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Abstract. In this paper, we introduce the concepts of (L,M)-fuzzy soft quasi-coincident neighborhood spaces

and study their properties, where L be a completely distributive lattice with 0 and 1 elements and M be a strictly

two-sided, commutative quantale lattice. Also, the relationships between these concepts were investigated. Fur-

thermore, a characterization of LFS-continuous and LSN-mappings were given.
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1. Introduction

In 1999, D. Molodtsov [29] introduced the theory of soft sets as a new mathematical tool

for dealing with uncertainties. The soft set theory has been applied to many different fields (

[1],[2],[6],[7],[10],[11], [21],[27],[34],[45],[40],[46]). Later, few researches (see, for example,
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[3], [8], [19], [20], [28], [35], [41], [47]) introduced and studied the notion of soft topological

spaces.

Höhle and Šostak [16] introduced L-fuzzy topologies with algebraic structure L(cqm, quan-

tales, MV -algebra). Sayed[33] we introduce the concepts of (L,M)-fuzzy soft topological

spaces and (L,M)-fuzzy soft filter spaces.

In this paper, we introduce the concepts of (L,M)-fuzzy soft quasi-coincident neighborhood

spaces where L be a completely distributive lattice with 0 and 1 elements and M be a strictly two-

sided, commutative quantale lattice. Also, the relationships between these concepts were inves-

tigated. Furthermore, a characterization of LFS-continuous and LSN-mappings were given.

2. Preliminaries

Definition 2.1 [13]. Let (L,≤) be a poset. Then

(1) L is called a Boolean lattice, if (i) L is a distributive lattice; (ii) L has 0L and 1L; (iii) each

a ∈ L has the complement a′ ∈ L.

(2) L is called a complete Boolean lattice, if (i) L is a complete distributive lattice; (ii) L has

0L and 1L; (iii) each a ∈ L has the complement a′ ∈ L.

Definition 2.2 [14],[15],[36],[43]. A triple (L,≤,�) is called a strictly two-sided commutative

quantale ( stsc-quantale, for short) if and only if it satisfies the following conditions:

(L1) (L,≤,∨,∧,1,0) is a completely distributive lattice where 1 is the universal upper bound

and 0 is the universal lower bound.

(L2) (L,�) is a commutative semigroup.

(L3) x = x�1 for each x ∈ L.

(L4) � is distributive over arbitrary joins, i.e.(
∨

i∈Γ ai)�b =
∨

i∈Γ(ai�b).

Let (L,≤,�) be a stsc-quantale. Then for each x,y∈ L we define (x�y)≤ z⇐⇒ x≤ (y→ z).

The it satisfies Galois correspondence. i.e. (x� y)≤ z if and only if x≤ (y→ z).

Definition 2.3 [38]. Let E be a set of parameters, X be an initial universe. A pair ( f ,E) is called

a fuzzy soft set over X , if f is a mapping given by f : E→ IX . We also denote ( f ,E) by fE . The

set of all fuzzy soft set is denoted by FS(X ,E).
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Definition 2.4 [26]. A fuzzy soft set fE on X is called a null fuzzy soft set and denoted by

0̃ if fe = 0, for each e ∈ E.

Definition 2.5 [4]. A fuzzy soft set fE on X is called an absolute fuzzy soft set and denoted by

1̃ if fe = 1, for each e ∈ E.

Definition 2.6 [25]. Let E be a set of parameters, X be an initial universe, L be a complete

Boolean lattice and A ⊆ E. An L-fuzzy soft set fA over (X ,E) is a mapping fA : E → LX such

that fA(e) = 0 for all e 6∈ A. The set of all L-fuzzy soft set over (X ,E) is denoted by L-FS(X ,E).

In other words, an L-fuzzy soft set fE over X is a parameterized family of L-fuzzy sets in the

universe X . If L = [0,1], then every L-fuzzy soft set is a fuzzy soft set.

Definition 2.7 [25]. Let fA,gB ∈ L-FS(X ,E). Then

(1) fA is said to by fuzzy soft subset of gB, denoted by fA v gB if fA(e)⊆ gB(e) for all e ∈ E,

that is fA(e)(x)≤ gB(e)(x) for all e ∈ E, and for all x ∈ X .

Two L-fuzzy soft sets fA and gB over (X ,E) are said to be equal, denoted by fA ∼= gB if

fA v gB and gB v fA.

(2) The union of fA and gB is also L-fuzzy soft set hC, defined by hC(e) ∼= fA(e)∨gB(e) for

all e ∈ E, where C = A∪B. Here we write hC = fAtgB.

(3) The intersection of fA and gB is also L-fuzzy soft set hC, defined by hC(e)∼= fA(e)∧gB(e)

for all e ∈ E, where C = A∩B. Here we write hC = fAugB.

Definition 2.8 [39]. The fuzzy soft set fA ∈ FS(X ,E) is called fuzzy soft point if A = {e} ⊆ E

and fA(e) is a fuzzy point in X i.e. there exists x ∈ X such that fA(e)(x) = t (0 < t ≤ 1) and

fA(e)(y) = 0 for all y ∈ X \{x}. We denote this fuzzy soft point fA = et
x = {(e,xt)} and the set

of all fuzzy soft point by SPe
t (X ,E).
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Definition 2.9 [39]. Let et
x, fA ∈ FS(X ,E). we say that et

x∈̃ fA read as et
x belongs to the fuzzy

soft set fA if for the element e ∈ A, t ≤ fA(e)(x).

Definition 2.10 [5]. Let (X ,E) and (Y,E∗) be classes of fuzzy soft sets over X and Y with

attributes from E and E∗ respectively. Let ρ : X→Y and ψ : E→ E∗ be mapping. Then a fuzzy

soft mapping f = (ρ,ψ) : (X ,E)→ (Y,E∗) would be defined as follows

For a fuzzy soft set FA in (X ,E), f (FA) is a fuzzy soft set in (Y,E∗) obtained as follows: for

β ∈ ψ(E)⊆ E∗ and y ∈ Y,

f (FA)(β )(y) =


∨x∈ρ−1(y)

(
∨α∈ψ−1(β ) FA(α)

)
(x),

if ρ−1(y) 6= φ , ψ−1(β ) 6= φ ,

0, if otherwise.

f (FA) is called fuzzy soft image of the fuzzy soft set FA.

Definition 2.11 [39]. Let fA,gB ∈ FS(X ,E). Then fA is said to be soft quasi-coincident with

gB, denoted by fAqgB, if there exists e ∈ E and x ∈ X such that fA(e)(x)+gB(e)(x)> 1.

If fA is not soft quasi-coincident with gB, then we writ fAqgB,

Definition 2.12 [5]. Let (X ,E) and (Y,E∗) be classes of fuzzy soft sets over X and Y with

attributes from E and E∗ respectively. Let ρ : X→Y, ψ : E→ E∗ be mappings and f = (ρ,ψ) :

(X ,E)→ (Y,E∗) a fuzzy soft mapping. Then for a fuzzy soft set gB in (Y,E∗) f−1(gB) is a

fuzzy soft set in (X ,E) obtained as follows: for α ∈ ψ−1(E∗)⊆ E and x ∈ E,

f−1(gB)(α)(x) = gB(ψ(α))(ρ(x)).

f−1(gB) is called a fuzzy soft inverse image of the fuzzy soft set gB.

Let L be a completely distributive lattice with 0 and 1 elements and M be a strictly two-sided,

commutative quantale lattice.

Definition 2.13.[33] A map T : L-FS(X ,E) −→M is called an (L,M)-fuzzy soft topology

on (X ,E) if it satisfies the following conditions:

(LSO1) T (0̃) = T (1̃) = 1.
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(LSO2) T ( fA1 u fA2)≥T ( fA1)�T ( fA2), for all fA1, fA2 ∈ L-FS(X ,E).

(LSO3) T (
⊔

i∈Λ fAi ≥
∧

i∈Λ)T ( fAi), for all fAi ∈ L-FS(X ,E).

The triple (X ,E,T ) is called (L,M)-fuzzy soft topological space.

Let T1 and T2 be (L,M)-fuzzy soft topologies on (X ,E). We say that T1 is finer than T2 (T2

is coarser than T1), denoted by T2 vT1, if T2( fA)≤T1( fA), for all fA ∈ L-FS(X ,E).

Let (X ,E,T1) and (Y,E∗,T2) be (L,M)-fuzzy soft topological spaces. A soft map φ :

(X ,E,T1)→ (Y,E∗,T2) is called LFS-continuous if and only if T2( fA) ≤ T1(φ
←( fA)), for

all fA ∈ L-FS(Y,E∗).

Definition 2.14. [33] A map F : L-FS(X ,E) −→M is called an (L,M)-fuzzy soft filter on

(X ,E) if it satisfies the following conditions:

(LSF1) F (0̃) = 0 and F (1̃) = 1.

(LSF2) F ( fA1 u fA2)≥F ( fA1)�F ( fA2), for all fA1, fA2 ∈ L-FS(X ,E).

(LSF3) If fA1 v fA2 we have F ( fA1)≤F ( fA2).

The triple (X ,E,F ) is called an (L,M)-fuzzy soft filter space.

3. (L,M)-fuzzy soft quasi- coincident neighborhood spaces

Definition 3.1. An (L,M)-fuzzy soft quasi-coincident neighborhood system on (X ,E) is a

set Q = {Qet
x

: et
x ∈ SPe

t (X ,E)} of maps Qet
x

: L-FS(X ,E)→ M such that for each fA,gB ∈

L-FS(X ,E), we have

(LSN1) Qet
x

is an (L,M)-fuzzy soft filter on (X ,E).

(LSN2) Qet
x
( fA)> 0 implies et

xq fA.

(LSN3) Qet
x
( fA) =

∨
et

xqgBv fA

(∧
et

yqgB
Qet

y)
(gB)

)
.

The triple (X ,E,Q) is called an (L,M)-fuzzy soft quasi-coincident neighborhood space. Qet
x
( fA)

can be interpreted as the degree to which fA is a soft quasi-coincident neighborhood of et
x.
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An LSN-map between (L,M)-fuzzy soft quasi-coincident neighborhood spaces (X ,E,Q1)

and

(Y,E∗,Q2) is a soft map φ : (X ,E,Q1)→ (Y,E∗,Q2) such that (Q1)et
x
(φ←( fA))≥ (Q2)φ→(et

x)
( fA)

for all fA ∈ L-FS(Y,E∗) and for all et
x ∈ SPe

t (X ,E).

Theorem 3.2. Let (X ,E,T ) be an (L,M)-fuzzy soft topological space and et
x ∈ SPe

t (X ,E).

Define a map QT
et

x
: L-FS(X ,E)→M as:

QT
et

x
( fA) =


∨
{T (gB) : et

xqgB v fA} if et
xq fA,

0 if et
xq fA.

Then:

(1) QT = {QT
et

x
: et

x ∈ SPe
t (X ,E)} is an (L,M)-fuzzy soft-coincident neighborhood system

on (X ,E).

(2) If t < s for t,s ∈ L then QT
et

x
( fA)≤QT

es
x
( fA).

Proof. (1) (LSN1) (LSF1) and (LSF3) are easily proved.

(LSF2) Suppose there exist fA,gB ∈ L-FS(X ,E) such that

QT
et

x
( fAugB) 6≥QT

et
x
( fA)�QT

et
x
(gB).

By the definition of QT
et

x
( fA) and (L4) of Definition 1.4, there exist fA1 ∈ L-FS(X ,E) with

et
xq fA1 v fA such that

QT
et

x
( fAugB) 6≥T ( fA1)�QT

et
x
(gB).

Again, by the definition of QT
et

x
(gB) and (L4) of Definition 1.4, there exist gB1 ∈ L-FS(X ,E)

with et
xqgB1 v gB such that

QT
et

x
( fAugB) 6≥T ( fA1)�T (gB1).

Since et
xq( fA1ugB1)v fAugB we have

QT
et

x
( fAugB)≥T ( fA1ugB2)≥T ( fA1)�T (gB1).
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It is a contradiction. Hence, for all fA,gB ∈ L-FS(X ,E),

QT
et

x
( fAugB)≥QT

et
x
( fA)�QT

et
x
(gB).

So, Qet
x

is an (L,M)-fuzzy soft filter on (X ,E).

(LSN2) It is easy from the definition of QT
et

x
.

(LSN3) For all fA ∈ L-FS(X ,E) with et
xqgB v fA we have

T (gB)≤
∧
{QT

es
y
(gB) : es

yqgB} ≤QT
et

x
(gB)≤QT

et
x
( fA).

Therefore,

QT
et

x
( fA) =

∨
et

xqgBv fA

T (gB)≤
∨

et
xqgB

( ∧
es

yqgB

QT
es

y
(gB)

)
≤QT

et
x
( fA).

This means that

QT
et

x
( fA) =

∨
et

xqgBv fA

( ∧
es

yqgB

QT
es

y
(gB)

)
.

(2) For t < s with t,s ∈ L and for all fA ∈ L-FS(X ,E) since

{gB ∈ L-FS(X ,E) : et
xqgB v fA} ⊂ {hC ∈ L-FS(X ,E) : es

xqhC v fA},

we have QT
et

x
( fA)≤QT

es
x
( fA).

Example 3.3. Let X = {x,y} be a set, E = {e1,e2,e3} be a set of parameters and L = M =

[0,1] a completely distributive lattice. Define a binary operation � on M = [0,1] by x� y =

max{0,x+ y−1}. Then ([0,1],≤,�) is a stsc-quantale. Let gB,hC ∈ L-FS(X ,E) be defined as

follows:

gB ={g(e1) = {(x,0.6),(y,0.3)}, g(e2) = 0, g(e2) = 0}

hC ={h(e1) = {(x,0.5),(y,0.7)}, h(e2) = 0, h(e2) = 0}.
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Then we have

gBuhC ={(gBuhC)(e1) = {(x,0.5),(y,0.3)},

(gBuhC)(e2) = 0,(gBuhC)(e2) = 0}

gBthC ={(gBthC)(e1) = {(x,0.6),(y,0.7)},

(gBthC)(e2) = 0,(gBthC)(e2) = 0}.

We define an (L,M)-fuzzy soft topology T : L-FS(X ,E)→ [0,1] as follows:

T ( fA) =



1, if fA ∼= 0̃ or 1̃,

0.8, if fA ∼= gB,

0.4, if fA ∼= hC,

0.6, if fA ∼= gBthC,

0.2, if fA ∼= gBuhC,

0, otherwise.

We obtain QT
(e1)0.5

x
: L-FS(X ,E)→ [0,1] as follows:

QT
(e1)0.5

x
( fA) =


1, if fA ∼= 1̃,

0.8, if gB v fA,

0, otherwise.

Theorem 3.4. Let Q = {Qet
x

: et
x ∈ SPe

t (X ,E)} be a family of Qet
x

: L-FS(X ,E)→M satis-

fying (LSN1) and (LSN2) of definition 3.1.

We define a map T Q : L-FS(X ,E)→M as follows:

T Q( fA) =


∧
{Qet

x
( fA) : et

xq fA}, if fA 6∼= 0̃,

1, if fA ∼= 0̃.

Then we have the following properties.

(1) T Q is an (L,M)-fuzzy soft topology on (X ,E).

(2) If Q = {Qet
x

: et
x ∈ SPe

t (X ,E)} is an (L,M)-fuzzy soft quasi-coincident neighborhood

system on (X ,E) then QT Q

et
x

= Qet
x

for all (e,xt) ∈ SPe
t (X ,E)}.

(3) If Q1 and Q2 are (L,M)-fuzzy soft quasi- coincident neighborhood systems on (X ,E)

such that T Q1 = T Q2 then Q1 = Q2.
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Proof. (1) (LSO1) is trivial.

(LSO2) For all fA,gB ∈ L-FS(X ,E) we have

T Q( fAugB) =
∧
{Qet

x
( fAugB) : et

xq( fAugB)}

≥
∧
{Qet

x
( fA)�Qet

x
(gB) : et

xq( fAugB)}

≥
(∧

Qet
x
( fA) : et

xq( fAugB)
)
�
(∧

Qet
x
(gB) : et

xq( fAugB)
)

≥
(∧

Qet
x
( fA) : et

xq fA
)
�
(∧

Qet
x
(gB) : et

xqgB
)

= T Q( fA)�T Q(gB).

(LSO3) Since Qet
x
(
∨

i∈Γ fAi)≥
∧

i∈Γ Qet
x
( fAi).

T Q(
∨

i∈Γ fAi) =
∧
{Qet

x
(
∨
i∈Γ

fAi) : et
xq(
∨
i∈Γ

fAi)}

≥
∧
{
∧
i∈Γ

Qet
x
( fAi) : et

xq( fAi)}

≥
∧
i∈Γ

{
∧

Qet
x
( fAi) : et

xq( fAi)}

=
∧
i∈Γ

T Q( fAi).

(2)

QT Q

et
x

( fA) =
∨
{T Q(gB) : et

xqgB v fA}

=
∨{∧

{Qes
y(gB) : es

yqgB} : et
xqgB v fA

}
= Qet

x
( fA) by (LSN3).

(3) Since T Q1 = T Q2 for fA ∈ L-FS(X ,E) and et
x ∈ SPe

t (X ,E) we have
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(Q1)et
x
( fA) =

∨{∧
{(Q1)es

y(gB) : es
yqgB} : et

xqgB v fA
}

=
∨{

T Q1(gB) : et
xqgB v fA

}
=
∨{

T Q2(gB) : et
xqgB v fA

}
=
∨{∧

{(Q2)es
y(gB) : es

yqgB} : et
xqgB v fA

}
= (Q2)et

x
( fA).

Hence Q1 = Q2.

Lemma 3.5. If for every et
xq fA there exists (gB)et

x
∈ L-FS(X ,E) such that et

xq(gB)et
x
v fA

then we have fA =
∨

et
xq fA(gB)et

x
.

Theorem 3.6. Let (X ,E,T ) be an (L,M)-fuzzy soft topological space and QT an (L,M)-

fuzzy soft quasi-coincident neighborhood system in (X ,E,T ). Then T = T QT
.

Proof. Since QT
et

x
( fA) =

∨
{T (gB) : et

xqgB v fA} ≥T ( fA) for all et
xq fA we have:

∧
{Qet

x
( fA) : et

xq fA} ≥T ( fA).

So T QT ≥T .

Conversely there exists fA ∈L-FS(X ,E) such that T QT
( fA) 6≤T ( fA).. For each et

x ∈ SPe
t (X ,E)

with et
xq fA if (e,xt)q(gB)(e,xt) v fA then by Lemma 3.5. we get fA =

∨
et

xq fA(gB)et
x
. So,

T ( fA) = T (
∨
(gB)et

x
)≥

∧
T ((gB)et

x
).

Thus
∧

T ((gB)et
x
) 6≥T QT

( fA) =
∧
{QT

et
x
( fA) : et

xq fA}. There exists (gB)et
x

with et
xq(gB)et

x
v fA

such that:

T ((gB)et
x
) 6≥

∧
{QT

et
x
( fA) : et

xq fA}.
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It is a contradiction. Thus T ≥T QT
.

Theorem 3.7. Let (X ,E,Q1) and (Y,E∗,Q2) be two (L,M)-fuzzy soft quasi-coincident neigh-

borhood spaces. A soft mapping φ : (X ,E,Q1)→ (Y,E∗,Q2) is an LSN-map if and only if

φ : (X ,E,T Q1)→ (Y,E∗,T Q2) is LFS-continuous.

Proof. Since for all fA ∈L-FS(Y,E∗), for all et
x ∈ SPe

t (X ,E), et
xqφ←( fA) if and only if (φ→(et

x))q fA

and

{(e∗)t
y ∈ SPe∗

t (Y,E∗) : (e∗)t
yq fA}

⊃ {(φ→(et
x)) ∈ SPe∗

t (Y,E∗) : et
x ∈ SPe

t (X ,E),(φ→(et
x))q fA,}

we have:

T Q2( fA) =
∧
{(Q2)(e∗)t

y
( fA) : (e∗)t

yq fA}

≤
∧
{(Q2)φ→(et

x)
( fA) : φ

→(et
x)q fA}

≤
∧
{(Q1)et

x
(φ←( fA)) : et

xqφ
←( fA)}

= T Q1(φ←( fA)).

Thus, φ : (X ,E,T Q1)→ (Y,E∗,T Q2) is LFS-continuous.

Conversely since for all fA ∈ L-FS(Y,E∗),T Q2( fA)≤ T Q1(φ←( fA)),Q1 = QT Q1 and Q2 =

QT Q2 , we have

(Q2)φ→et
x
( fA) =

∨
{T Q2(gB) : φ

→(et
x)qgB v fA}

≤
∨
{T Q2(gB) : et

xqφ
←(gB)v φ

←( fA)}

≤
∨
{T Q1(φ←(gB)) : et

xqφ
←(gB)v φ

←( fA)}

≤ (Q1)et
x
(φ←( fA)).

Hence the proof is complete.
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From Theorems 3.6 and 3.7 we obtain the following corollary.

Corollary 3.8. Let (X ,E,T1) and (Y,E∗,T2) be two (L,M)-fuzzy soft topological spaces.

A soft map φ : (X ,E,T1)→ (Y,E∗,T2) is LFS-continuous if and only if φ : (X ,E,QT1)→

(Y,E∗,QT2) is an LSN-map.
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