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Abstract
In this paper, the notions of (concave) (L, M)-fuzzy interior operators are introduced. It
is proved that the category of (L, M)-fuzzy concave spaces and the category of concave
(L, M)-fuzzy interior spaces is isomorphic, and there is a Galois correspondence between the
category of (L, M)-fuzzy concave spaces and the category of (L, M)-fuzzy interior spaces. In
addition, (L, M)-fuzzy hull operators proposed by Sayed et al. (Filomat 33(13):4151–4163,
2019) are further studied. Particularly, some results in Sayed et al. (2019) are corrected.

Keywords Concave (L, M)-fuzzy interior operator · (L, M)-fuzzy hull operator ·
(L, M)-fuzzy convex structure · (L, M)-fuzzy convexity preserving function · Galois
correspondence
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1 Introduction and preliminaries

Abstract convexity theory (Soltan 1984; Van de Vel 1993) is one of the important branches
of mathematics, it deals with set-theoretic structures which satisfies axioms similar to that
usual convex sets fulfill. It plays an important role in various branches of mathematics. There
are many different mathematical research fields that can be applied to axiomatic convexity,
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such as lattices, topological spaces, metric spaces and graphs (see, for example, Lassak 1977;
Maruyama 2009; Šostak 1985; Soltan 1983; VanMill 1977; Varlet 1975;Wang and Shi 2018;
Xiu and Shi 2017).

Rosa (1994a, b) first generalized convex structure to I -convex structure. Also, introduced
fuzzy topology fuzzy convexity spaces and the notion of fuzzy local convexity. Subsequently,
many scholars generalize convex structures to other fuzzy context from different viewpoints.
Generally speaking, there are three approaches to extensions of convex structures to the fuzzy
context, they are called L-convex structures (see, for example, Jin and Li 2016; Li et al. 2019;
Pang and Shi 2017, 2018, 2019), M-fuzzifying convex structures (see, for example, Li and
Shi 2018; Shi and Li 2015; Pang 2020; Wang and Pang 2019; Xiu and Pang 2017, 2018; Xiu
and Shi 2017) and (L, M)-fuzzy convex structures (see, for example, Sayed et al. 2019; Shi
and Xiu 2017), respectively. Recently, there has been significant research on fuzzy convex
structures (Li 2017; Pang and Xiu 2019; Pang and Zhao 2016; Shen and Shi 2020; Wu and
Li 2019; Xiu and Li 2019a; Zhao et al. 2021a, b; Zhong et al. 2019).

Sayed et al. (2019) defined r -L-fuzzybiconvex sets in (L, M)-fuzzy convex structures. The
transformation method between (L, M)-fuzzy hull spaces and (L, M)-fuzzy convex spaces
were introduced, and a characterization of the product of the (L, M)-fuzzy hull operator was
obtained. However, there are some problems in Sayed et al. (2019) as follows:

(1) Notice that L (M) is a completely distributive lattice, not a unit interval [0, 1]. So, some
results on the proof on (L, M)-fuzzy hull operators need not be true;

(2) If there not existsC such thatCO12 = COC, thenCO12 is an (L, M)-fuzzy hull operator on
X , and (CO12)CCO12

= CO12 need not be true. So, Proposition 2.6(2) and Corollary 2.7
in Sayed et al. (2019) need not be true;

(3) Let X = ∏
i∈J Xi , pi : X −→ Xi be the i-th projection and let (

∏
i∈J Xi ,

∏
i∈J Ci )

be the product of {(Xi , Ci )}i∈J . Define CO : LX × M0M −→ LX by ∀A ∈ LX and
r ∈ M0M ,

CO(A, r) =
∧

i∈J

p←
i (COCi (p

→
i (A), r))

=
∏

i∈J

COCi (p
→
i (A), r).

Then CO is an (L, M)-fuzzy hull operator on X , and CO = CO∏
i∈J Ci need not be true

(here CO∏
i∈J Ci is the (L, M)-fuzzy hull operator generated by the product of (L, M)-

fuzzy convex structures {Ci : i ∈ J });
(4) It is not true that all projections pi are (L, M)-fuzzy convex-to-convex functions, i.e.,

Theorem 3.14 in Sayed et al. (2019) is incorrect.

By these motivations, the main contributions of the present paper are to give investigations
on concave (L, M)-fuzzy interior operators and further results of (L, M)-fuzzyhull operators.

Throughout this paper, let X be a non-empty set, both L and M be two completely
distributive lattices with order reversing involution ′ where 0M (0L) and 1M (1L) denote the
least and the greatest elements inM(L) respectively, andM0M = M−{0M }(L0L = L−{0L }).
Recall that an order-reversing involution ′ on L is a map (−)′ : L −→ L such that for any
c, d ∈ L, the following conditions hold: (1) c ≤ d implies d ′ ≤ c′. (2) c′′ = c. The following
properties hold for any subset {di : i ∈ J } ∈ L: (1)

(∨
i∈J di

)′ = ∧
i∈J d

′
i ; (2) (

∧
i∈J di )

′ =∨
i∈J d

′
i . An L-fuzzy subset of X in Goguen (1967) is a mapping A : X −→ L and the

family LX denoted the set of all fuzzy subsets of a given X . For each β ∈ L, let β denote the

constant L-fuzzy subset of X with the value β. The greatest and the least elements in LX are
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denoted by 1X and 0X , respectively. The complementation of a fuzzy subset are defined as
B ′(x) = (B(x))′ for all x ∈ X . An element e �= 0M in a lattice is called join-irreducible if
e = d∨c implies e = d or e = c for all d, c ∈ M . Further, e is said to be coprime if e ≤ d∨c
implies e ≤ d or e ≤ c for all d, c ∈ M . The set of all non-zero join-irreducible elements
(resp. coprime elements) of M is denoted J (M) (resp. Copr(M)). It can be verified that if M
is distributive, then b ∈ M is join-irreducible iff it is coprime, which means J (M)=Copr(M).
So, for convenience, we usually use J (M) to stand for the set of all coprime elements of M if
M is distributive. If M is a completely distributive lattice and x ≺ ∨

t∈T yt , then there must
be t� ∈ T such that x ≺ yt� (here x ≺ c means: N ⊂ M, c ≤ ∨

N ⇒ ∃y ∈ N such that
x≤y), and for each b ∈ M , b = ∨{a ∈ M : a ≺ b} = ∨{a ∈ J (M) : a ≺ b}. Some more
properties of ≺ can be found in Liu and Luo (1997). We say {Ai : i ∈ J } is a directed (resp.
co-directed) subset of LX , in symbols {Ai : i ∈ J } dir⊆ LX (resp. {Ai : i ∈ J } cdir⊆ LX ) if for
each A1, A2 ∈ {Ai : i ∈ J }, there exists A3 ∈ {Ai : i ∈ J } such that A1, A2 ≤ A3 (resp.
A1, A2 ≥ A3).

Definition 1.1 (Shi and Xiu 2017; Zhong et al. 2019) The pair (X , C) is called an (L, M)-
fuzzy convex space, where C : LX −→ M satisfies the following axioms:

(LMC1) C(0X ) = C(1X ) = 1M .

(LMC2) If {Ai : i ∈ J } ⊆ LX is nonempty, then C (∧
i∈J Ai

) ≥ ∧
i∈J C(Ai ).

(LMC3) If {Ai : i ∈ J } ⊆ LX is nonempty and totally ordered by inclusion, then

C
(

∨

i∈J

Ai

)

≥
∧

i∈J

C(Ai ).

The mapping C is called an (L, M)-fuzzy convex structure on X . The triple (X , C1, C2) is
called an (L, M)-fuzzy biconvex space ((L, M)-fbcs, for short), where C1 and C2 are (L, M)-
fuzzy convex structures on X .

Definition 1.2 The pair (X , CO) is called an (L, M)-fuzzy hull space, where CO : LX ×
M0M −→ LX satisfies the following conditions: for any A, B ∈ LX and r , s ∈ M0M ,

(1) CO(0X , r) = 0X .

(2) A ≤ CO(A, r).
(3) If A ≤ B, then CO(A, r) ≤ CO(B, r).
(4) If r ≤ s, then CO(A, r) ≤ CO(A, s).
(5) CO(CO(A, r), r) = CO(A, r).
(6) If {Ai : i ∈ J } ⊆ LX is nonempty and totally ordered by inclusion, then

CO
(

∨

i∈J

Ai , r

)

=
∨

i∈J

CO(Ai , r).

A mapping CO is called an (L, M)-fuzzy hull operator on X .

Theorem 1.3 (Sayed et al. 2019) Let (X , C) be an (L, M)-fuzzy convex space. Then COC :
LX × M0M −→ LX defined by ∀A ∈ LX and r ∈ M0M ,

COC(A, r) =
∧

{B ∈ LX : A ≤ B, C(B) ≥ r}
is an (L, M)-fuzzy hull operator. The symbol COC is called the (L, M)-fuzzy hull operator
generated by an (L, M)-fuzzy convex structure C.
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Definition 1.4 (Xiu and Li 2019b) A mapping A : LX −→ M is called an (L, M)-fuzzy
concave structure on X if it satisfies the following axioms:

(LMA1) A(0X ) = A(1X ) = 1M .
(LMA2) If {Ai : i ∈ J } ⊆ LX is nonempty, then

A
(

∨

i∈J

Ai

)

≥
∧

i∈J

A(Ai ).

(LMA3) If {Ai : i ∈ J } cdir⊆ LX , then

A
(

∧

i∈J

Ai

)

≥
∧

i∈J

A(Ai ).

If A is an (L, M)-fuzzy concave structure, then the pair (X ,A) is called an (L, M)-fuzzy
concave space.

Proposition 1.5 (Sayed et al. 2019) Let (X , C1, C2) be an (L, M)-fbcs. For each r ∈ M0M
and A ∈ LX , a mapping CO12 : LX × M0M −→ LX is defined as follows:

CO12(A, r) = COC1(A, r) ∧ COC2(A, r).

Then, CO12 is an (L, M)-fuzzy hull operator on X .

Proposition 1.6 (Sayed et al. 2019) For an (L, M)-fuzzy hull operator CO12, A ∈ LX and
r ∈ M0M a mapping CCO12 : LX −→ M is defined as follows

CCO12(A) =
∨

{r ∈ M0M : A = CO12(A, r)}.
Then:
(1) CCO12 is an (L, M)-fuzzy convex structure on X .

(2) (CO12)CCO12
= CO12.

Definition 1.7 (Rodabaugh 1997; Zadeh 1965) Let g : X −→ Y . Then the image g→(A) of
A ∈ LX and the preimage g←(B) of B ∈ LY are defined by:

g→(A)(y) =
∨

{A(x) : x ∈ X , g(x) = y}
and g←(B) = B ◦ g, respectively. It can be verified that the pair (g→, g←) is a Galois
connection on (LX ,≤) and (LY ,≤).

Definition 1.8 (Xiu and Li 2019b) Let (X ,A) and (Y ,B) be (L, M)-fuzzy concave spaces,
then a function g : X −→ Y is called an (L, M)-fuzzy concavity preserving function
((L, M)-FCAP, for short) if A(g←(A)) ≥ B(A) for all A ∈ LY .

Definition 1.9 (Shi and Xiu 2017) Let (X , C) and (Y ,D) be (L, M)-fuzzy convex spaces. A
function g : X −→ Y is called:

(1) An (L, M)-fuzzy convexity preserving function if C(g←(B)) ≥ D(B) for all B ∈ LY .

(2) An (L, M)-fuzzy convex-to-convex function if D(g→(A)) ≥ C(A) for all A ∈ LX .
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Theorem 1.10 (Shi and Xiu (2017)) Let {(Xi , Ci ) : i ∈ J } be a set of (L, M)-fuzzy convex
spaces. Let X be the product of the sets Xi for i ∈ J , and let pi : X −→ Xi the projection
for each i ∈ J . Define a mapping S : LX −→ M by

S(A) =
∨

i∈J

∨

p←
i (B)=A

Ci (B) for each A ∈ LX .

Then the product convex structure C of X is the one generated by subbase S. The resulting
(L, M)-fuzzy convex space (X , C) is called the product of {(Xi , Ci ) : i ∈ J } and is denoted
by

∏
i∈J (Xi , Ci ).

Theorem 1.11 (Shi and Xiu 2017) Let (X , C) be the product of {(Xi , Ci ) : i ∈ J }. Then for
all i ∈ J , pi : X −→ Xi is an (L, M)-fuzzy convexity preserving function.

Lemma 1.12 (Sayed et al. 2019) Let (X , C) and (Y ,D) be (L, M)-fuzzy convex spaces. Then
g : X −→ Y is an (L, M)-fuzzy convex-to-convex function if and only if g→(COC(A, r)) ≥
COD(g→(A), r) for all A ∈ LX and r ∈ M0M .

2 Concave (L,M)-fuzzy interior operators

In this section, the notion of concave (L, M)-fuzzy interior operators will be given, and the
relationship between the category of (L, M)-fuzzy concave spaces and that of (concave)
(L, M)-fuzzy interior spaces will be studied.

Definition 2.1 Amapping I : LX ×M0M −→ LX is called an (L, M)-fuzzy interior operator
on X if it satisfies the following conditions: for any A, B ∈ LX and r , s ∈ M0M ,

(1) I(1X , r) = 1X .

(2) I(A, r) ≤ A.

(3) If A ≤ B, then I(A, r) ≤ I(B, r).
(4) If r ≤ s, then I(A, s) ≤ I(A, r).
(5) I(I(A, r), r) = I(A, r).

(6) If {Ai : i ∈ J } cdir⊆ LX , then

I
(

∧

i∈J

Ai , r

)

=
∧

i∈J

I(Ai , r).

The pair (X , I) is called an (L, M)-fuzzy interior space if I is an (L, M)-fuzzy interior
operator on X .
If I is an (L, M)-fuzzy interior operator on X , and I satisfies the following condition:

(7) I(B,
∨{r ∈ M0M : B = I(B, r)}) = B, then we say that I is a concave (L, M)-fuzzy

interior operator on X , and a pair (X , I) is called a concave (L, M)-fuzzy interior space.

Theorem 2.2 Let (X ,A) be an (L, M)-fuzzy concave space. Then IA : LX × M0M −→ LX

defined by ∀A ∈ LX and r ∈ M0M ,

IA(A, r) =
∨

{B ∈ LX : B ≤ A, A(B) ≥ r},
is a concave (L, M)-fuzzy interior operator. The symbol IA is called the concave (L, M)-
fuzzy interior operator generated by an (L, M)-fuzzy concavity A.
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Proof (1) For all r ∈ M0M , we have A(1X ) ≥ r . So, we obtain IA(1X , r) = 1X .

(2) and (3) are satisfied from the definition of IA.

(4) Suppose that r ≤ s. Then by (2) and (3) we have IA(IA(A, s), r) ≤ IA(A, s) and
IA(IA(A, s), r) ≤ IA(A, r). By the definition of IA, we obtain

A(IA(A, s)) = A
(∨

{B ∈ LX : B ≤ A, A (B) ≥ s}
)

≥ s ≥ r .

It implies that IA (IA(A, s), r
) ≥ IA(A, s). So,

IA (IA(A, s), r
) = IA(A, s).

Hence IA(A, s) ≤ IA(A, r).
(5) By (2) and (3) we have,

IA(IA(A, r), r) ≤ IA(A, r). (2.1)

On the other hand, by the definition of IA(A, r) and (LMA2), we obtain A(IA(A, r)) ≥ r .
This implies,

IA(A, r) ≤ IA(IA(A, r), r). (2.2)

So, from the inequalities (2.1) and (2.2), we obtain IA(IA(A, r), r) = IA(A, r).

(6) Let {Ai : i ∈ J } cdir⊆ LX . Then {IA(Ai , r) : i ∈ J } cdir⊆ LX . By (2) we have,
∧

i∈J

IA(Ai , r) ≤
∧

i∈J

Ai .

By (LMA2) and (LMA3), we have

A
(

∧

i∈J

IA(Ai , r)

)

≥
∧

i∈J

A(IA(Ai , r)) ≥ r .

So, we have

IA
(

∧

i∈J

Ai , r

)

=
∨

{B ∈ LX : B ≤
∧

i∈J

Ai ,A(B) ≥ r}

≥
∧

i∈J

IA(Ai , r). (2.3)

On the other hand, for i ∈ J , we have
∧

i∈J Ai ≤ Ai . Therefore by (3), we have

IA
(

∧

i∈J

Ai , r

)

≤ IA(Ai , r).

Hence,

IA
(

∧

i∈J

Ai , r

)

≤
∧

i∈J

IA(Ai , r). (2.4)
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from the inequalities (2.3) and (2.4), we have

IA
(

∧

i∈J

Ai , r

)

=
∧

i∈J

IA(Ai , r).

(7) For each s ∈ {r ∈ M0M : B = IA(B, r)}, we have B = IA(B, s). So, we obtain

A(B) = A(IA(B, s))

= A
(∨

{C ∈ LX : C ≤ B, A(C) ≥ s}
)

≥ s.

It follows that A(B) ≥ ∨
r ≥ s.

By (4), we have

B = IA(B, s) ≥ IA
(
B,

∨
r
)

=
∨ {

C ∈ LX : C ≤ B, A(C) ≥
∨

r
}

≥ B.

Hence IA(B,
∨{r ∈ M0M : B = IA(B, r)}) = B. ��

Theorem 2.3 For an (L, M)-fuzzy interior operator I, A ∈ LX and r ∈ M0M , a mapping
AI : LX −→ M is defined as follows:

AI(A) =
∨

{r ∈ M0M : A = I(A, r)}.
Then:
(1) AI is an (L, M)-fuzzy concave structure on X .

(2) AIA = A and IAIA = IA.

Proof (1) (LMA1) Since for all r ∈ M0M ,

I(1X , r) = 1X , and I(0X , r) ≤ 0X ,

we have AI(0X ) = AI(1X ) = 1M .

(LMA2) Suppose that b ∈ J (M) and

b ≺
∧

i∈J

AI(Ai ).

Then, b ≺ AI(Ai ) for all i ∈ J . There exists r i0 ∈ M0M such that Ai = I(Ai , r i0) and b ≺ r i0
(thus b ≤ r i0). Put r0 = ∧

i∈J r
i
0, then b ≤ r0. Since I is an (L, M)-fuzzy interior operator,

we have

I
(

∨

i∈J

Ai , r0

)

≥ I
(

∨

i∈J

Ai , r
i
0

)

≥ I(Ai , r
i
0)

for all i ∈ J . Then it follows that

I
(

∨

i∈J

Ai , r0

)

≥
∨

i∈J

I(Ai , r
i
0) =

∨

i∈J

Ai .

On the other hand, by Definition 2.1(2), we have I (∨
i∈J Ai , r0

) ≤ ∨
i∈J Ai . So, we obtain

I
(

∨

i∈J

Ai , r0

)

=
∨

i∈J

Ai .
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Therefore AI (∨
i∈J Ai

) ≥ r0 ≥ b. Hence

AI
(

∨

i∈J

Ai

)

≥
∧

i∈J

AI(Ai ).

(LMA3) Let {Ai : i ∈ J } cdir⊆ LX . Suppose that b ∈ J (M) and b ≺ ∧
i∈J AI(Ai ). Then

b ≺ AI(Ai ) for all i ∈ J . There exists r i0 ∈ M0M such that Ai = I(Ai , r i0) and b ≺ r i0 (thus
b ≤ r i0). Put r0 = ∧

i∈J r
i
0, then b ≤ r0. By Definition 2.1(6), we have

∧

i∈J

Ai ≥ I
(

∧

i∈J

Ai , r0

)

=
∧

i∈J

I(Ai , r0)

≥
∧

i∈J

I(Ai , r
i
0) =

∧

i∈J

Ai .

So, we obtain

∧

i∈J

Ai = I
(

∧

i∈J

Ai , r0

)

.

Therefore AI(
∧

i∈J Ai ) ≥ r0 ≥ b. Hence

AI
(

∧

i∈J

Ai

)

≥
∧

i∈J

AI(Ai ).

(2) Let A ∈ LX . Suppose that b ∈ M and

b ≺ AIA
(A) =

∨
{r ∈ M0M : A = IA(A, r)},

there exists r0 ∈ M0M such that A = IA(A, r0) and b ≺ r0 (thus b ≤ r0). Therefore,

A(A) = A(IA(A, r0)) ≥ r0 ≥ b. Hence, AIA
(A) ≤ A(A).

On the other hand, if A(A) = 0M , we easily obtain AIA
(A) ≥ 0M = A(A). If A(A) ∈

M0M , then

A ≥ IA(A,A(A))

=
∨

{B ∈ LX : B ≤ A, A(B) ≥ A(A)}
≥ A.

Therefore, A = IA(A,A(A)). By the definition of AIA
, we obtain AIA

(A) ≥ A(A).

Hence, AIA = A and IAIA = IA. ��
Theorem 2.4 If a mapping I : LX × M0M −→ LX is a concave (L, M)-fuzzy interior

operator on X , then IAI = I.

Proof Notice that I(I(A, r), r) = I(A, r) ≤ A for each r ∈ M0M and A ∈ LX , we obtain

IAI
(A, r) =

∨
{B ∈ LX : B ≤ A, AI(B) ≥ r}

≥
∨

{B ∈ LX : A ≥ B = I(B, r)}
≥ I(A, r).
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Fig. 1 The structure of L

• •
•
•

1L

0L

a b

On the other hand, let B ≤ A, and AI(B) ≥ r . By Definition 2.1(7), we have

B ≥ I(B, r) ≥ I(B,AI(B))

= I(B,
∨

{s ∈ M0M : B = I(B, s)}) = B.

So, B = I(B, r) ≤ I(A, r). It follows that IAI
(A, r) = ∨{B ∈ LX : B ≤ A, AI(B) ≥

r} ≤ I(A, r). Hence, IAI = I. ��
Remark 2.5 If amappingI : LX×M0M −→ LX is an (L, M)-fuzzy interior operator, instead

of a concave (L, M)-fuzzy interior operator, then IAI ≥ I still established, but there is no
IAI ≤ I in general. For example, let X = {x} be a single set, let L = {0L , a, b, 1L }
be a diamond-type lattice (see Fig. 1), and let M = {0M , d, e, f , g, 1M } (see Fig. 2). Then
LX = {0X , a, b, 1X }. Define themapping I : LX×M0M −→ LX as follows: for all r �= ⊥M ,
I(1X , r) = 1X , I(0X , r) = 0X ,

I(a, r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a, if r = f ,
a, if r = d,

a, if r = e,
0X , if r = g,
0X , otherwise,

I(b, r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b, if r = f ,
b, if r = d,

b, if r = e,
0X , if r = g,
0X , otherwise.

Then we can easily verify that I : LX × M0M −→ LX is an (L, M)-fuzzy interior
operator, not a concave (L, M)-fuzzy interior operator, and AI is an (L, M)-fuzzy concave
structure on X . Notice that AI(0X ) = AI(1X ) = 1M , AI(a) = AI(b) = g, we obtain

IAI
(a, g) =

∨
{B ∈ LX : B ≤ a, AI(B) ≥ g}

= a � 0X = I(a, g),

i.e., IAI
� I.

Definition 2.6 Let (X , IX ) and (Y , IY ) be two (L, M)-fuzzy interior spaces, then a function
g : X −→ Y is called an (L, M)-fuzzy interior preserving function ((L, M)-FINP, for short)
if g←(IY (A, r)) ≤ IX (g←(A), r) for all A ∈ LY and r ∈ M0M .
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Fig. 2 The structure of M

• •
•
•
•

•1M
g

f

0M

d e

Proposition 2.7 If g : (X , IX ) −→ (Y , IY ) is an (L, M)-FINP, then g : (X ,AIX ) −→
(Y ,AIY ) is an (L, M)-FCAP.

Proof Suppose that b ∈ M and

b ≺ AIY (A) =
∨

{r ∈ M0M : A = IY (A, r)}

for each A ∈ LY , there exists r0 ∈ M0M such that A = IY (A, r0), and b ≺ r0 (thus b ≤ r0).
If g : (X , IX ) −→ (Y , IY ) is an (L, M)-FINP, we obtain

g←(A) = g←(IY (A, r0))

≤ IX (g←(A), r0) ≤ g←(A),

i.e., IX (g←(A), r0) = g←(A). This implies

AIX (g←(A))

=
∨

{s ∈ M0M : g←(A) = IX (g←(A), s)}
≥ r0 ≥ b.

This shows that

AIX (g←(A)) ≥ AIY (A).

Hence, g : (X ,AIX ) −→ (Y ,AIY ) is an (L, M)-FCAP. ��

Proposition 2.8 If g : (X ,AX ) −→ (Y ,AY ) is an (L, M)-FCAP, then g : (X , IAX ) −→
(Y , IAY ) is an (L, M)-FINP.
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Proof If g : (X ,AX ) −→ (Y ,AY ) is an (L, M)-FCAP, then AX (g←(A)) ≥ AY (A) for all
A ∈ LY . Therefore,

g←(IAY (A, r))
= g← (∨{B ∈ LY : B ≤ A, AY (B) ≥ r})
= ∨{g←(B) ∈ LX : B ≤ A, AY (B) ≥ r}
≤ ∨{g←(B) ∈ LX : g←(B) ≤ g←(A),AX (g←(B)) ≥ r}
≤ ∨{C ∈ LX : C ≤ g←(A), AX (C) ≥ r}
= IAX (g←(A), r).

Hence, g : (X , IAX ) −→ (Y , IAY ) is an (L, M)-FINP. ��

At the end of this section, we will give the relationship between the category of (L, M)-
fuzzy concave spaces and that of (concave) (L, M)-fuzzy interior spaces. Some concepts
related to category theory can be found in Adáamek et al. (1990).

The category of all (L, M)-fuzzy concave spaces as objects and all (L, M)-FCAPs as
morphisms is denoted by LMFA (see Xiu and Li 2019b), and the category of all (L, M)-
fuzzy interior spaces as objects and all (L, M)-FINPs as morphisms is denoted by LMFI.
Obviously, from Proposition 2.7, we obtain a concrete functor � : LMFI −→ LMFA by

� : (X , I) �→ (X ,AI) and g �→ g.

From Proposition 2.8, we obtain a concrete functor � : LMFA −→ LMFI by

� : (X ,A) �→ (X , IA) and g �→ g.

Theorem 2.9 (�,�) is a Galois correspondence between the category of (L, M)-fuzzy con-
cave spaces and that of (L, M)-fuzzy interior spaces, and � is a left inverse of �.

Proof By Theorem 2.3, if A : LX −→ M is an (L, M)-fuzzy concave structure on X ,
then the identity map idX : (X ,A) −→ (X , �(�(A))) = (X ,AIA

) = (X ,A) is an
LMFA-morphism. Moreover, by Remark 2.5, if I : LX × M0M −→ LX is an (L, M)-fuzzy

interior operator on X , then the identity map idY : (Y ,�(�(I))) = (Y , IAI
) −→ (Y , I)

is an LMFI-morphism. Therefore, (�,�) is a Galois correspondence. Furthermore, by
�(�(X ,A)) = (X ,AIA

) = (X ,A) for all (X ,A) ∈ LMFA-objects, � is a left inverse of
�. ��

The category of all concave (L, M)-fuzzy interior spaces as objects and their concave
interior preserving functions as morphisms is denoted by C-LMFI. Obviously, C-LMFI is
subcategory of LMFI.

By Theorems 2.3 and 2.4, and Propositions 2.7 and 2.8, we immediately obtain Theo-
rem 2.10 as follows:

Theorem 2.10 C-LMFI is isomorphic to LMFA.

3 Further results of (L,M)-fuzzy hull operators

In this section, we will give a further study on Sayed’s spaces. Particularly, we will correct
some results in Sayed et al. (2019).
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Remark 3.1 (1) Notice that L (M) is a completely distributive lattice, not a unit interval [0,
1]. So, if a � b, it doesn’t imply a > b. Because there exists another case that a and b
may are not comparable, i.e., a ‖ b. Thus, the proof of Theorem 2.4(5) in Sayed et al.
(2019) is not true. And, we can prove it using the method of Theorem 2.2(5) (another
proving method, please see Zhao et al. 2021b).

(2) Similar to Theorem 2.3 and Remark 2.5, if there not exists C such that CO12 = COC ,
then CO12 is an (L, M)-fuzzy hull operator on X , and (CO12)CCO12

= CO12 need not
be true. So, Proposition 2.6 and Corollary 2.7 in Sayed et al. (2019) need not be true.

Definition 3.2 Let (X , COX ) and (Y , COY ) be two (L, M)-fuzzy hull spaces, then a function
g : X −→ Y is called an (L, M)-fuzzy hull preserving function ((L, M)-FHLP, for short) if
g→(COX (A, r)) ≤ COY (g→(A), r) for all A ∈ LX and r ∈ M0M .

Notice that L (M) is a completely distributive lattice, not a unit interval [0, 1]. So, the
proof of Proposition 2.8(1) in Sayed et al. (2019) does not true, and a correct proof is as
follows (also see Zhao et al. 2021b).

Proposition 3.3 (Sayed et al. 2019, Proposition 2.8(1)) Let (X , C) and (Y ,D) be (L, M)-
fuzzy convex spaces. Then g : X −→ Y is an (L, M)-fuzzy convexity preserving function iff
g : (X , COC) −→ (Y , COD) is an (L, M)-FHLP.

Proof (�⇒) Since g : X −→ Y is an (L, M)-fuzzy convexity preserving function, we obtain
C(g←(�)) ≥ D(�) for all � ∈ LY . So, for each r ∈ M0M and A ∈ LX , we obtain

g←[COD(g→(A), r)]
= g← [∧ {

� ∈ LY : g→(A) ≤ �, D(�) ≥ r
}]

= ∧{
g←(�) ∈ LX : g→(A) ≤ �, D(�) ≥ r

}

≥ ∧ {
g←(�) ∈ LX : A ≤ g←(�), C(g←(�)) ≥ r

}

≥ ∧ {
B ∈ LX : A ≤ B, C(B) ≥ r

} = COC(A, r).

Therefore,

g→(COC(A, r)) ≤ g→g←[COD(g→(A), r)]
≤ COD(g→(A), r).

Hence, g : (X , COC) −→ (Y , COD) is an (L, M)-FHLP.
(⇐�) Suppose that b ∈ J (M) and b ≺ D(�) for all � ∈ LY , then b ≤ D(�). So,

g→(COC(g←(�), b)) ≤ COD(g→(g←(�)), b) ≤ COD(�, b) = �. It follows that

g←(�) ≤ COC(g←(�), b) ≤ g←(�).

Therefore, COC(g←(�), b) = g←(�). Furthermore,

C(g←(�))

= C(COC(g←(�), b))
= C (∧ {

B ∈ LX : g←(�) ≤ ν, C(B) ≥ b
})

≥ ∧

g←(�)≤ν, C(B)≥b
C(B) ≥ b.

Hence, C(g←(�)) ≥ D(�) and g : X −→ Y is an (L, M)-fuzzy convexity preserving
function. ��
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Theorem 3.4 Let X be any set, let { fi : (X , C) −→ (Xi , Ci )}i∈J be any family of (L, M)-
fuzzy convexity preserving functions. and let {(Xi , COCi )}i∈J be any family of (L, M)-fuzzy
hull spaces indexed by a class J . Define CO : LX × M0M −→ LX as follows: for each
r ∈ M0M and A ∈ LX ,

CO(A, r) =
∧

i∈J

f ←
i (COCi ( f

→
i (A), r)).

Then,

(1) CO is an (L, M)-fuzzy hull operator on X , and fi : (X , CO) −→ (Xi , COCi ) is an
(L, M)-FHLP for each i ∈ J .

(2) Let (Y , CO�) is an (L, M)-fuzzy hull spaces, then g : (Y , CO�) −→ (X , CO) is an
(L, M)-FHLP iff fi ◦ g : (Y , CO�) −→ (Xi , COCi ) is an (L, M)-FHLP for each i ∈ J .

(3) COC ≤ CO.

Proof (1) We can easily check that CO is an (L, M)-fuzzy hull operator on X , and for each
i ∈ J ,

f →
i (CO(A, r)) = f →

i

(
∧

i∈I
f ←
i (COCi ( f

→
i (A), r))

)

≤
∧

i∈I
f →
i ( f ←

i (COCi ( f
→
i (A), r)))

≤
∧

i∈I
COCi ( f

→
i (A), r)

≤ COCi ( f
→
i (A), r),

i.e., f →
i (CO(A, r)) ≤ COCi ( f

→
i (A), r).Hence, fi : (X , CO) −→ (Xi , COCi ) is an (L, M)-

FHLP for each i ∈ J .

(2) Let (Y , CO�) is an (L, M)-fuzzy hull space, if g : (Y , CO�) −→ (X , CO) is an
(L, M)-FHLP, then, for each i ∈ J ,

( fi ◦ g)→(CO�(B, r)) = f →
i (g→(CO�(B, r))

≤ f →
i (CO(g→(B), r))

≤ COCi ( f
→
i (g→(B)), r)

= COCi (( fi ◦ g)→(B), r).

Hence, fi ◦ g : (Y , CO�) −→ (Xi , COCi ) is an (L, M)-FHLP for each i ∈ J .

On the other hand, for each r ∈ M0M and B ∈ LY , if fi ◦ g : (Y , CO�) −→ (Xi , COCi )
is an (L, M)-FHLP for each i ∈ J . Then,

g→(CO�(B, r)) ≤
∧

i∈J

(
f ←
i [ f →

i (g→(CO�(B, r))])

=
∧

i∈J

( f ←
i [( fi ◦ g)→(CO�(B, r))])

≤
∧

i∈J

f ←
i [COCi (( fi ◦ g)→(B), r)])

=
∧

i∈J

( f ←
i [COCi ( f

→
i (g→(B)), r)])
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= CO(g→(B), r)

Hence, g : (Y , CO�) −→ (X , CO) is an (L, M)-FHLP.
(3) By Theorem 1.3, we easily know that COC is an (L, M)-fuzzy hull operator on X . Let

(Y , CO�) = (X , COC) and g = idX : (X , COC) −→ (X , CO), then, by Proposition 3.3, we
obtain fi = fi ◦ idX : (X , COC) −→ (Xi , COCi ) is an (L, M)-FHLP. By (2), we obtain
idX : (X , COC) −→ (X , CO) is an (L, M)-FHLP. Hence,

id→
X (COC(A, r)) ≤ CO(id→

X (A), r),

i.e., COC ≤ CO, ��
In particular, according to Theorem 1.11, when we take fi in Theorem 3.4 equals to each

projection pi , by Proposition 3.3 and Theorem 3.4, we easily obtain the following conclusion.

Corollary 3.5 Let X = ∏
i∈J Xi , pi : X −→ Xi be the i-th projection and let

(
∏

i∈J Xi ,
∏

i∈J Ci ) be the product of {(Xi , Ci )}i∈J . Then for each r ∈ M0M and A ∈ LX ,

CO∏
i∈J Ci (A, r) ≤

∧

i∈J

p←
i (COCi (p

→
i (A), r))

=
∏

i∈J

COCi (p
→
i (A), r).

Finally, we give a counterexample to show that not all projections pi (i ∈ J ) are (L, M)-
fuzzy convex-to-convex functions, i.e., Theorem 3.14 in Sayed et al. (2019) is incorrect.
Meanwhile, for each r ∈ M0M and A ∈ LX , there is no

CO∏

i∈J
Ci (A, r) =

∧

i∈J

p←
i (COCi (p

→
i (A), r))

in general.

Example 3.6 LetY = X = {x} be a single set, letM = L = {0L , a, b, 1L } be a diamond-type
lattice (see Fig. 1). Then LX = {0X , a, b, 1X } and LX×X = {0X×X , a, b, 1X×X }. Define two
mappings C1, C2 : LX −→ M as follows:

C1(A) =
{
1L , if A = 0X , 1X ,

b, if A = a, b,

C2(A) =
{
1L , if A = 0X , 1X ,

a, if A = a, b.

Then both C1 and C2 are (L, M)-fuzzy convexities on X , and

COC1(a, r) =
{
1X , if r = a, 1L ,

a, if r = b.

COC2(a, r) =
{
1X , if r = b, 1L ,

a, if r = a.

By Definition 1.2(2) and Corollary 3.5, we have

a = p→
1 (a)(x) ≤ p→

1 (COC1×C2(a, r))(x)

= COC1×C2(a, r)(x, x)

≤
∧

i∈{1,2}
p←
i (COCi (p

→
i (a), r))(x, x)
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= COC1(a, r)(x) ∧ COC2(a, r)(x)

=
{
1L , if r = 1L ,

a, if r = a, b.

Therefore,

a ≤ COC1×C2(a, r) ≤
{
1X×X , if r = 1L ,

a, if r = a, b.

and
∧

i∈{1,2}
p←
i (COCi (p

→
i (a), r))

=
{
1X×X , if r = 1L ,

a, if r = a, b.

Hence,

COC1×C2(a, r) = a, ∀r ∈ {a, b}.
Moreover, by the definition of COC1×C2(a, r), there must be

C1 × C2(a)

= C1 × C2(COC1×C2(a, r))

= C1 × C2
(∧

{α ∈ LX×X : a ≤ α, C1 × C2(α) ≥ r}
)

≥
∧

{C1 × C2(α) : a ≤ α, C1 × C2(α) ≥ r}
≥ r

for each r ∈ {a, b}. i.e., C1×C2(a) ≥ a and C1×C2(a) ≥ b. It implies that C1×C2(a) = 1L .

So, COC1×C2(a, 1L) = a. Therefore,

COC1×C2(a, 1L) �
∧

i∈{1,2}
p←
i (COCi (p

→
i (a), 1L)),

and p→
1 (COC1×C2(a, a)) = a. Notice that

COC1(p
→
1 (a), r) = COC1(a, r)

=
{
1X , if r = a, 1L ,

a, if r = b.

Hence,

p→
1 (COC1×C2(a, a)) � COC1(p

→
1 (a), a).

By Lemma 1.12, we immediately know that p1 is not an (L, M)-fuzzy convex-to-convex
function.

4 Conclusions

Following the notion of (L, M)-fuzzy hull operators in (L, M)-fuzzy convex structures intro-
duced by Sayed et al. (2019), we gave some investigations on (concave) (L, M)-fuzzy interior
operators, and we pointed out some existing problems in paper (Sayed et al. 2019), and we
did a further research on related problems.
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