA 7(B), we have cs({z,y}) = 0.6,c5({z, 2}) = cs({y, 2}) = 0.
We havecs C 75 and NP ({z,2}) = m5({x,2}) =
Na(X) =1,Vz € X, 0.4 % vmzvc{mi}Cﬁ(V) = 0.2. Hencfac/g is not a
%zg }})) = ]f\\; (F? y}})) o (]{\;U(?}) —})0 8, 0. -base ofrs. Moreover,(cs)os = {X,0,{z,y}} is
y(Y Y, 25) = T, Ys) = -b f(15)0.3 = x}, {x x, 2
NAEY = Vo) = 04N D = 06, pomeneaa o T bk tnul {2l

SinceCl(A)(z) =1 — N,(X — A),
Remark 3.7 From Remark 3.2 and Definition 3.6,

Cl{z})(x) =1—- N,({y, z}) = since(X, 7,.) is a classical topology for eache [0, 1]
Cl({z})(y) =1 - Ny({y,2}) = 0 4 and(7g), is the collection of al3-open sets in X, then
Cl({z})(2) =1 - N.({y,z}) =04, a g-subbase of73), is a collection(ypg), of G-open
Cl({y}) = (0.2,1,0.6),Cl({z}) = (0 2,0.2,1), sets such that everg-open set of(3),. is the union
Cl({z,y}) = (1,1,0.6),Cl({z, z}) = (1,0.4,1), of sets that are finite intersections gf, : A € A} C
Cl({y,z}) =(0.2,1,1),Cl(X) = (1,1,1), (¢s)r with a finite indexA.

C1(0) = (0,0,0).

Then Int(Cl(A)) = A and Ci(Int(Cl(A))) =
Cl(A) forall A € P(X). From Definition 2.2, we ob-



