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Abstract. Different from the separation axioms in the framework of (L, M)-fuzzy convex spaces defined by Liang et al.(2019).
In this paper, we give some new investigations on separation axioms in (L, M)-fuzzy convex structures by L-fuzzy hull
operators and r-L-fuzzy biconvex. We introduce the concepts of r-LFSi spaces where i = {0, 1, 2, 3, 4}, and obtain various
properties. In particular, we discuss the invariance of these separation properties under subspace and product.
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1. Introduction and preliminaries

Separation of sets constitutes one of the funda-
mental facets of abstract convexity theory in [27, 32]
which plays an important role in various branches
of mathematics where abstract convexity theory has
been applied to many different mathematical research
fields, such as topological spaces, lattices, metric
spaces and graphs (see, for example, [10, 13, 20,
21, 26, 29, 30, 33]). In particular, convexity appears
naturally in topology and has many topological prop-
erties, such as product spaces, convex variables and
separation (see, for example, [1–4, 8, 9, 25, 31]).

Zadeh [36] introduced the notion of a fuzzy sub-
set, which it have been applied to various branches of
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mathematics. For a generalization of a convex struc-
ture, Rosa in 1994 introduced the notion of fuzzy
convex structure in [20, 21] which is called I-convex
structure. Also, he studied a fuzzy topology together
with a fuzzy convexity on the same underlying set
X, and introduced fuzzy topology fuzzy convex-
ity spaces and the notion of fuzzy local convexity.
Recently, there has been significant research on fuzzy
convex structures ([11, 14–17, 23, 34, 35]).

Separation axioms constitute one of the facets of
the theory of convex structures. Jamison [8] intro-
duced the separation axioms and gave a restricted
version of the polytope screening characterization
in terms of screening with half-spaces. Rosa [20]
introduced the separation axioms in L-convex struc-
tures. However, separation axioms have not been
defined in the setting of (L, M)-fuzzy convex. By
this motivation, Liang et al. [12] introduced the sep-
aration axioms in the framework of (L, M)-fuzzy
convex spaces. Sayed et al. [22] defined a new
class of L-fuzzy sets called r-L-fuzzy biconvex sets
in (L, M)-fuzzy convex structures. The transforma-
tion method between L-fuzzy hull operators and
(L, M)-fuzzy convex structures were introduced, and
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a characterization of the product of the L-fuzzy hull
operator was obtained. Different from the separation
axioms in the framework of (L, M)-fuzzy convex
spaces defined by Liang et al. [12], the main con-
tributions of the present paper are to give some new
investigations on separation axioms in (L, M)-fuzzy
convex structures by L-fuzzy hull operators and r-L-
fuzzy biconvex.

Throughout this paper, let X be a non-empty set,
both L and M be a completely distributive lattices
with order reversing involution ′ where⊥M (⊥L) and
�M(�L) denote the least and the greatest elements in
M(L) respectively, and M⊥M = M − {⊥M}(L⊥L =
L− {⊥L}). Recall that an order-reversing involution
′ on L is a map (−)′ : L −→ L such that for any
a, b ∈ L, the following conditions hold: (1) a ≤ b

implies b′ ≤ a′. (2) a′′ = a. The following properties
hold for any subset {bi : i ∈ I} ∈ L:

(1) (
∨
i∈I

bi)
′ =

∧
i∈I

b′i; (2) (
∧
i∈I

bi)
′ =

∨
i∈I

b′i.

An L-fuzzy subset of X is a mapping μ : X −→ L

and the family LX denoted the set of all fuzzy subsets
of a given X [5]. The least and the greatest elements
in LX are denoted by 0 and 1, respectively. For each
α ∈ L, let α denote the constant L-fuzzy subset of
X with the value α. Two L-fuzzy sets are said to be
disjoint if their supports are disjoint where support
of μ = {x ∈ X : μ(x) > 0}. The complementation of
a fuzzy subset are defined as μ′(x) = (μ(x))′ for
all x ∈ X, (e.g. μ′(x) = 1− μ(x) in the case of L =
[0, 1]). Let X =∏

i∈� Xi and μi ∈ LXi, then μ ∈ LX

denote the product of all μi ∈ LXi are defined as
following μ(x) = ∧i∈�μi(xi) for all x ∈ X [28].

Definition 1.1. ([7]) Let ∅ /= Y ⊆ X and μ ∈ LX; the
restriction of μ on Y is denoted by μ|Y. An extension
of μ ∈ LY on X, denoted by μX is defined by

μX(x) =
{

μ(x), if x ∈ Y,

⊥L, if x ∈ X− Y.

Definition 1.2. ([6, 18]) A fuzzy point xt for t ∈ L⊥L

is an element of LX such that

xt(y) =
{

t, if y = x,

⊥L, if y /= x.

The set of all fuzzy points in X is denoted by Pt(X).
A fuzzy point xt is a fuzzy singleton if t = �L and
denoted by χ{x} for all x ∈ X. Two fuzzy points xt

and ys are distinct if x /= y.

Definition 1.3. ([24]) The pair (X, C) is called
an (L, M)-fuzzy convex structure ( (L, M)-fcs, for
short), where C : LX −→ M satisfying the following
axioms:

(LMC1) C(0) = C(1) = �M .
(LMC2) If {μi : i ∈ �} ⊆ LX is nonempty, then

C(
∧
i∈�

μi) ≥
∧
i∈�

C(μi).

(LMC3) If {μi : i ∈ �} ⊆ LX is nonempty and
totally ordered by inclusion, then

C(
∨
i∈�

μi) ≥
∧
i∈�

C(μi).

The mappingC is called an (L, M)-fuzzy convexity
on X and C(μ) can be regarded as the degree to which
μ is an L-convex fuzzy set.

Definition 1.4. [19] Let f : X −→ Y. Then the image
f→(μ) ofμ ∈ LX and the preimagef←(ν) of ν ∈ LY

are defined by:

f→(μ)(y) =
∨
{μ(x) : x ∈ X, f (x) = y}

and f←(ν) = ν ◦ f, respectively. It can be verified
that the pair (f→, f←) is a Galois connection on
(LX,≤) and (LY,≤).

Definition 1.5. [24] Let (X, C) and (Y, D) be (L, M)-
fuzzy convex structures. A function f : X −→ Y is
called:
(1) An (L, M)-fuzzy convexity preserving function
if C(f←(μ)) ≥ D(μ) for all μ ∈ LY .

(2) An (L, M)-fuzzy convex-to-convex function if
D(f→(μ)) ≥ C(μ) for all μ ∈ LX.

Theorem 1.6. ([24]) Let (X, C) be an (L, M)-fuzzy
convex structure, ∅ /= Y ⊆ X. Then (Y, C|Y ) is an
(L, M)-fuzzy convex structure on Y where

(C|Y )(μ) =
∨
{C(ν) : ν ∈ LX, ν|Y = μ}

for each μ ∈ LY . The pair (Y, C|Y ) is called an
(L, M)-fuzzy convex substructure of (X, C).

Definition 1.7. ([24]) Let {(Xi, Ci) : i ∈ �} be a set of
(L, M)-fuzzy convex structures. Let X be the prod-
uct of the sets Xi for i ∈ �, and let πi : X −→ Xi

the projection for each i ∈ �. Define a mapping ϕ :
LX −→ M by

ϕ(μ) =
∨
i∈�

∨
π←

i
(ν)=μ

Ci(ν) for each μ ∈ LX.
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Then the product convexity C of X is the one gen-
erated by subbase ϕ. The resulting (L, M)-fuzzy
convex structure (X, C) is called the product of
{(Xi, Ci) : i ∈ �} and is denoted by

∏
i∈�(Xi, Ci).

Theorem 1.8. ([24]) Let (X, C) be the product of
{(Xi, Ci) : i ∈ �}. Then for all i ∈ �, πi : X −→ Xi

is an (L, M)-fuzzy convexity preserving function.
Moreover, C is the coarsest (L, M)-fuzzy convex
structure such that {πi : i ∈ �} are (L, M)-fuzzy con-
vexity preserving functions.

Theorem 1.9. ([22]) Let (X, C) be the product of
{(Xi, Ci) : i ∈ �}. If π→i (

∏
i∈�

μi) = μi for any μi ∈
LXi . Then for each i ∈ �, πi : X −→ Xi is an
(L, M)-fuzzy convex-to-convex function.

Throught this paper, we always assume that each
projection πi (i ∈ �) is an (L, M)-fuzzy convex-to-
convex function.∀μ ∈ LX, ∃μi ∈ LXi , such thatμ =∏
i∈�

μi and π→i (μ) = μi for each i ∈ �.

Definition 1.10. ([22]) Let (X, C) be (L, M)-fuzzy
convex structure, r ∈ M⊥M and μ ∈ LX. Then μ

is called r-L-fuzzy biconvex set if C(μ) ≥ r and
C(μ′) ≥ r.

Proposition 1.11. ([22]) Let (X, C) be an (L, M)-
fuzzy convex structure, ∅ /= Y ⊆ X and μ is an r-L-
fuzzy biconvex set in (X, C). Then μ|Y is an r-L-fuzzy
biconvex set in (Y, C|Y ).

Theorem 1.12. ([22]) Let (X, C) be an (L, M)-fuzzy
convex structure. For each μ ∈ LX and r ∈ M⊥M we
define a mapping COC : LX ×M⊥M −→ LX as fol-
lows:

COC(μ, r) =
∧
{ν ∈ LX : μ ≤ ν, C(ν) ≥ r}.

For μ, ν ∈ LX and r, s ∈ M⊥M the operator COC
satisfies the following conditions:

(1) COC(0, r) = 0.

(2) μ ≤ COC(μ, r).
(3) If μ ≤ ν, then COC(μ, r) ≤ COC(ν, r).
(4) If r ≤ s, then COC(μ, r) ≤ COC(μ, s).
(5) COC(COC(μ, r), r) = COC(μ, r).
(6) For {μi : i ∈ �} ⊆ LX is nonempty and totally

ordered by inclusion,

COC(
∨
i∈�

μi, r) =
∨
i∈�

COC(μi, r).

A mapping COC is called L-fuzzy hull operator.

2. r-LFS0 space and r-LFS1 space

Definition 2.1. Let xt, ys ∈ Pt(X) such that x /= y and
r ∈ M⊥M . Then an (L, M)-fuzzy convex structure
(X, C) is said to be:

(1) r-LFS0 space if COC(xt, r) /= COC(ys, r).
(2) r-LFS1 space if COC(xt, r) /= COC(ys, r) such

that xt /∈ COC(ys, r) and ys /∈ COC(xt, r).

Proposition 2.2. If (X, C) is an r-LFS0 space then for
distinct fuzzy points xt and ys, there exists μ, ν ∈ LX

such that C(μ) ≥ r, C(ν) ≥ r and μ /= ν with xt ∈ μ

and ys ∈ ν.

Proof. Clear by Definition 2.1. �
The next example shows that the converse of

Proposition 2.2 is not true.

Example 2.3. Let L = M = [0, 1] and X = {a, b}.
Let μi be a fuzzy subsets of X where i = {1, 2}
defined as follows:

μ1(a) = 0.3, μ1(b) = 0.0,

μ2(a) = 0.7, μ2(b) = 1.0.

Define an (L, M)-fuzzy convexity C : [0, 1]X −→
[0, 1] on X as follows:

C(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if λ ∈ {0, 1},

1
6 , if λ = μ1,

1
5 , if λ = μ2,

0, otherwise.

For t ∈ [0.7, 1] and s ∈ (0, 1] we obtain only two
fuzzy sets which are 1 and μ2 such that at, bs ∈ 1
and at, bs ∈ μ2 with C(1) ≥ 1

5 and C(μ2) ≥ 1
5 but

(X, C) is not r-LFS0 space because COC(at,
1
5 ) =

COC(bs,
1
5 ) = μ2.

Proposition 2.4. Let (X, C) be an r-LFS0 space and
∅ /= Y ⊆ X. Then (Y, C|Y ) is r-LFS0 space.

Proof. Let (X, C) be an r-LFS0 space, xt, ys ∈ Pt(Y )
such that x /= y and μ = COC(xt, r), ν = COC(ys, r)
such that μ /= ν.

First, we will prove that μ|Y /= ν|Y. So, suppose
μ|Y = ν|Y. Then, t ≤ (μ|Y )(x) = (ν|Y )(x) and s ≤
(μ|Y )(y) = (ν|Y )(y) for all x, y ∈ Y. It implies that

t ≤ μ(x), t ≤ ν(x), s ≤ μ(y) and s ≤ ν(y).
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Therefore, t ≤ (μ ∧ ν)(x) ≤ μ(x) = COC(xt, r)(x).
From Definition 1.3 (2) and Theorem 1.12, we obtain
(μ ∧ ν)(x) = μ(x). Similarly (μ ∧ ν)(y) = ν(y). So,
μ = ν and it is a contradiction for the assumption that
μ /= ν. Hence, μ|Y /= ν|Y.

Second, we will prove that COC|Y (xt, r) = μ|Y
and COC|Y (ys, r) = ν|Y. So, suppose that there
exist μ1, ν1 ∈ LY such that (C|Y )(μ1) ≥ r and
(C|Y )(ν1) ≥ r, with t ≤ μ1(x) ≤ (μ|Y )(x) and s ≤
ν1(y) ≤ (ν|Y )(y) for all x, y ∈ Y. Since,

(C|Y )(μ1) ≥ r and (C|Y )(ν1) ≥ r,

we have μ1 = λ|Y and ν1 = ρ|Y where λ, ρ ∈
LX, C(λ) ≥ r and C(ρ) ≥ r. It implies that

t ≤ (λ|Y )(x) ≤ (μ|Y )(x)

and

s ≤ (ρ|Y )(y) ≤ (ν|Y )(y). (2.1)

Since, xt ∈ μ = COC(xt, r) and xt ∈ λ we have μ ≤
λ, Similarly, ν ≤ ρ. Therefore,

t ≤ (μ|Y )(x) ≤ (λ|Y )(x),

and

s ≤ (ν|Y )(y) ≤ (ρ|Y )(y). (2.2)

From, Equations (2.1) and (2.2) we obtain

t ≤ (μ|Y )(x) = (λ|Y )(x),

and

s ≤ (ν|Y )(y) = (ρ|Y )(y).

Which implies that

t ≤ (μ|Y )(x) = μ1(x), and s ≤ (ν|Y )(y) = ν1(y).

Put μ1 = COC|Y (xt, r) and ν1 = COC|Y (ys, r). Then,
COC|Y (xt, r) = μ|Y and COC|Y (ys, r) = ν|Y. Hence,
(Y, C|Y ) is an r-LFS0 space. �

Theorem 2.5. Let (X, C) be the product of {(Xi, Ci) :
i ∈ �}. Then, (X, C) is an r-LFS0 space if (Xi, Ci) is
an r-LFS0 space for each i ∈ �.

Proof. Let (Xi, Ci) is an r-LFS0 space for each
i ∈ � and xt, ys ∈ Pt(X) such that x /= y with X =∏

i∈� Xi and πi : X −→ Xi be the projection map
for each i ∈ �. Then for some i ∈ �, (xi)t and (yi)s
are distinct fuzzy points in Xi and

COCi ((xi)t , r) /= COCi ((yi)s, r) (2.3)

for each i ∈ �.

Since πi is the projection map, Ci(COCi ((xi)t , r)) ≥
r and Ci(COCi ((yi)s, r)) ≥ r, then by Theorem 1.8, we
have

C(π←i (COCi ((xi)t , r))) ≥ r

and C(π←i (COCi ((yi)s, r))) ≥ r.

Moreover,

π←i (COCi ((xi)t , r))(x) = COCi ((xi)t , r)(π→i (x))

= COCi ((xi)t , r)(xi) ≥ t.

Therefore, xt ∈ π←i (COCi ((xi)t , r)). Similarly,

ys ∈ π←i (COCi ((yi)s, r)).

Now we will prove that

π←i (COCi ((xi)t , r)) /= π←i (COCi ((yi)s, r)).

So, if possible assume that

π←i (COCi ((xi)t , r)) = π←i (COCi ((yi)s, r)).

Then,

π←i (COCi ((xi)t , r))(x) = π←i (COCi ((yi)s, r))(x)

for all x ∈ X.

Implies that,

COCi ((xi)t , r)(π→i (x)) = COCi ((yi)s, r)(π→i (x)).

Therefore,

COCi ((xi)t , r)(xi) = COCi ((yi)s, r)(xi)

for all xi ∈ Xi.

So, COCi ((xi)t , r) = COCi ((yi)s, r). It is a contra-
diction for Equation (2.3). Hence,

π←i (COCi ((xi)t , r)) /= π←i (COCi ((yi)s, r)).

Now, to prove that

π←i (COCi ((xi)t , r)) = COC(xt, r)

and

π←i (COCi ((yi)s, r)) = COC(ys, r).

If possible assume that there exist λ ∈ LX such that
xt ∈ λ ≤ π←i (COCi ((xi)t , r)) with C(λ) ≥ r. Then,

π→i (xt) ∈ π→i (λ) ≤ COCi ((xi)t , r)

i.e.,

(xi)t ∈ π→i (λ) ≤ COCi ((xi)t , r).
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Since, πi is (L, M)-fuzzy convex-to-convex func-
tion, then Ci(π→i (λ)) ≥ r. It is a contradiction
to assumption that COCi is L-fuzzy hull opera-
tor in Xi. Hence, π←i (COCi ((xi)t , r)) = COC(xt, r).
Similarly, π←i (COCi ((yi)s, r)) = COC(ys, r). So, we
obtain π←i (COCi ((xi)t , r)) /= π←i (COCi ((yi)s, r)) for
xt, ys ∈ Pt(X). Hence, (X, C) is an r-LFS0 space. �

Proposition 2.6. (X, C) is an r-LFS1 if and only if
C(χ{x}) ≥ r for all x ∈ X.

Proof. (=⇒) Let (X, C) be an r-LFS1 and assume that
there is a x ∈ X such that C(χ{x}) � r. Then, there are
ys ∈ Pt(X) and s ∈ L⊥L such that ys ∈ COC(χ{x}, r).
Therefore, the two fuzzy points x�L and ys, s ∈ L⊥L

cannot be separated by distinct L-fuzzy hull operator
which is a contradiction to the assumption that (X, C)
is an r-LFS1. Hence, C(χ{x}) ≥ r.

(⇐=) Clear by Definition. �

Proposition 2.7. An r-LFS1 space is always r-LFS0
space.

Proof. Trivial. �
The next example shows that the converse of

Proposition 2.7 is not true.

Example 2.8. Let L = M = [0, 1] and X = {a, b, c}.
Let μi be fuzzy subsets of X where i = {1, 2, 3}
defined as follows:

μ1(a) = 0.4, μ1(b) = 0.0, μ1(c) = 0.0,

μ2(a) = 0.4, μ2(b) = 1.0, μ2(c) = 0.0,

μ3(a) = 0.4, μ3(b) = 1.0, μ3(c) = 1.0,

Define an (L, M)-fuzzy convexity C : [0, 1]X −→
[0, 1] on X as follows:

C(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if λ ∈ {0, 1},

1
4 , if λ = μ1,

1
3 , if λ = μ2,

1
2 , if λ = μ3,

0, otherwise.

Then (X, C) is r-LFS0 space but it is not r-LFS1
space because μ1 = COC(a0.4,

1
4 ) and a0.4 ∈ μ2 =

COC(b1.0,
1
4 ).

Theorem 2.9. Let (X, C1) be an r-LFS1 space and
C2 be an (L, M)-fuzzy convexity on X such that C1 is
coarser than C2. Then (X, C2) is also r-LFS1 space.

Proof. By Proposition 2.6, it can be easily proved. �

Proposition 2.10. Let (X, C) be an r-LFS1 space and
∅ /= Y ⊆ X. Then (Y, C|Y ) is an r-LFS1 space.

Proof. Let (X, C) be an r-LFS1 space, ∅ /= Y ⊆ X

and xt, ys ∈ Pt(Y ). Then COC(xt, r) /= COC(ys, r)
such that xt /∈ COC(ys, r) and ys /∈ COC(xt, r).
Then we can prove as in the proof of Propo-
sition 2.4 that COC(xt, r)|Y /= COC(ys, r)|Y
and xt /∈ COC(ys, r)|Y, ys /∈ COC(xt, r)|Y. Hence
(Y, C|Y ) is an r-LFS1 space. �

Theorem 2.11. Let (X, C) be the product of {(Xi, Ci) :
i ∈ �}. Then, (X, C) is an r-LFS1 space if (Xi, Ci) is
an r-LFS1 space for each i ∈ �.

Proof. Let (Xi, Ci) is an r-LFS1 space for each
i ∈ � and xt, ys ∈ Pt(X) such that x /= y with X =∏

i∈� Xi and πi : X −→ Xi be the projection map
for all i ∈ �. Then for some i ∈ �, (xi)t and (yi)s are
distinct fuzzy points in Xi and

COCi ((xi)t , r) /= COCi ((yi)s, r)

for each i ∈ � such that

(yi)s /∈ COCi ((xi)t , r) and (xi)t /∈ COCi ((yi)s, r)

for each i ∈ �. Then we can prove as in the proof of
Theorem 2.5 that

COC(xt, r) = π←i (COCi ((xi)t , r))

/= π←i (COCi ((yi)s, r)) = COC(ys, r),

such that

ys /∈ π←i (COCi ((xi)t , r))

and

xt /∈ π←i (COCi ((yi)s, r))

Hence, (X, C) is an r-LFS1 space. �

3. r-LFS2 space, r-LFS3 space and r-LFS4
space

Definition 3.1. Let (X, C) be an (L, M)-fuzzy convex
space and r ∈ M⊥M . Then, (X, C) is said to be an r-
LFS2 space if for distinct an L-fuzzy points xt, ys ∈
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Pt(X), there exists r-L-fuzzy biconvex set μ such that
xt ∈ μ and ys ∈ μ′.

Theorem 3.2. Let (X, C1) be an r-LFS2 space and
C2 be an (L, M)-fuzzy convexity on X such that C1

is coarser than C2. Then (X, C2) is also an r-LFS2
space.

Proof. Let (X, C1) be an r-LFS2 space,xt, ys ∈ Pt(X)
such that x /= y, and C2 be an (L, M)-fuzzy convexity
on X. Then, there exists an r-L-fuzzy biconvex set μ

in (X, C1) such that xt ∈ μ and ys ∈ μ′. Therefore,
C1(μ) ≥ r and C1(μ′) ≥ r. By the assumption C1 is
coarser than C2 we obtain C2(μ) ≥ r and C2(μ′) ≥ r.

So, μ is an r-L-fuzzy biconvex set in (X, C2). Hence,
(X, C2) is an r-LFS2 space. �

Proposition 3.3. Let (X, C) be an r-LFS2 space and
∅ /= Y ⊆ X. Then (Y, C|Y ) is an r-LFS2 space.

Proof. Let (X, C) be an r-LFS2 space, xt, ys ∈ Pt(Y )
such that x /= y. Then, there exists an r-L-fuzzy
biconvex setμ ∈ LX such thatxt ∈ μ andys ∈ μ′.By
Proposition 1.11, we have μ|Y is an r-L-fuzzy bicon-
vex set in LY such that xt ∈ μ and ys ∈ μ′. Hence,
(Y, C|Y ) is an r-LFS2 space. �

Theorem 3.4. Let (X, C) be the product of {(Xi, Ci) :
i ∈ �}. Then, (X, C) is an r-LFS2 space if (Xi, Ci) is
an r-LFS2 space for each i ∈ �.

Proof. Let (Xi, Ci) is an r-LFS2 space for each
i ∈ � and xt, ys ∈ Pt(X) such that x /= y with X =∏

i∈� Xi and πi : X −→ Xi be the projection map for
all i ∈ �. Then, for some i ∈ �, (xi)t , (yi)s ∈ Pt(Xi)
such thatxi /= yi.Therefore, there exists an r-L-fuzzy
biconvex set μ in (Xi, Ci) such that (xi)t ∈ μ and
(yi)s ∈ μ′. Then, π←i (μ) is r-L-fuzzy biconvex set
in (X, C) such that xt ∈ π←i (μ) and ys ∈ π←i (μ′).
Hence, (X, C) is an r-LFS2 space. �

Proposition 3.5. An r-LFS2 space is always an r-
LFS1 space.

Proof. Clear by Definition. �
The next example shows that the converse of

Proposition 3.5 is not true.

Example 3.6. Let L = M = [0, 1] and X = {a, b, c}.
Let μi be fuzzy subsets of X where i = {1, 2, 3, 4, 5}
defined as follows:

μ1(a) = 1.0, μ1(b) = 0.0, μ1(c) = 0.0,

μ2(a) = 0.0, μ2(b) = 1.0, μ2(c) = 0.0,

μ3(a) = 0.0, μ3(b) = 0.0, μ3(c) = 1.0,

μ4(a) = 0.5, μ4(b) = 0.0, μ4(c) = 0.0,

μ5(a) = 0.5, μ5(b) = 1.0, μ5(c) = 1.0.

Define an (L, M)-fuzzy convexity C : [0, 1]X −→
[0, 1] on X as follows:

C(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if λ ∈ {0, 1},

1
4 , if λ ∈ {μ1, μ2, μ3},

1
3 , if λ = μ4,

1
2 , if λ = μ5,

0, otherwise.

Then (X, C) is r-LFS1 space but it is not r-LFS2 space
because the only 1

3 -L-fuzzy biconvex set is μ5 and
a0.5, c1.0 ∈ μ5.

Definition 3.7. Let (X, C) be an (L, M)-fuzzy convex
space and r ∈ M⊥M . Then, (X, C) is said to be an r-
LFS3 space if for an L-fuzzy point xt ∈ Pt(X) and
μ ∈ LX such that C(μ) ≥ r with the supports of xt

and μ are disjoint, there exists an r-L-fuzzy biconvex
set λ such that μ ≤ λ and xt ∈ λ′.

Remark 3.8. If (X, C1) is an r-LFS3 space and C2

be an (L, M)-fuzzy convexity on X such that C1 is
coarser than C2, then (X, C2) need not be an r-LFS3
space.

Example 3.9. Let L = M = [0, 1] and X = {a, b, c}.
Let μi be fuzzy subsets of X where i = {1, 2, 3, 4, 5}
defined as follows:

μ1(a) = 1.0, μ1(b) = 0.0, μ1(c) = 0.0,

μ2(a) = 0.0, μ2(b) = 1.0, μ2(c) = 1.0,

μ3(a) = 0.0, μ3(b) = 0.3, μ3(c) = 0.3,

μ4(a) = 1.0, μ4(b) = 0.7, μ4(c) = 0.7,

μ5(a) = 0.0, μ5(b) = 0.0, μ5(c) = 0.8.

Define two mapings C1, C2 : [0, 1]X −→ [0, 1] on X

as follows:



H. Zhao et al. / On separation axioms in (L, M)-fuzzy convex structures 8771

C1(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if λ ∈ {0, 1},

1
5 , if λ ∈ {μ1, μ2},

1
4 , if λ = μ3,

1
3 , if λ = μ4,

0, otherwise,

C2(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if λ ∈ {0, 1},

1
4 , if λ ∈ {μ1, μ2, },

1
3 , if λ = μ3,

1
2 , if λ = μ4,

1
2 , if λ = μ5,

0, otherwise.

Then both C1 and C2 are (L, M)-fuzzy convexities,
and C1 is coarser than C2, (X, C1) is an r-LFS3 space
and (X, C2) is not r-LFS3 space because μ3 and its
complement are 1

4 -L-fuzzy biconvex sets and μ1 ≤
1− μ3 and c0.8 /∈ μ3.

Proposition 3.10. Let (X, C) be an r-LFS3 space and
∅ /= Y ⊆ X. Then (Y, C|Y ) is an r-LFS3 space.

Proof. Let (Y, C|Y ) be an (L, M)-fuzzy convex sub-
space of an r-LFS3 space (X, C), xt ∈ Pt(Y ) and
μ ∈ LY such that (C|Y )(μ) ≥ r with the supports of
xt and μ are disjoint. Then μ = ν|Y where ν ∈ LX

such that C(ν) ≥ r. Since the supports of xt and μ are
disjoint, we have the supports of xt and ν are dis-
joint. Since (X, C) is an r-LFS3 space, there exists
an r-L-fuzzy biconvex set λ ∈ LX such that ν ≤ λ

and xt ∈ λ′. By Proposition 1.11, we have λ|Y is an
r-L-fuzzy biconvex set in LY such that ν ≤ λ|Y and
xt ∈ λ′|Y. Hence, (Y, C|Y ) is an r-LFS3 space. �

Theorem 3.11. Let (X, C) be the product of {(Xi, Ci) :
i ∈ �}. Then, (X, C) is an r-LFS3 space if (Xi, Ci) is
an r-LFS3 space for each i ∈ �.

Proof. Let X =∏
i∈� Xi, πi : X −→ Xi be the pro-

jection map for all i ∈ � and (Xi, Ci) is an r-LFS3
space for each i ∈ �. Let xt ∈ Pt(X) and μ ∈ LX such
that C(μ) ≥ r with the supports of xt and μ are dis-
joint. Since C(μ) ≥ r and πi is the projection map, we
can take μ as μ = ∧

i∈� π←i (νi) such that Ci(νi) ≥ r.

For some i, (xi)t ∈ Pt(Xi) and the supports of (xi)t
and νi are disjoint. Since (Xi, Ci) is an r-LFS3 space,
there exists an r-L-fuzzy biconvex set λi ∈ LXi such
that νi ≤ λi and (xi)t ∈ λ′i. Then λ = π←i (λi) is an r-
L-fuzzy biconvex set in X such that μ = π←i (νi) ≤
π←i (λi) = λ and xt ∈ π←i (λ′i) = λ′. Hence, (X, C) is
an r-LFS3 space. �
Example 3.12. Let L, M, X and μi be given as
Example 3.9. Define an (L, M)-fuzzy convexity
C = C1 : [0, 1]X −→ [0, 1] on X as Example 3.9.
Then,

(1) (X, C) is an r-LFS3 space but it is not r-LFS2
space because μ2 and its complement are 1

5 -L-fuzzy
biconvex sets where b0.3 ∈ μ2 and c0.3 /∈ 1− μ2 =
μ1.

(2) (X, C) is an r-LFS3 space but it is not r-LFS1
space because

μ3 = CO(b0.3,
1

5
) /= CO(c1.0,

1

5
) = μ2

and b0.3 ∈ CO(c1.0,
1
5 ) and c1.0 /∈ CO(b0.3,

1
5 ).

(3) (X, C) is an r-LFS3 space but it is not r-LFS0
space because

CO(b0.3,
1

5
) = CO(c0.3,

1

5
) = μ3.

Definition 3.13. An (L, M)-fuzzy convex structure
(X, C) is said to be an r-LFS4 space if two disjoint L-
fuzzy sets μ, ν ∈ LX such that C(μ) ≥ r and C(ν) ≥
r there exist an r-L-fuzzy biconvex set λ such that
μ ≤ λ and ν ≤ λ′.

Proposition 3.14. Let (X, C) be an r-LFS4 space and
∅ /= Y ⊆ X. Then (Y, C|Y ) is an r-LFS4 space.

Proof. Let (X, C) be an r-LFS4 space, (Y, C|Y ) be an
(L, M)-fuzzy convex subspace of (X, C) and μ, ν ∈
LY are disjoint L-fuzzy sets such that (C|Y )(μ) ≥ r

and (C|Y )(ν) ≥ r. Then μ, ν are disjoint L-fuzzy sets
in X and there exists an r-L-fuzzy biconvex set λ ∈
LX such that μ ≤ λ and ν ≤ λ′. By Proposition 1.11,
we have λ|Y is an r-L-fuzzy biconvex set in Y such
that μ ≤ λ|Y and ν ≤ (λ|Y )′. Hence, (Y, C|Y ) is an
r-LFS4 space. �
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Theorem 3.15. Let (X, C) be the product of {(Xi, Ci) :
i ∈ �}. Then, (X, C) is an r-LFS4 space if (Xi, Ci) is
an r-LFS4 space for each i ∈ �.

Proof. Let X =∏
i∈� Xi and πi : X −→ Xi be the

projection map for all i ∈ �, (Xi, Ci) is an r-LFS4
space for each i ∈ � and μ, ν ∈ LX are disjoint L-
fuzzy sets such that C(μ) ≥ r and C(ν) ≥ r. Then,

μ =
∧
i∈�

π←i (λi) and ν =
∧
i∈�

π←i (ρi)

there exist λi, ρi ∈ LXi are disjoint L-fuzzy sets such
that Ci(λi) ≥ r and Ci(ρi) ≥ r for some i ∈ �. Since
(Xi, Ci) is an r-LFS4 space for each i ∈ �, there exists
an r-L-fuzzy biconvex set Ai ∈ LXi such that λi ≤
Ai and ρi ≤ A′i. Then π←i (Ai) is an r-L-fuzzy bicon-
vex set in X such that μ ≤ π←i (Ai) and ν ≤ π←i (A′i).
Hence (X, C) is an r-LFS4 space. �

The next example shows that

(1) An r-LFS4 space need not be r-LFS3 space.
(2) If (X, C1) is an r-LFS4 space and C2 be an

(L, M)-fuzzy convexity on X such that C1 is coarser
than C2, then (X, C2) need not be an r-LFS4 space.

Example 3.16. Let L = M = [0, 1] and X =
{a, b, c}. Let μi be fuzzy subsets of X where i =
{1, 2, 3, 4, 5, 6} defined as follows:

μ1(a) = 0.0, μ1(b) = 0.0, μ1(c) = 1.0,

μ2(a) = 1.0, μ2(b) = 1.0, μ2(c) = 0.0,

μ3(a) = 0.0, μ3(b) = 0.0, μ3(c) = 0.5,

μ4(a) = 0.0, μ4(b) = 0.5, μ4(c) = 0.0,

μ5(a) = 1.0, μ5(b) = 0.0, μ5(c) = 0.0,

μ6(a) = 1.0, μ6(b) = 0.0, μ6(c) = 0.5.

Define two mappings C1, C2 : [0, 1]X −→ [0, 1] on
X as follows:

C1(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if λ ∈ {0, 1},

1
3 , if λ ∈ {μ1, μ2},

1
2 , if λ = μ3,

1
2 , if λ = μ4,

0, otherwise,

C2(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if λ ∈ {0, 1},

1
3 , if λ ∈ {μ1, μ2, },

1
2 , if λ = μ3,

1
2 , if λ = μ4,

1
2 , if λ = μ5,

1
2 , if λ = μ6,

0, otherwise.

Then both C1 and C2 are (L, M)-fuzzy convexities,
but the only 1

3 -L-fuzzy biconvex set is μ2. So,

(1) (X, C1) is an r-LFS4 space but it is not r-LFS3
space because C1(μ4) ≥ 1

2 and for t ∈ (0, 1] we
obtain μ4 ≤ μ2 and at /∈ μ1 = 1− μ2.

(2) C1 is coarser than C2, (X, C1) is an r-LFS4
space and (X, C2) is not r-LFS4 space because
C2(μ5) ≥ 1

2 and C2(μ6) ≥ 1
2 where μ5 ≤ μ2 and

μ6 � μ1 = 1− μ2.

4. Conclusion

Following the notion of r-L-fuzzy biconvex sets
and L-fuzzy hull operators in (L, M)-fuzzy con-
vex structures introduced by Sayed et al.(2019), we
gave some new investigations on separation axioms
in (L, M)-fuzzy convex structures. Specifically, we
introduced the concepts of r-LFSi spaces where
i = {0, 1, 2, 3, 4}. We discussed the relations among
them, and gave a lot of examples to show the relations.
In particular, we discussed the invariance of these
separation properties under subspace and product.
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