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Abstract. In the present paper, a characterization of the intuitionistic fuzzy sets, the interval-valued intuitionistic fuzzy sets
and their set-operations are given. By making use of these characterizations, the relationships between the interval-valued
intuitionistic fuzzy topology and four fuzzy topologies associated to it are studied. For this reason, some subclasses of the
family of interval-valued intuitionistic fuzzy topologies on a set which we call pre-suitable and suitable are introduced.
Furthermore, the concepts of homeomorphism functions and compactness in the framework of interval-valued intuitionistic
fuzzy topological spaces are introduced and studied.
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1. Introduction and preliminaries

After the introduction of the concept of fuzzy set
(see [38]) several researches were conducted on the
generalizations of the notion of fuzzy sets. The notion
of a interval-valued fuzzy set has been introduced by
different authors (see [18], [24] and [39]). In 1985,
the interval representation of language value was dis-
cussed by Schwarz in [32]. In 1986, interval-valued
fuzzy sets which based on the normal forms were
studied by Turksen in [34]. In 1987, a method about
interval-valued fuzzy inference was given by Gorzal-
czany in [20]. In the papers [15, 21, 36–38], the basic
research of interval-valued fuzzy sets was studied.
In 1983, Atanassov proposed a generalization of the
notion of fuzzy set: the concept of intuitionistic fuzzy
set [1]. Some basic results on intuitionistic fuzzy sets
were published in [2, 3], and the book [5] provides a
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comprehensive coverage of virtually all results in the
area of the theory and applications of intuitionistic
fuzzy sets. Actually, intuitionistic fuzzy sets are an
object of research by many scientists (see for exam-
ple, [14, 23]). In particular, intuitionistic fuzzy logic
and, in the area of applications, intuitionistic fuzzy
generalized nets and intuitionistic fuzzy programs,
have been studied by Atanassov and co-workers (see
[5]). Çoker and Demirci [12] defined and studied
the basic concept of intuitionistic fuzzy point. Later
Çoker [10, 11] constructed the fundamental theory
on intuitionistic fuzzy topological spaces, and Çoker
and others [12, 13, 16, 17, 22, 30, 31, 33] studied
compactness, connectedness and continuity in intu-
itionistic fuzzy topological spaces and intuitionistic
gradation of neighborhoodness and other topics. The
author in [27] defined the notion of Hausdorffness and
obtained some results of nets and filters in intuition-
istic fuzzy topological spaces [28]. Lee and Lee [25]
showed that the category of fuzzy topological spaces
in the sense of Chang [9] (which redefined by Lowen
[26] and now known as a stratified fuzzy topology) is a
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bireflective full subcategory of that of intuitionis-
tic fuzzy topological spaces, and Wang and He [35]
showed that every intuitionistic fuzzy set may be
regarded as an L-fuzzy set [19] for some appropri-
ate lattice L. In 1989 [6], Atanassov and Gargov
presented the basic preliminaries of interval-valued
intuitionistic fuzzy set theory. Also, in [4, 7, 8]
some types of operators were defined over interval-
valued intuitionistic fuzzy set. In [29], topology of
interval-valued intuitionistic fuzzy sets was defined
and some of its properties were studied. In the present
paper, we will give a characterization of the con-
cept of intuitionistic fuzzy sets and interval-valued
intuitionistic fuzzy sets and their set-operations [6].
We prove that for an interval-valued intuitionistic
fuzzy topology there exist four fuzzy topologies in
the sense of Chang [9]. Also, to study the interactions
between these types of topologies, we investigate the
concepts of pre-suitable and suitable interval-valued
intuitionistic fuzzy topologies and study some basic
concepts of these concepts. Furthermore, we estab-
lish the concept of interval-valued intuitionistic fuzzy
homeomorphism and the concept of interval-valued
intuitionistic fuzzy compactness.

For the references of definitions and results used in
this paper concerning fuzzy sets (resp. fuzzy topology
(F topology, for short), intuitionistic fuzzy set (IF set,
for short), intuitionistic fuzzy topology (IF topology,
for short)) we refer to [9, 38] (resp. [2, 10, 13]).

Definition 1.1. [31]. Let X be a nonempty set, B ⊆ X

and α ∈ [0, 1]. We define the fuzzy set α1B by α1B =
α when x ∈ B and α1B = 0 when x /∈ B. We use 1X

and 1φ instead of 11X and 01X, respectively. We write
α1x instead of α1{x}. For each fuzzy topological space
(X, τ) and fuzzy set B in X, the trivial case 01x = 1φ

is an interior point of B will be considered. α1x is
quasi-coincident with a fuzzy set A (written α1x q A)
if and only if α1x /∈ Ac if and only if A(x) + α > 1,
where Ac is the complement of the fuzzy set A. If
(X, τ) is fuzzy topological space and A ⊆ X, then A
is a τ-Q-neighborhood of a fuzzy point α1x in X or
α1x is a τ-Q-interior point of A if and only if there
exists B ∈ τ such that α1x q B ⊆ A.

Definition 1.2. [2]. An intuitionistic fuzzy set A

over the universe of discourse X is an expression
given by A = {〈x, μA(x), υA(x) 〉 : x ∈ X}, where
μA : X → [0, 1], υA : X → [0, 1] with the con-
dition 0 ≤ μA(x) + υA(x) ≤ 1. The values μA(x)
and υA(x) denote, respectively, the degree of mem-
bership and the degree of nonmembership of the

element x to the set A. We will denote by IF(X) the set
of all intuitionistic fuzzy sets of X (IF sets of X, for
short). For every intuitionistic fuzzy set A we have

�A = {〈x, μA(x)〉 : x ∈ X} = {〈x, μA(x), 1 −
μA(x)〉 : x ∈ X},

♦A = {〈x, 1 − υA(x)〉 : x ∈ X} = {〈x, 1 −
υA(x), υA(x)〉 : x ∈ X}.

Definition 1.3. Let D[0, 1] be the set of all closed
subintervals of the interval [0, 1] and X( /= φ)
be a given set. Following Atanassov and Gar-
gov [6], an interval-valued intuitionistic fuzzy set
(IIF set for short) in X is an expression given
by A = {〈x, MA(x), NA(x)〉 : x ∈ X}, where MA :
X → D[0, 1], NA : X → D[0, 1] with the condi-
tion 0 < sup MA(x) + sup NA(x) ≤ 1. The intervals
MA(x) and NA(x) denote, respectively, the degree of
belongingness and the degree of non-belongingness
of the element x to the set A. Thus for each x ∈ X,
MA(x) and NA(x) are closed intervals whose lower
and upper end points are, respectively, denoted by
ML

A(x), MU
A (x) and NL

A(x), NU
A (x). We will denote

by II(X) the set of all IIF sets of X. For every interval-
valued intuitionistic fuzzy set A we have

�A = {〈x, MA(x), [inf NA(x), 1 − sup MA(x)]〉 :
x ∈ X},

♦A = {〈x, [inf MA(x), 1 − sup NA(x)], NA(x)〉 :
x ∈ X}.

Definition 1.4. Following Mondal and Samanta [29],
a topological space of IIF sets is a pair (X, τ), where
X is a nonempty set and τ is a subfamily of II(X)
satisfies the basic conditions of classical topology. τ

is called a topology of IIF sets on X (IIF topology,
for short). Every member of τ is called open (IIF
open set). B ∈ II(X) is said to be closed (IIF closed
set) in (X, τ) if and only if Bc ∈ τ. The family of all
interval-valued intuitionistic fuzzy topologies on X
will be denoted by IT(X).

2. A characterization of IF set and IIF set

First, we give a characterization of intuitionistic
fuzzy sets and their set-operations.

Definition 2.1. An ordered pair (μ, ν) of fuzzy sets of
a nonempty set X such that μ ≤ ν is called a suitable
intuitionistic fuzzy set of X (SIF set, for short). The
family of all suitable intuitionistic fuzzy sets of X will
be denoted by SIF (X).
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Theorem 2.2. There exists a bijection between IF (X)
and SIF(X).

Proof. The functions H : IF (X) → SIF (X) and
M : SIF (X) → IF (X) defined by:
H(A) = H({〈x, μA(x), νA(x)〉 : x ∈ X}) =
(μA, 1 − νA) and M((μ, ν)) = {〈x, μ(x), 1 − ν(x)〉 :
x ∈ X} are well defined, (H ◦ M)((μ, ν)) = (μ, ν)
and (M ◦ H)(A) = A, i.e., M = H−1. �

By making use of our characterization of the IF set
one can have the following three theorems.

Theorem 2.3. Let A = (A1, A2), B = (B1, B2) ∈
IF(X), and {Aj : j ∈ �} ⊆ IF(X). Then:

(1) A ⊆ B if and only if Ai ≤ Bi for each i ∈
{1, 2};

(2) A = B if and only if Ai = Bi for each i ∈
{1, 2};

(3)
⋃

j∈� Aj = (
⋃

j∈� A
j
1,

⋃
j∈� A

j
2);

(4)
⋂

j∈� Aj = (
⋂

j∈� A
j
1,

⋂
j∈� A

j
2);

(5) Ac = (Ac
2, A

c
1);

(6) 1̃ = (1X, 1X);

(7) 0̃ = (1φ, 1φ);

(8) �A = (A1, A1);

(9) ♦A = (A2, A2).

Theorem 2.4. Let {Aj : j ∈ �} ⊆ IF(X). Then:

(1)
⋃

j∈� (�Aj) = �(
⋃

j∈� Aj);

(2)
⋂

j∈� (�Aj) = �(
⋂

j∈� Aj);

(3)
⋃

j∈� (♦Aj) = ♦(
⋃

j∈� Aj);

(4)
⋂

j∈� (♦Aj) = ♦(
⋂

j∈� Aj).

Theorem 2.5. Let f : X → Y , A = (A1, A2), ∈
IF(X), and C = (C1, C2) ∈ IF(Y ). Then:

(1) f (A) = (f (A1), f (A2));

(2) f−1(C) = (f−1(C1), f−1(C2));

(3) f (�A) = �f (A);

(4) f (♦A) = ♦f (A);

(5) f−1(�C) = �f−1(C);

(6) f−1(♦C) = ♦f−1(C).

Second, we give a characterization of interval-
valued intuitionistic fuzzy sets and their set-
operations.

Definition 2.6. An ordered quadrable (κ, λ, μ, ν) of
fuzzy sets of a nonempty set X such that κ ≤ λ ≤
ν ≤ μ is called a suitable interval-valued intuitionis-
tic fuzzy set of X (SIIF set for short). The family of
all suitable interval-valued intuitionistic fuzzy sets of
X will be denoted by SI(X).

In the following theorem we point out a bijection
between II(X) and SI(X). In other words, the concept
of interval-valued intuitionistic fuzzy set of X can
be determined in a uniquely manner as an ordered
quadrable (κ, λ, μ, ν) of fuzzy sets of X such that
κ ≤ λ ≤ ν ≤ μ.

Theorem 2.7. There exist two functions η1 : II(X) →
SI(X) and η2 : SI(X) → II(X) such that η1 ◦ η2 =
idSI(X) and η2 ◦ η1 = idII(X), i.e., η1 = η2

−1.

Proof. Define η1 and η2 as follows:
η1(A) = η1({〈x, [μL

A(x), μU
A(x)], [υL

A(x), υU
A (x)]〉 :

x ∈ X}) = (μL
A, μU

A, 1 − υL
A, 1 − υU

A )
for each A ∈ II(X), and η2((κ, λ, μ, ν)) =
{〈x, [κ(x), λ(x)], [1 − μ(x), 1 − ν(x)]〉 : x ∈ X}
for each (κ, λ, μ, ν) ∈ SI(X). It is clear that η1
and η2 are well defined and η1 ◦ η2 = idSI(X) and
η2 ◦ η1 = idII(X), i.e., η1 = η2

−1. �
By making use of our characterization of the

interval-valued intuitionistic fuzzy set we have the
following theorem.

Theorem 2.8. Let A = (A1, A2, A3, A4), B =
(B1, B2, B3, B4) ∈ II(X) and {Aj : j ∈ �} ⊆ II(X).
Then:

(1) A ⊆ B if and only if Ai ≤ Bi for each i ∈
{1, 2, 3, 4};

(2) A = B if and only if Ai = Bi for each i ∈
{1, 2, 3, 4};

(3)
⋃

j∈� Aj

= (
⋃

j∈� A
j
1,

⋃
j∈� A

j
2,

⋃
j∈� A

j
3,

⋃
j∈� A

j
4);

(4)
⋂

j∈� Aj

= (
⋂

j∈� A
j
1,

⋂
j∈� A

j
2,

⋂
j∈� A

j
3,

⋂
j∈� A

j
4);

(5) Ac = (Ac
3, A

c
4, A

c
1, A

c
2);

(6) 1̃ = (1X, 1X, 1X, 1X);

(7) 0̃ = (1φ, 1φ, 1φ, 1φ);
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(8) �A = (A1, A2, A3, A2);

(9) ♦A = (A1, A4, A3, A4).

Proof. Applying Theorem 2.7. we obtain
(1) A ⊆ B

⇔ {〈x, [A1(x), A2(x)], [1 − A3(x), 1 − A4(x)]〉 :

x ∈ X
}

⊆ {〈x, [B1(x), B2(x)], [1 − B3(x), 1 − B4(x)]〉 :

x ∈ X
}

⇔ ∀x ∈ X, A1(x) ≤ B1(x), A2(x) ≤ B2(x),

1 − A3(x) ≥ 1 − B3(x), 1 − A4(x) ≥ 1 − B4(x)

⇔ Ai ≤ Bi, ∀i ∈ {1, 2, 3, 4}.
(2) Obvious.
(3)

⋃
j∈J

Aj

= ⋃
j∈J

{〈
x,

[
A

j

1(x), Aj

2(x)
]
,

[
1 − A

j

3(x), 1 − A
j

4(x)
] 〉

: x ∈ X

}

=
{〈

x,

[⋃
j∈J

A
j

1(x),
⋃
j∈J

A
j

2(x)
]
,

[⋂
j∈J

(
1 − A

j

3(x)
)
,
⋂
j∈J

(
1 − A

j

4(x)
)]〉

: x ∈ X

}

=
(⋃

j∈J

A
j

1,
⋃
j∈J

A
j

2,
⋃
j∈J

A
j

3,
⋃
j∈J

A
j

4

)
.

(4) Similar to (3).
(5) Ac

= {〈x, [1 − A3(x), 1 − A4(x)], [A1(x), A2(x)]〉 :

x ∈ X
}

= (1 − A3, 1 − A4, 1 − A1, 1 − A2)

= (Ac
3, A

c
4, A

c
1, A

c
2).

The proofs of (6)-(9) are straightforward. �

Theorem 2.9. Let {Aj : j ∈ �} ⊆ II(X). Then:

(1)
⋃

j∈� (�Aj) = �(
⋃

j∈� Aj);

(2)
⋂

j∈� (�Aj) = �(
⋂

j∈� Aj);

(3)
⋃

j∈� (♦Aj) = ♦(
⋃

j∈� Aj);

(4)
⋂

j∈� (♦Aj) = ♦(
⋂

j∈� Aj).

Proof. Applying Theorem 2.8.(8) and (9), we prove
(1) as (2)-(4) are similar.

(1)
⋃
j∈J

(�Aj) = ⋃
j∈J

(Aj
1, A

j
2, A

j
3, A

j
2)

= (
⋃
j∈J

A
j
1,

⋃
j∈J

A
j
2,

⋃
j∈J

A
j
3,

⋃
j∈J

A
j
2)

= �(
⋃
j∈J

Aj).

�

Theorem 2.10. Let f : X → Y and
A = (A1, A2, A3, A4) ∈ II(X), C =
(C1, C2, C3, C4) ∈ II(Y ). Then:

(1) f (A) = (f (A1), f (A2), f (A3), f (A4));

(2) f−1(C) = (f−1(C1), f−1(C2), f−1(C3), f−1(C4));

(3) f (�A) = �f (A);

(4) f (♦A) = ♦f (A);

(5) f−1(�C) = �f−1(C);

(6) f−1(♦C) = ♦f−1(C).

Proof.
(1) f (A)

=
{

〈y, [f (A1)(y), f (A2)(y)], [1 − f (A3)(y),

1 − f (A4)(y)]〉 : y ∈ Y

}

= (f (A1), f (A2), f (A3), f (A4)).

(2) f−1(B) =
{

〈x, [f−1(B1)(x), f−1(B2)(x)],

[f−1(1 − B3)(x), f−1(1 − B4)(x)]〉 : x ∈ X

}

=
{

〈x, [f−1(B1)(x), f−1(B2)(x)], [1 −

f−1(B3)(x),

1 − f−1(B4)(x)]〉 : x ∈ X

}

= (f−1(B1), f−1(B2), f−1(B3), f−1(B4)).

The proofs of (3)-(6) are straightforward. �

Remark 2.11.

(1) An IIF set (A1, A2, A3, A4) is identified with
an IF set if and only if A1 = A2 and A3 = A4.
For this reason Theorems 2.2., 2.3., 2.4. and
2.5. can be obtained as corollaries from corre-
sponding Theorems 2.7., 2.8., 2.9. and 2.10.,
respectively;

(2) An IIF set (A1, A2, A3, A4) is identified with a
fuzzy set if and only if A1 = A2 = A3 = A4;



O. Rashed Sayed et al. / Suitable interval-valued intuitionistic fuzzy topological spaces 883

(3) An IIF set (A1, A2, A3, A4) is identified with
an ordinary set if and only if A1 = A2 = A3 =
A4 and A(X) ⊆ {0, 1}.

Theorem 2.12. Let τ be an IIF topology on a
nonempty set X and let τIF (resp. τF , τO) = {A :
A ∈ τ} and A is identified with an intuitionistic fuzzy
set (resp. fuzzy set; ordinary set)}. Then τIF is an IF
topology, τF is a fuzzy topology and τO is a topology
on X.

Theorem 2.13. Let τ be an IIF topology on a non-
empty set X and τ� (resp. τ♦ = {�A(resp.♦A) : A ∈
τ}. Then both τ� and τ♦ is an IIF topology on X.

3. SIIF and PIIF topologies

Definition 3.1. Let X be a nonempty set. Then:

(1) An ordered quadrable (τ1, τ2, τ3, τ4) of fuzzy
topologies on X is called a pre-suitable
interval-valued intuitionistic fuzzy topology
(PIIF topology for short) on X. The family
of all pre-suitable interval-valued intuitionis-
tic fuzzy topologies on X will be denoted by
PT(X);

(2) A pre-suitable interval-valued intuitionistic
fuzzy topology (τ1, τ2, τ3, τ4) on X is called
suitable interval-valued intuitionistic fuzzy
topology (SIIF topology for short) on X if
τ1 ⊆ τ2 ⊆ τ4 ⊆ τ3. The family of all suitable
interval-valued intuitionistic fuzzy topologies
on X will be denoted by ST(X).

We present now the following problem: Is there a
bijection between IT(X) and PT(X)?

In the following we point out a bijection between
a subfamily of IT(X) and PT (X)).

Theorem 3.2.

(1) For each τ ∈ IT(X), there exist four
fuzzy topologies on X defined as τi = {Ai :
A ∈ τ} for each i ∈ {1, 2, 3, 4} and A =
(A1, A2, A3, A4) ∈ II(X), i.e., there exists a
function ξ from IT(X) into PT(X) such that
ξ(τ) = (τ1, τ2, τ3, τ4).

(2) There exists a function η : PT(X) → IT(X)
defined as follows:

η((θ1, θ2, θ3, θ4)) = {A : A ∈
II(X), Ai ∈ θi ,

i ∈ {1, 2, 3, 4}}.

(3) The function η defined in (2) above satisfies
the following statements:

(a) η is injection;
(b) If ξ(τ)= (τ1, τ2, τ3, τ4), thenη(ξ(τ))⊇τ;
(c) If (θ1, θ2, θ3, θ4) ∈ PT(X), then

ξ(η((θ1, θ2, θ3, θ4))) = (θ1, θ2, θ3, θ4).

Proof. (1) We now prove that τi = {Ai : A ∈ τ} is a
fuzzy topology for each i ∈ {1, 2, 3, 4}.

(a) Since 1̃, 0̃ ∈ τ, then 1X, 1φ ∈ τi;
(b) Suppose that H, K ∈ τi. Then there exist

A, B ∈ τ such that Ai = H and Bi = K. Since A ∩ B

∈τ, then we have H∩K = Ai ∩ Bi = (A ∩ B)i ∈ τi;
(c) Suppose that {Hj : j ∈ �} ⊆ τi. Then there

exist {Aj : j ∈ �} ⊆ τ such that Hj = A
j
i for

each j ∈ �. Since
⋃

j∈� Aj ∈ τ, then
⋃

j∈� Hj =⋃
j∈� A

j
i = (

⋃
j∈� Aj)

i
∈ τi .

(2) It is clear that η((θ1, θ2, θ3, θ4)) is uniquely
determined. Now, we prove that η((θ1, θ2, θ3, θ4)) ∈
IT(X):

(a) Since 1X, 1φ ∈ θi for each i ∈ {1, 2, 3, 4}, then
we have 1̃, 0̃ ∈ η((θ1, θ2, θ3, θ4));

(b) Suppose A, B ∈ η((θ1, θ2, θ3, θ4)). Then
Ai, Bi ∈ θi for each i ∈ {1, 2, 3, 4}. Thus A ∩ B =
(A1 ∩ B1, A2 ∩ B2, A3 ∩ B3, A4 ∩ B4) ∈ II(X).
Therefore A ∩ B ∈ η((θ1, θ2, θ3, θ4));

(c) Suppose that {Aj : j ∈ �} ⊆ η((θ1, θ2, θ3,

θ4)). Then A
j
i ∈ θi for each i ∈ {1, 2, 3, 4}. Hence⋃

j∈� Aj = (
⋃

j∈� A
j
1,

⋃
j∈� A

j
2,

⋃
j∈� A

j
3,

⋃
j∈�

A
j
4) ∈ II(X). Therefore

⋃
j∈� Aj ∈ IT(X).

(3) (a) Suppose that (θ1, θ2, θ3, θ4) /= (δ1, δ2, δ3,

δ4). Then θi /= δi for some i ∈ {1, 2, 3, 4}. If θ1 /= δ1
(resp. θ2 /= δ2, θ3 /= δ3, θ4 /= δ4), then there exists
A ∈ θ1 (resp. θ2, θ3, θ4), say, such that A /∈
δ1 (resp. δ2, δ3, δ4). Then (A, 1X, 1X, 1X) (resp.
(1φ, A, 1X, 1X), (1φ, 1φ, A, 1φ), (1φ, 1φ, 1X, A)) ∈
η((θ1, θ2, θ3, θ4)) but /∈ η((δ1, δ2, δ3, δ4)). Therefore
η is injection.

(b) Immediate.
(c) One direction is obvious. For the other

direction, suppose that H ∈ θ1 (resp. θ2, θ3,
θ4). Then (H, 1X, 1X, 1X) (resp. (1φ, H, 1X, 1X),
(1φ, 1φ, H, 1φ), (1φ, 1φ, 1X, H)) ∈ η((θ1, θ2, θ3, θ4)).
Therefore
H ∈ (η((θ1, θ2, θ3, θ4)))1(resp. (η((θ1, θ2, θ3, θ4)))2,
(η((θ1, θ2, θ3, θ4)))3, (η((θ1, θ2, θ3, θ4)))4). �

Remark 3.3. There exists a bijection between
η(PT(X)) and PT(X) (See Theorem 3.2.(2) and (3)
(a)).
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The following example illustrates that the converse
of Theorem 3.2.(3) (b) may not be true.

Example 3.4. Let X = [0, 1] and τ = {1̃, 0̃, A, B},
where A1(x) = 1

4 , A2(x) = B1(x) = B2(x) = 1
2 ,

A4(x) = 2
3 , and A3(x) = B3(x) = B4(x) = 1 for

each x ∈ [0, 1]. Then τ ∈ IT([0, 1]). Since
(1φ, 1φ, 1X, 2

3 1X) ∈ η(ξ(τ)) but (1φ, 1φ, 1X, 2
3 1X) /∈

τ, then η(ξ(τ)) /⊆ τ.

Theorem 3.5. If τ = η((τ1, τ2, τ3, τ4)), then
η(ξ(τ)) = τ.

Proof. From Theorem 3.2.(3) (c)
η(ξ(τ)) = η(ξ(η((τ1, τ2, τ3, τ4))))
= η((τ1, τ2, τ3, τ4)) = τ. �

Theorem 3.6. The pre-suitable equality relation
RPSE on IT(X) is an equivalence relation on
IT(X).

4. Basic concepts of SIIF topology

Theorem 4.1. Let τ = η((τ1, τ2, τ3, τ4)), (τ1, τ2, τ3,

τ4) ∈ ST(X) and A ∈ II(X). Then Intτ(A)
= (Intτ1 (A1), Intτ2 (A2), Intτ3 (A3), Intτ4 (A4)).

Proof. (1) Intτ(A) = ⋃ {B : B ∈ τ, B ⊆ A}
=

( ⋃
B∈τ,B⊆A B1,

⋃
B∈τ,B⊆A B2,

⋃
B∈τ,B⊆A B3,

⋃
B∈τ,B⊆A B4

)

From Theorem 3.2.(3) (c),
⋃

B∈τ,B⊆A Bi ∈ τi for
each i ∈ {1, 2, 3, 4}. Since

⋃
B∈τ,B⊆A Bi ⊆ Ai for

each i ∈ {1, 2, 3, 4}, then
⋃

B∈τ,B⊆A Bi ⊆ Intτi (Ai)
for each i ∈ {1, 2, 3, 4}. Therefore, the suitability of
(τ1, τ2, τ3, τ4) implies that (Intτ1 (A1), Intτ2 (A2),
Intτ3 (A3), Intτ4 (A4)) ∈ II(X). Hence Intτ(A) ⊆
(Intτ1 (A1), Intτ2 (A2), Intτ3 (A3), Intτ4 (A4)).
(2) Since (Intτ1 (A1), Intτ2 (A2), Intτ3 (A3),
Intτ4 (A4)) ∈ II(X), then it belongs to τ. Now,
(Intτ1 (A1), Intτ2 (A2), Intτ3 (A3), Intτ4 (A4))
⊆ (A1, A2, A3, A4) = A. Therefore
(Intτ1 (A1), Intτ2 (A2), Intτ3 (A3), Intτ4 (A4))
⊆ Intτ(A). �

Theorem 4.2. Let (τ1, τ2, τ3, τ4) ∈ ST(X) and A ∈
II(X). Then
Clτ(A) = (Clτ3 (A1), Clτ4 (A2), Clτ1 (A3), Clτ2 (A4)),
where τ = η((τ1, τ2, τ3, τ4)).

Proof. From Theorem 2.20. [32], we have
Clτ(A) = (Intτ(Ac))c

= (Intτ((Ac
3, A

c
4, A

c
1, A

c
2)))c

= (Intτ1 (Ac
3), Intτ2 (Ac

4), Intτ3 (Ac
1), Intτ4 (Ac

2))c

= (
(Intτ3 (Ac

1))c, (Intτ4 (Ac
2))c, (Intτ1 (Ac

3))c,

(Intτ2 (Ac
4))c

)
= (Clτ3 (A1), Clτ4 (A2), Clτ1 (A3), Clτ2 (A4)). �

Remark 4.3. One can deduce that an interval-valued
intuitionistic fuzzy point p in X (p ∈ IP(X), for short)
can be uniquely determined as (t11x, t21x, t31x, t41x),
where t1 ≤ t2 ≤ t4 ≤ t3 and t2 > 0. Note that t1 may
be equal 0.

Definition 4.4. Let τ ∈ IT(X) and A ∈ II(X). Then A
is a τ-Q-neighborhood of
p = (t11x, t21x, t31x, t41x) ∈ IP(X) (or equivalently,
p is a τ-Q-interior point of A) if and only if

(1) t1 = 0 and Ai is a τi-Q-neighborhood of ti1x

for each i ∈ {2, 3, 4}; or
(2) t1 > 0 and Ai is a τi-Q-neighborhood of

ti1x for each i ∈ {1, 2, 3, 4}, where ξ(τ) =
(τ1, τ2, τ3, τ4).

The family of all τ-Q-neighborhoods of p will be
denoted by N

Q
τ (p).

Theorem 4.5. Let (τ1, τ2, τ3, τ4) ∈ ST(X), A ∈ II(X)
and p = (t11x, t21x, t31x, t41x) ∈ IP(X). Then

(1) A is an η((τ1, τ2, τ3, τ4))-Q-neighborhood of
p if and only if t1 = 0 and A2 is a τ2-Q-
neighborhood of t21x.

(2) A is an η((τ1, τ2, τ3, τ4))-Q-neighborhood of
p if and only if t1 > 0 and A1 is a τ1-Q-
neighborhood of t11x.

Proof. One direction in the two statements is obvious
and the other is obtained since τ1 ⊆ τ2 ⊆ τ4 ⊆ τ3.

�

Remark 4.6.
We write p q A to mean that:

(1) t1 = 0 and ti1x q Ai for each i ∈ {2, 3, 4}; or
(2) t1 > 0 and ti1x q Ai for each i ∈ {1, 2, 3, 4}.

Theorem 4.7. Let (τ1, τ2, τ3, τ4) ∈ ST(X), A, B ∈
II(X) and p = (t11x, t21x, t31x, t41x) ∈ IP(X).
Denote η((τ1, τ2, τ3, τ4)) by τ. Then we have:
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(1) (i) 1̃ ∈ NQ
τ (p) for every p ∈ IP(X);

(ii) If A ∈ NQ
τ (p), then p q A;

(iii) If A, B ∈ NQ
τ (p), then A ∩ B ∈ NQ

τ (p);
(iv) If A ∈ NQ

τ (p) and A ⊆ B, then B ∈ NQ
τ (p);

(v) If A ∈ NQ
τ (p), then there exists B ∈ NQ

τ (p) such
that B ⊆ A and B ∈ NQ

τ (s) for every s ∈ IP(X) and
s q B.
t1 = 0 and ti1x q Ai for each i ∈ {2, 3, 4}; or

(2) For every p ∈ IP(X), suppose there exists
Up ⊆ II(X) satisfying (i)-(iv), then θ = {A ∈ Up :
p q A} ∈ IT(X). If in addition Up satisfies (v), then
Up = N

Q

θ (p).

Proof. (1) (i)-(iv) are immediate.
(v) Suppose that A ∈ N

Q
τ (p). If t1 = 0 we

have that A2 is a τ2-Q-neighborhood of t21x.
Thus, there exists O2 ∈ τ2 such that t21x q O2 ⊆
A2. Now, we obtain B = (Intτ1 (A1), Intτ2 (A2),
Intτ3 (A3), Intτ4 (A4))

∈ N
Q
τ (p) and B ⊆ A. If s q B, s ∈ IP(X), one can

easily have that B ∈ N
Q
τ (s).

(2) First, we prove that θ ∈ IT(X) as follows:
(a) It is obvious that 0̃, 1̃ ∈ θ;
(b) Suppose A, B ∈ θ. Then
if t1 = 0 and ti1x q (A ∩ B) for each i ∈ {2, 3, 4},

then from (iii), A ∩ B ∈ Up. Therefore A ∩ B ∈ θ.
One can deduce in a similar way that A ∩ B ∈ θ

when t1 > 0.
(c) Suppose {Aj : j ∈ �} ⊆ θ. If t1 = 0

and ti1x q
⋃

j∈� Aj for each i ∈ {2, 3, 4}, then∨
j∈� Aj(x) + ti > 1 for each i ∈ {2, 3, 4}. Thus,

there exists j◦ ∈ � such that Aj◦ (x) + ti > 1 for
each i ∈ {2, 3, 4}. So, Aj◦ ∈ Up. From (I) (iv) we
have

⋃
j∈� Aj ∈ Up. Therefore

⋃
j∈� Aj ∈ θ. On the

other hand, if t1 > 0, one can prove in a similar way
that

⋃
j∈� Aj ∈ θ.

Now, suppose that Up satisfies (v) and C ∈ Up.
Then from (v), there exists B ∈ Up such that B ⊆ C

and B ∈ Us for every s q B, s ∈ IP(X). Thus B ∈ θ.
So one can deduce that C ∈ N

Q
θ (p). Again, suppose

that C ∈ N
Q
θ (p). Then there exists D ∈ θ such that

p q D ⊆ C. Then D ∈ Up. Therefore from (iv), C ∈
Up. �

Theorem 4.8. Let τ ∈ IT(X). If B (resp. S) ⊆ τ is
a base (resp. subbase) for τ, then Bi = {Ai : A ∈
B} (resp. S i = {Ai : A ∈ S}) is a base (resp. sub-
base) for τi for each i ∈ {1, 2, 3, 4}, where ξ(τ) =
(τ1, τ2, τ3, τ4).

Proof. Suppose i ∈ {1, 2, 3, 4}.

(1) For the base case, suppose M ∈ τi. Then there
exists A ∈ τ such that Ai = M. Thus, there exists a
subfamily {Bk : k ∈ �} of B such that

⋃
k∈� Bk = A

and so there exists a subfamily {Bk
i : k ∈ �} of Bi

such that
⋃

k∈� Bk
i = Ai = M. Hence Bi is a base

for τi .
(2) For the subbase case, suppose M ∈ τi. Then

there exists A ∈ τ such that Ai = M. Thus, there
exist finite sets �l and arbitrary set � such that⋃

l∈�

⋂
k∈�l

Bk = A and {Bk : k ∈ �l} ⊆ S for each
l ∈ �. Hence there exist finite sets �l and arbitrary set
� such that

⋃
l∈�

⋂
k∈�l

Bk
i = Ai = M and {Bk

i : k ∈
�l} ⊆ S i for each l ∈ �. Hence S i is a subbase for τi.
�

Remark 4.9. In the following example we illustrate
that if Bi is a base for τi for each i ∈ {1, 2, 3, 4}, then
B = {A ∈ II(X) : Ai ∈ Bi, i ∈ {1, 2, 3, 4}} need not
be a base for τ even τ = η((τ1, τ2, τ3, τ4)) and
(τ1, τ2, τ3, τ4) ∈ ST(X).

Example 4.10. Let X = {a, b, c} and τ = {μ : μ ∈
II(X), μi ∈ τi, i ∈ {1, 2, 3, 4}}, where
τ1 = {1X, 1φ} ∪ {α, β, γ, δ} and τ2 = τ3 = τ4 =
{1X, 1φ} ∪ {α, β, γ, δ, ζ, ξ, λ, ν, ϕ}, where
α(a) = 1

4 , α(b) = 1
2 , α(c) = 1, β(a) = 1

3 , β(b) =
0, β(c) = 1

2 , γ(a) = 1
4 , γ(b) = 0, γ(c) = 1

2 , δ(a)
= 1

3 , δ(b) = 1
2 , δ(c) = 1, ζ(a) = 0, ζ(b) = 0, ζ(c) =

1, ξ(a) = 1
4 , ξ(b) = 0, ξ(c) = 1, λ(a) = 0, λ(b) =

0, λ(c) = 1
2 , ν(a) = 0, ν(b) = 1

2 , ν(c) = 1, ϕ(a) =
1
3 , ϕ(b) = 0, ϕ(c) = 1. Hence, τ1, τ2, τ3 and τ4 are
fuzzy topologies on X and (τ1, τ2, τ3, τ4) ∈ ST(X).

Now, B1 = {1X, 1φ, α, β, γ} is a base for τ1
and Bi = {1X, 1φ, β, γ, ζ, ξ, λ, ν} is a base for τi

where i ∈ {2, 3, 4}. It is clear that (α, α, α, α) ∈
η((τ1, τ2, τ3, τ4)) but there exists no IIF sets can be
constructed from the bases B1, B2, B3 and B4 such
that (α, α, α, α) can be written as a union of them.

5. IIF homeomorphisms and IIF compactness

We suppose that the definitions of continuous
(resp. open, closed, homeomorphism) functions in
the frameworks of F topology and IF topology are
well known.

Definition 5.1. Let τ ∈ IT(X), σ ∈ IT(Y ) and f :
X → Y be a function. Then
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(1) f is said to be interval-valued intuitionistic
fuzzy continuous (IIF continuous, for short)
if and only if (f (B))−1 ∈ τ) for each B ∈ σ.

(2) f is said to be interval-valued intuitionis-
tic fuzzy open (IIF open, for short) (resp.
closed) (IIF closed, for short ) if and only if
for each A ∈ τ (resp. Bc ∈ τ), f (A) ∈ σ (resp.
(f (B))c ∈ σ).

(3) f is said to be an interval-valued intuitionistic
fuzzy homeomorphism (IIF homeomorphism,
for short) if and only if

(a) f is a bijection, and
(b) f and f−1 are IIF continuous.

Theorem 5.2. Let τ ∈ IT(X), σ ∈ IT(Y ) and f :
X → Y be a function. Then

(1) f is IIF open if and only if f (Intτ(A)) ⊆
Intσ(f (A)) for every A ∈ II(X);

(2) f is IIF closed if and only if f (Clτ(A)) ⊇
Clσ(f (A)) for every A ∈ II(X);

(3) If f is a bijection, then f is IIF open if and only
if f−1 is IIF continuous if and only if f is IIF
closed.

Proof.

(1) ⇒ Since Intτ(A) ∈ τ , then
f (Intτ(A)) ⊆ Intσ(f (Intτ(A))) ⊆
Intσ(f (A)).
⇐ Let A ∈ τ. Then f (A) = f (Intτ(A)) ⊆
Intσ(f (A)). Hence f (A) ∈ σ.

(2) ⇒ Since (Clτ(A))c ∈ τ , then
(f (Clτ(A)))c ∈ σ and so,
f (Clτ(A))⊇ Clσ(f (Clτ(A)))⊇ Clσ(f (A)).
⇐ Let Ac ∈ τ. Then
f (A) = f (Clτ(A))⊇ Clσ(f (A)).
Hence (f (A))c ∈ σ.

(3) The proof of the statements is obtained from

the facts: (f−1)
−1 = f and (f (A))c = f (Ac).

�

Theorem 5.3. Let τ ∈ IT(X), σ ∈ IT(Y ) and f :
X → Y be a function. Then the following statements
are equivalent:

(1) f is an IIF homeomorphism;
(2) f is a bijection, IIF open and IIF continuous;
(3) f is a bijection and f (Clτ(A)) = Clσ(f (A))

for every A ∈ II(X);
(4) f is a bijection, IIF closed and IIF continuous.

Theorem 5.4.

(1) Let ξ(τ) = (τ1, τ2, τ3, τ4) and ξ(σ) =
(σ1, σ2, σ3, σ4). If f : (X, τ) → (Y, σ) is
IIF continuous (resp. open, closed, home-
omorphism), then fi : (X, τi) → (Y, σi)
is fuzzy continuous (resp. open, closed,
homeomorphism) for each i ∈ {1, 2, 3, 4}.

(2) If fi : (X, τi) → (Y, σi) is fuzzy continuous
(resp. open, closed, homeomorphism) for each
i ∈ {1, 2, 3, 4}, then f : (X, τ) → (Y, σ) is
IIF continuous (resp. open, closed, homeo-
morphism), where τ = η((τ1, τ2, τ3, τ4)) and
σ = η((σ1, σ2, σ3, σ4)).

Theorem 5.5. Let f : (X, τ) → (Y, σ) be a function,
where (X, τ) and (Y, σ) are IIF topological spaces.
Then:

(1) f is IIF continuous (resp. open , closed , home-
omorphism) implies f : (X, τIF ) → (Y, σIF )
is IF continuous (resp. open, closed, home-
omorphism) implies f : (X, τF ) → (Y, σF ) is
fuzzy continuous (resp, open, closed, home-
omorphism) implies f : (X, τO) → (Y, σO) is
continuous (resp. open, closed, homeomor-
phism);

(2) If f is IIF continuous (resp. open , closed ,
homeomorphism), then f : (X, τ�) → (Y, σ�)
and f : (X, τ♦) → (Y, σ♦) so are.

Definition 5.6. Let (X, τ) be an IIF topological space.
Then:

(1) A subfamily U of τ is called an interval-valued
intuitionistic fuzzy open cover (IIF open cover
for short) of X if and only if

⋃ {A : A ∈ U} =
1̃;

(2) A finite subfamily U◦ of an IIF open cover U
of X which is also an IIF open cover of X is
called a finite subcover of U ;

(3) A subfamily M of IIF closed sets of X has
the finite intersection property (FIP for short)
if and only if every finite subfamily M◦ of M
satisfies the condition

⋂
A∈M◦ A /= 0̃;

(4) (X, τ) is called an interval-valued intuitionistic
fuzzy compact topological space (IIF compact
space for short) if and only if every IIF open
cover of X has a finite subcover.

Theorem 5.7. (X, τ) is an IIF compact space if and
only if every subfamily of IIF closed sets of X has the
FIP has a nonempty intersection.
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Theorem 5.8. (X, τ) is an IIF compact space if and
only if (X, τ�) so is if and only if (X, τ♦) so is.

Proof. Necessity: Follows from the fact that
�A ⊆ A ⊆ ♦A.
Sufficiency: Suppose that (X, τ�) is an IIF compact
space and A = {♦Gj : j ∈ �} ⊆ τ♦ is a cover of 1̃.

Then (
⋃

j∈� G
j
1,

⋃
j∈� G

j
2,

⋃
j∈� G

j
3,

⋃
j∈� G

j
4 ) =

(1X, 1X, 1X, 1X). Since G
j
1 ≤ G

j
2 ≤ G

j
4 for each

j ∈ � and
⋃

j∈� G
j
1 = 1X, then( ⋃

j∈� G
j
1,

⋃
j∈� G

j
2,

⋃
j∈� G

j
3,

⋃
j∈� G

j
2

)
= ⋃ {�Gj : j ∈ �} ⊆ τ� is a cover of 1̃. Thus, there
exists �G1, �G2, . . . , �Gn ∈ {�Gj : j ∈ �} such
that

( ⋃n
i=1 Gi

1,
⋃n

i=1 Gi
2,

⋃n
i=1 Gi

3,
⋃n

i=1 Gi
2

) =
(1X, 1X, 1X, 1X). Hence there exists
♦G1, ♦G2, . . . ,♦Gn ∈ {♦Gj : j ∈ �} such that( ⋃n

i=1 Gi
1,

⋃n
i=1 Gi

4,
⋃n

i=1 Gi
3,

⋃n
i=1 Gi

4

)
= ⋃n

i=1 ♦Gi = 1̃. Therefore (X, τ♦) is an IIF
compact space. �

Theorem 5.9. Let (X, τ) be an IIF compact space,
(Y, σ) be IIF space and f : (X, τ) → (Y, σ) be a
continuous surjective function. Then (Y, σ) is IIF
compact.

Theorem 5.10. The following statements are true:

(1) If (X, τ) is IIF compact space, then (X, τIF ) is
an IF compact;

(2) If (X, τIF ) is IF compact space, then (X, τF ) is
an F compact;

(3) If (X, τF ) is an F compact space, then (X, τO)
is compact.

The converse of each of the above statements is not
true in general as shown by the following example.

Example 5.11.

(1) Suppose An(x) = (1 − 1
n
, 1 − 1

2n
, 1 −

1
4n

, 1 − 1
3n

) for each x ∈ [0, 1] and n ∈ N and
τ = {1̃, 0̃} ∪ {An : n ∈ N}. Thus ([0, 1], τIF )
is IF compact space but ([0, 1], τ) is not IIF
compact space;

(2) Suppose An(x) = (1 − 1
n
, 1 − 1

n
, 1 − 1

2n
, 1 −

1
2n

) for each x ∈ [0, 1] and n ∈ N and τ =
{1̃, 0̃} ∪ {An : n ∈ N}. Thus ([0, 1], τF ) is F
compact space but ([0, 1], τIF ) is not IF com-
pact space;

(3) Suppose An(x) = (1 − 1
n
, 1 − 1

n
, 1 − 1

n
, 1 −

1
n

) for each x ∈ [0, 1] and n ∈ N and τ =

{1̃, 0̃} ∪ {An : n ∈ N}. Thus ([0, 1], τO) is
compact space but ([0, 1], τF ) is not F compact
space.

Theorem 5.12. Let (τ1, τ2, τ3, τ4) ∈ PT(X).

(1) If (X, τi) is F-compact spaces for each i ∈
{1, 2, 3, 4}, then (X, η((τ1, τ2, τ3, τ4))) is IIF
compact;

(2) If (X, η((τ1, τ2, τ3, τ4))) is IIF compact, then
(X, τ1) is F compact.

Proof. (1) Suppose H ⊆ η((τ1, τ2, τ3, τ4)) and⋃
h∈H h = 1̃. Then Hi = {hi : h ∈ H} ⊆ τi and⋃
hi∈H hi = 1X for each i ∈ {1, 2, 3, 4}. Thus, there

exists a finite subset {h1
i , h

2
i , . . . , h

ni
i } of Hi such

that
⋃ni

j=1 h
j
i = 1X for each i ∈ {1, 2, 3, 4}. Choose

S = ⋃ {j : j ∈ ni, i ∈ {1, 2, 3, 4}}. Therefore, S is
finite, and we have

⋃
s∈S hs = 1̃.

(2) Suppose M ⊆ τ1 such that
⋃

B∈M B = 1X. Then
M∗ ={(B, 1X, 1X, 1X) : B∈M}⊆η((τ1, τ2, τ3, τ4)).
Then there exists a finite subset {(B1, 1X, 1X,

1X), . . . , (Bn, 1X, 1X, 1X)} of M∗ such that
⋃n

k=1
(Bk, 1X, 1X, 1X) = 1̃. Hence there exists a finite
subset {B1, . . . , Bk} of M such that

⋃n
k=1 Bk = 1X.

�

Corollary 5.13. If (τ1, τ2, τ3, τ4) ∈ ST(X) and
(X, τ3) is F compact, then (X, η((τ1, τ2, τ3, τ4))) is
an IIF compact.

The following example illustrate that there exists
(τ1, τ2, τ3, τ4) ∈ ST(X) and (X, η((τ1, τ2, τ3, τ4))) is
IIF compact space but (X, τi) is not F compact for
i ∈ {2, 3, 4}.

Example 5.14. Let X be any nonempty set.
Define (τ1, τ2, τ3, τ4) ∈ ST(X), where τ1 = {1X, 1φ}
and τ2 = τ3 = τ4 = {1X, 1φ} ∪ {fn : n ∈ N}, where
fn(x) = 1 − 1

n
for every n ∈ N and x ∈ X. Then

(X, η((τ1, τ2, τ3, τ4))) is IIF compact space but (X, τi)
is not F compact for i ∈ {2, 3, 4}.

6. Conclusion

In this paper, some new results about intuitionistic
fuzzy topological spaces are obtained. This subject
has been studied by many mathematicians and have
applications to medicine, photography, and other.
By making use of a characterization of the concept
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of interval-valued intuitionistic fuzzy sets (Theorem
2.5.), the concepts of homeomorphism functions
(Theorem 5.3.), and compactness (Theorems 5.7.-
5.10.) are introduced in interval-valued intuitionistic
fuzzy topological spaces. Furthermore, the concepts
of the base and subbase in interval-valued intuitionis-
tic fuzzy topological spaces (Theorem 4.8.) are given.
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