Thai Journal of Mathematics
Volume 20 Number 2 (2022)
Pages 759-783

http://thaijmath.in.cmu.ac.th
ISSN 1686-0209

Soft Theta-Topology Based on Many-Valued Logic

Osama Rashed Sayed! * and Ahmed Mostafa Khalil?
1 Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt
e-mail : o_sayed@aun.edu.eg; o_r-sayed@yahoo.com

2 Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
e-mail : a.khalil@azhar.edu.eg
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1. INTRODUCTION

Since the theory of fuzzy sets was introduced by Zadeh [1] in 1965, fuzzy ordered struc-
tures on a universal set had become a useful tool to model fuzziness and/or uncertainty
in the real world. Chang [2] Wong [3], and others have discussed various aspects of fuzzy
topology with crisp methods. Ying [4—6] proposed fuzzifying topology and developed (el-
ementary) fuzzy topology from a new direction with the semantic method of continuous
valued logic. So far, there has been significant research on fuzzifying topologies [7—14].
At the present time, the theory of fuzzy sets (i.e., fuzzy logic) is progressing rapidly.
But there exists a difficulty: how to set the membership function in each particular case.
We should not impose only one way to set the membership function. The nature of the
membership function is extremely individual. Everyone may understand the notation
u(x) = 0.7 in his own manner. So, the fuzzy set (i.e., fuzzy logic) operations based on
the arithmetic operations with membership functions do not look natural. It may occur
that these operations are similar to the addition of weights and lengths. The reason for
these difficulties is, possibly, the inadequacy of the parametrization tool of the theory.
The fuzzifying topology is depending on fuzzy logic as special case from fuzzy topology,
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so there is several difficulties as refer above. Therefore, in this paper we will depend on
a new mathematical tool for dealing with uncertainties which is free of the difficulties
mentioned above, which its consider the combining fuzzifying topology and soft topology.
In 1999, Molodtsov [15] introduced soft sets as a general mathematical tool for dealing
with uncertainties. Shabir and Naz [16] introduced the notion of soft topological spaces
and their basic properties were investigated. Cagman et al. [17] defined a soft topology
on a soft set which is more general than the soft topology by Shabir and Naz [16]. There-
fore, we follows their notations and mathematical formalism. Maji et al. [18] combined
fuzzy sets and soft sets and introduced the concept of fuzzy soft sets. These results were
further revised and improved by Ahmad and Kharal [19]. In 2011, Tanay and Kandemir
[20] gave the topological structure of fuzzy soft sets. In the present paper we introduce
the concept of a fuzzifing soft topology. The organization of this paper is as follows:
In section 2, known basic notions of tukasiewicz logic and results concerning the theory
of soft sets and fuzzy soft sets are given. In section 3, definitions of the fuzzifying soft
topology, fuzzifying soft closed sets, fuzzifying soft neighborhood system of a soft point,
fuzzifying soft derived, fuzzifying soft closure and fuzzifying soft interior are given and
some of their properties have been investigated. In section 4, the notions of fuzzifying soft
f-neighborhood system of a soft point, fuzzifying soft #-derived, fuzzifying soft 6-closure,
fuzzifying soft #-interior are defined and their properties are investigated. In section 5,
the notions of fuzzifying soft continuity, fuzzifying soft strong #-continuity and fuzzifying
soft f-continuity have been introduced and studied.

2. PRELIMINARIES

The reader is assumed to be familiar with Ying’s papers [1—(].

First, we display the Lukasiewicz logic and corresponding set-theoretical notations used
in this paper. For any formulas ¢, the symbol [¢] means the truth value of ¢, where the
set of truth values is the unit interval [0, 1]. A formula ¢ is valid, we write = ¢ if and only
if [p] = 1 for every interpretation. The truth valuation rules for primary fuzzy logical
formulas and corresponding set theoretical rotations are:

(1) [a] := a(a € [0,1]), [p A ] := min ([¢], []), [p = ¢] := min (1,1 =[] + [¢]).

(2) If A € 3(X), where (X)) is the family of all fuzzy subsets of X,

then [z € A] := A(z).
(3) If X is the universe of discourse, then [Vzp(z)] := inf,ex[p(2)].

In addition, the truth valuation rules for some derived formulae are
(1) [~¢] == [ = 0] =1 —[¢g];

(2) lp oY= 2 ) AW = @));
3) [p @ 9] := [-(p = )] = max (0, [¢] + [¢] - 1);
(4) Bro(z)] == ["Vop(z)] = supzex[p(z)];
(5) fABES( ), then
(a) [A - B] [Vz(z € A — z € B)] = infyex min (1,1 — A(z) + B(z));

(b) [A=B]:= (A< B)A (B C A).
Second, we present the basic definitions and results of soft set theory and fuzzy soft set
theory which may be found in earlier studies [15, 18, 19, 21, 22]. Throughout this work,

X refers to an initial universe, F is a set of parameters, P(X) is the power set of X, and
ACE.
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Definition 2.1 ([17, 21]). A soft set F4 on the universe X is a mapping F4 : E — P(X),
where Fa(e) #Dif e € AC E and Fa(e) =0 if e ¢ A. The subscript A in the notation
F4 indicates where the image of F4 is non-empty.

A soft set can be defined by the set of ordered pairs Fyu = {(e, Fa(e)) : e € E, Fu(e) €
P(X)}. The value Fa(e) is a set called the e—element of the soft set for all e € E. The
set of all soft sets over X will be denoted by S(X).

Definition 2.2 ([21]). Let F4 € S(X). If Fa(e) =0 for all e € E, then Fy4 is called an
empty set, denoted by 04. Fa(e) = () means that there is no element in X related to
the parameter e € E. Therefore, we do not display such elements in the soft sets as it is
meaningless to consider such parameters.

Definition 2.3 ([21]). Let F4 € S(X). If Fa(e) = X for all e € A, then Fj4 is called an
A-universal soft set, denoted by 14. If A = FE, then the A-universal soft set is called a
universal soft set, denoted by 1.

Definition 2.4 ([21]). Let F4, Fp € S(X). Then, F4 and Fp are soft equal, denoted
by Fa = Fp, if Fa(e) = Fg(e) for all e € E and Fj4 is a soft subset of F, denoted by
FyCFpg,if Fa(e) C Fp(e) for all e € E.

Definition 2.5 ([21]). Let F4,Fp € S(X). Then, the soft union F4UFg, the soft in-
tersection F4NFg, and the soft difference F A(F B, of Fy and Fp are defined by the
approximate functions

Faop(e) = Fale) U Fg(e), Famp(e) = Fa(e) N Fp(e), F,ip(e) = Fale) \ Fp(e),
respectively, and the soft complement F'§ of F4 is defined by the approximate function
Fue(e) = F5(e), where F5(e) is the complement of the set F4(e); that is, F(e) =
XYFA(e) for all e € F.

Definition 2.6 ([23]). Let F4 € S(X). A soft set F4 is called a soft point in X, denoted
by ep, if for the element e € F, F(e) # ) and F(e') = 0 for all ¢’ € A\{e}. The set of
all soft points of X is denoted by SP(X). The soft point ey, is said to be in the soft set
G, denoted by e €EGg, if for the element e € A and Fa(e) C Gg(e).

Definition 2.7 ([24]). Let S(X,A) and S(Y, B) be the families of all soft sets over X
and Y, respectively. The mapping f, is called a soft mapping from X to Y, denoted by
fpu: S(X,A) = S(Y,B), where u: X — Y and p: A — B are two mappings.

(1) Let Fu € S(X, A). The image of F4 under fp,,, written as fp.(Fa) = (fpu(F), p(A4)),
is a soft set in S(Y, B) such that

Uy sya @F (), ifp~"(y) N A £ 0
fpu(F)(y) =
0, otherwise,
for all y € B.
2) Let G € S(Y, B), then the inverse image of G g under f,,, written as f;.'(Gg) =
p pu
(fou (G),p~(B)), is the soft set in S(X, A) such that

u= (G(p(e))), ifp(e) € B;

0, otherwise,
for all e € A.
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Proposition 2.8 ([21]). Let If Fa, Fp € S(X). Then De Morgan’s laws are valid
(1) (FaUFp)® = F4NFg;
(2) (FaNFp)¢ = FSUFs.
Definition 2.9 ([18]). A fuzzy soft set f4 on the universe X is a mapping fa : E — $(X),

where fa(e) #0x ife € AC F and fa(e) =0x if e ¢ A, where Ox is empty fuzzy set on
X. The set of all fuzzy soft sets over X will be denoted by S (S(X)).

c
c

3. BASIC PROPERTIES ON FUZZIFYING SOFT TOPOLOGY

The purpose of this section is to introduce and study the concepts of fuzzifying soft
topology, fuzzifying soft closed sets, fuzzifying soft neighborhood system of a soft point,
fuzzifying soft derived, fuzzifying soft closure and fuzzifying soft interior of a soft set.

Definition 3.1. Let X be an initial universe, 7 € $(S(X)) satisfy the following condi-
tions:

(1) 7(04) = 7(14) = L1 )

(2) For any Fu, Fip € S(X),7(FaNFp) = 7(Fa) NT(Fp);

(3) For any {FAA A€ A}QS( ) (U)\eAFAA > /\ FAA

Then, 7 is a fuzzifying soft topology and (X, 7, A) i 1s a fuzzifying soft topological space.

Example 3.2. Let X = {x1, 22,23} and A = {e}. Then, S(X) = {04,14, Fa,, Fa,, Fa,,
FA47FA57 FAG}’ where Fa, = {(67 {1‘1})}, Fa, = {(6, {IQ})}’ FA3 = {(e’ {I?)})} Fa, =
{(67 {:L'la xQ})}v FA5 = {(67 {1'17 {E3})}, FAs = {(6, {1’2, :Cg})} Deﬁne amapping 7 € d( ( ))
as follows: ?(OA) = 77(1,4) = F(FA4) =1 ?(FAI) = ;(FAS) = N(FAZ) = F(FAG) = %
and 7(Fa,) = ;. Then, 7 is a fuzzifying soft topology and (X 7, A) is a fuzzifying soft
topological space

Now, we will give new definition of fuzzifying soft closed sets as follows:

Definition 3.3. Let (X, 7, A) be a fuzzifying soft topological space and Fy4 € S(X).
The family of all fuzzifying soft closed sets, denoted by F € 3(S(X)), is defined as
FyefF = (lA\FA) € 7, where 14 \ Fa is the complement of Fjy.

Example 3.4. The fuzzifying soft topological space (X, 7T, A) is the same as in Example
3.2, we have f (14) = F (04) = F (Fa;) = LF (Fa,) = F (Fa,) = i F (Fa,) = F (Fa,) =
fand F (Fa,) =1

Theorem 3.5. Let (X,7,A) be a fuzzifying soft topological space. Then, the following
conditions hold.

(1) F(04) = F (1a) =1; N -
(2) For any Fc,Fp € S( ) (FCUFD) > F(Fe)ANF(Fp);

(3) For any {Fc, : A\ € A}CS(X), T (MyeaFen) > \ F(Fe,).

AEA

Proof. (1) (OA) =7(14\04)=7(14) =1 and F(lA) =7(1a\14)=7(04) = 1.

(2) For any Fo,Fp € S(X), we have [ (FcUFp) = 7((1a \ Fo)(14 \ Fp)) >
T(1a\ Fo) AT(1a\ Fp) = F (Fc) AF (Fp).



Soft Theta-Topology Based on Many-Valued Logic 763

(3) For any {Fg, : A € AYCS(X), we have F(ﬁ)\EAFCA) = ?(D)\eA(lA \ Fe,)) >
A 7((Qa\ Fe,)) = \ F(Fc,). m

We will propose novel concept of fuzzifying soft neighborhood system of soft point ey,
as follows:

Definition 3.6. Let (X,7, A) be a fuzzifying soft topological space, ey € SP(X) and
Fy,Fp € S(X). The fuzzifying soft neighborhood system of ey, is denoted by N,, €
I(S(X)), is defined as

Fa € Ne,, :=3Fp((Fp € )Mem€FpCFa)), ie., Ny (Fa)= \/  F(Fg).

ep EFBCF

Example 3.7. The fuzzifying soft topological space (X, T, A) is the same as in Example
3.2. Let epr = {(e, {x3})} be a soft point. The fuzzifying soft neighborhood systems of ey
are: NEM(]-A) = 1;N5M(0A) = NGM(FA1) = NEM(FAz) = NEM(FA4) = O;NEM(FA3) =
NEM(FAG) = i and NeM(FAs) = %
The main results (i.e., Theorem 3.8, Corollary 3.9, and Theorem 3.10) on fuzzifying
soft neighborhood system are presented as follows:

Theorem 3.8. Let (X, T, A) be a fuzzifying soft topological space and Fa, Fp, Fo € S(X).
Then

(1) E Fa €7 < Ver(em€Fa — 3Fp(Fp € T A enr€F5CFa));

(2) E Fa €7 < Ver(em€Fa — 3Fp(Fp € Ney, A FpCFa)).

Proof. (1) [Venr(en€Fa — IFp(Fp € 7 A en€FCFa))] = N \/  #(Fp).

e EFA ey EFgCFy
It is clear that /\ \/ T(Fg) > 7(F4). In the other hand, let B.,, = {Fp :

epf€FA epfEFRCFy

er€FCF}. Then, for any f € [I., 27, Ben, we have U flenr) = F4 and so

FED=F(J flew)= N\ Fllenn).
Thus, 7(Fa) > \/ A Ffen)= A 'V  7(Fs).
felle, ery Bem emEFA eME€FA epEFCFy

(2) From (1) we have,

[Vers(enr€Fa — 3Fp(Fp € Ney, A FpCFa)) = N\ \/  New(Fp)

I
<
m

N
|

Corollary 3.9. /\ Ne,, (Fa) =7(Fa).

epM EFA

Theorem 3.10. The mapping N : SP(X) — S (S(X)), ear = Ne,, where I (S(X))
is the set of all normal fuzzy soft subsets of S(X) has the following properties:
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(1) For any enr, Fa, = Fa € N,,, — ep€Fq; N
(2) For any enr, Fa, Fp, = (FA~€ New) AN (F € Ney,) = FaNFp € Ney,;
(3) For any enr, Fa, Fp, )= FACFp — (Fy € Ng,, = Fp € N¢,,).

Proof. One can easily have that for each ep € SP(X), N.,. =1, i.e. N, is normal.
(1) If Ne,,(F4) = 0, then the result holds. If N.,, (F4) > 0, then \/ T(Fg) >0

enEFRCFy

and so there exists Feo € S(X) such that ey €EFcCFy4. Thus [ear € Fal =12> N, (Fa).

(2) [FANFp € N,,,] = \/ 7(Fo)
ey EFcCFANFR
= \ 7(Fe,NFe,), where Fo = Fo,NFe,
eME&Fc, CFa.epEF0, CFp
\/ (?(Fcl) A ?(FCQ))
en&Fc, CFy enEFc, CFp
- \/ ?(FCH) A \/ ?(FCQ)

em€Fc, CFy em€Fc,CFp

= [(FA € Ney )N (Fp € NEM)]'

v

(3) If [FAQFB] = 0, then the result holds. If [FAEFB] =1,
then N, (Fg) = \/  7(Fo)> \/  7(Fc)=Ney(Fa). n
epmEFcCFp e EFcCFy
Next, we will introduce the notion of fuzzifying derived in fuzzifying soft topological
space as follows:

Definition 3.11. Let (X, 7, A) be a fuzzifying soft topological space and Fx, Fg € S(X).
The fuzzifying soft derived of F4, denoted by D € $(S(X)), is defined as

emE€D(F) :=VFp (FB € N.,, — (FeN(Fa\{en}) # OA)),

D(Fa)(en) = A (1= N, (Fg)).
FpN(Fa\{ep})=04

Example 3.12. The fuzzifying soft topological space (X,7, A) is the same as in Ex-
amples 3.2, we have D(14)(ens) = D(Fa,)(em) = D(Fa,)(em) = D(Fa,)(em) =
1:D(04)(enr) = D(Fa,)(enr) = 0 and D(Fa,)(enr) = D(Fa,g)(en) = 3.
Theorem 3.13. Let (X, 7, A) be a fuzzifying soft topological space and Fa, Fp € S(X).
Then

(1) = D(Fa)(enr) = 1 - Ney (1 \ Fa)Tfenr));

(2) = D(04) = 04 B

(3) F FaCFp = D(Fa)SD(FB);

(4) EFs € F <> D(Fy)CFy4.

Proof. (1) D(Fa)(enm) = ~(/\\{ : (1—Ne,, (Fp)) =1— ~(\/\( } Ne,, (Fg) =
Fpn(Fa\{ep})=04 FpN(Fa\{ep})=04
1-— \ Ney (Fg) =1 — Ney, ((La\ Fa)O{ear}).

FpC(14\Fa)0{ep}
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(2) From (1) above and since N,,, is normal, we have D(04)(ea) =1—Ne,, ((14\04)
Ufenm}) =1—Ney (1a)=1-1=0.

(3) If [F4CFp] = 0, then the result holds. If [FACFg] = 1, then D(F4)(en) =

1= Ne,p, (1a\ Fa)J{en}) <1—=Ney, ((1a\ F)U{en}) = D(Fp)(en).

(4) [D(FA)iFA] = Veum (eMéD(FA) — eMéFA)
min (1,1 — D(Fa)(em) + [emr€Fa])
epr ESP(X)
_ (1= D(Fa)(en))
= (1= (1= Ney ((1a\ Fa) Ufen})))

- Ney (14 \ Fa) Ofen})

I
=
S

=
b

—
5

= \V 7(Fp)
eME1a\Fa ep€FpCiu\Fy
=T\ Fa)=[Fa€F] ]

Next, we will introduce the notion of fuzzifying closure in fuzzifying soft topological
space as follows:

Definition 3.14. Let (X, 7, A) be a fuzzifying soft topological space and Fy4, Fp € S(X).
The fuzzifying soft closure of F4, denoted by Cl € I(S(X)), is defined as

eMECl(FA) = VFB((FAEFB) A\ (FB S :E) — eMAéFB),

ie.,

Cl(Fa)(em) = N (1-F(Fg)).

e EFpOF4

Example 3.15. The fuzzifying soft topological space (X,7,A) is the same as in Ex-
ample 3.2, we have Cl(14)(eps) = Cl(Fa,)(enr) = ClU(Fay)(en) = Cl(Fay)(enm) =
1;Cl(04)(enr) = 0; CU(Fa,)(enr) = Cl(Fa,)(enr) = 3 and Cl(Fa,)(en) = %

Theorem 3.16. Let (X,7,A) be a fuzzifying soft topological space and Fa,Fp,Fo €
S(X). Then
(1) = CUFa)(enr) = 1 Noy, (14 \ Fa);
2) | Cl(04) = 04;
3) | FaCCl(Fa);
4) = FoCFp — CI(FA)CCI(Fp);
) = CUF4UF) = CUFA)ICI(Fp);
) ): eMéCl(FA) R d VFB(FB S NeM — FAﬁFB 75 OA);
) ): CZ(FA) = FAOD(FA),‘
)

(
(
(
(
E
(8) EFA=CI(Fa) < FacF.

)
6
7
8
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Proof. (1) CU(Fa)(ear) =\ (1=F(Fe))= N\ = (1-F(1a\Fg)=
e EFB2Fy eMELANFBCLIANF
1- \/ T(La\FB)=1—N,,,(1a\ Fa).

eME1IA\FpC1a\Fy
(2) From (1) above and since N,

¢, s normal, we have Cl(04)(epr) = 1—Ne,, (14\04) =
1-N,,(14)=1-1=0.

(3) It is clear that for any Fu € S(X) and any ey € SP(X), if eM%FA, then
Ne, (Fa) = 0. If eps€F4, then Cl(Fa)(enr) = 1 — Ngy, (La\ Fa) =1 —0 = 1. Then
[FACCI(Fa)] =1

(4) Tt is similar to the proof of Theorem 3.13 (3).

(5) First by (4). We can easy get Cl(F4)UCI(Fp)CCl(F4UFg). Conversely, for every
eym € SP(X),

CU(FAUFg)(en) = 1= Ney, (14 \ (FAUFE))
=1—Nep, (14 \ Fa)A(1a\ Fp))

=1- \/ 7(Fo)
e EFcCAA\FA)N(1A\FB)

=1- \/ 7(Fe,NFe,)
eMEFc, C(1A\FA).epEFc, C(1A\FB)

s1- \V (T(Fe,) AT(Fey))

eMEFc; C(1A\FA)enEFcy CAA\FR)

B <1 - eM EFCC(1a\Fa) T(F01)> v (1 - eMéFCZQ(lA\FB) T<FCZ)>
= (1= Nep (La\ Fa)) V(1= Ney (14 \ Fp))
= Cl(Fa)(em) vV CU(FB)(em
(6) [VFp(Fg € Neyy = FalFp #04)] =\ (1= Ney(Fg)) = 1= Ny (1a )\
FpCla\Fy
FA) = [eM§C’l(FA)]
(7) If epr€F4, then the result holds. If ep@Fa, then (F4UD(Fa))(en) = max
(FA(GM),D(FA)(BM)) = max (FA(eM),l — Ne,, ((1A \ FA)U{GM})) 1-— ( lA \

Fa)U{em})=1— Ney, (1a\ Fa)= Cl(Fa)(em).

(8) From Theorem 3.13 (4) and (7) above we have, Fy € [  D(FA)CFy < Fy =
FAOD(FA) ECZ(FA) ]

Next, we will introduce the notion of fuzzifying interior in fuzzifying soft topological
space as follows:

Definition 3.17. Let (X, 7T, A) be a fuzzifying soft topological space and Fs € S(X).
The fuzzifying soft interior of F4, denoted by Int € 3(S(X)), is defined as

em€Int(Fa) := Fo € N,,,, i.e., Int(Fa)(en) = Ne,, (Fa).
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Theorem 3.18. Let (X,7,A) be a fuzzifying soft topological space and Fa, Fp € S(X).
Then

': I’I”Lt(FA) = 1,4 \CZ(IA \FA);

2) E Int(la) = 14;

E Int(F4)CFy;

E(Fy €T)AN(FACFB) = FACInt(Fp);

’:eMEITLt(FA) (GMEFA) (eMG(lA\D(lA\FA)));

)ZF =Int(Fa) < FaeT.

. (1) From Theorem 3.16 (1), we have Cl(14 \ Fa)(epr) = 1 — Nep, (Fa) = 1 —
)(6M) Then, [Int(FA) =14 \ Cl(lA \ FA)] =1

(2) From (1), we have Int(lA) = 1A \Cl(lA \ ]-A) = ].A\CZ(OA) = 1A \OA = 1A-
(3) Int(Fa) =14\ Cl(14\ FA)C14\ (14 \ F4) = Fa.

(4) If [FyCFg] = 0, then the result holds. If [F4CFp] = 1, then Theorem 3.10 (3) and
Corollary 3.9, we have

[FACInt(Fp)] = /X Int(Fg)( /\ Ne,, ( /\ y(Fa) =7(Fy) =
[(FA e ?> /\ (FAEFBI)\J] A M A M A

(5) If eas¢Fa, then by Theorem 3.10 (1) N, (Fa) = 0. Hence [er EInt(Fa)] = 0 =
[(eMéFA) N (GME(IA \D(1a\ FA))) IfNGMGFA, then [(GME(IA \D(1a\ Fy )))]
[1 =D\ Fa)(em)] = [1 — (1 = Ne,, (Fal{ean}))] = [Ney, (Fa)] = [en € Int(Fa)).

(6) From Corollary 3.9, we have
[F4 = Int(F4)] = min ( N Int(Fa)(en), N\ (1- Int(FA)(eM)))

enfEF 7 epm€14\Fy
— N Int(Fa)(en)
epfEF
/\ EM FA —T(FA) [FAEﬂ. [ |
epfEF

4. FUuzzZIFYING SOFT 0-OPEN SETS AND FUZZIFYING SOFT 6-CLOSED
SETS

In this section, we will introduce and study the concepts of fuzzifying soft #-neighborhood
system, fuzzifying soft 6-closure, fuzzifying soft 6-closed sets, fuzzifying soft #-closed sets,
and fuzzifying soft #-interior of a soft set.

Definition 4.1. Let (X,7, A) be a fuzzifying soft topological space, ey € SP(X) and
Fy,Fp € S(X). The fuzzifying soft §-neighborhood system of ey, denoted by NSM
I(S(X)), is defined as
Fp € NY  =3Fp((Fp € Ne,,) ® (Cl(Fp)CFy)),
e, NI, (Fa)=\/  max (0,Ne, (F A Ne,(1a\ Fp) —1).

€M
Fpes(X) e &F
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Example 4.2. The fuzzifying soft topological space (X, 7, A) is the same as in Example
3.2, we have NfM(lA) = NEQM(FAZ) = NgM(FA4) = NgM(FAs) = 1 and NfM(OA) =
NCGI\/[ (FAI) = Negjw (FAS) = Neelu (FAS) = i
Theorem 4.3. The mapping N° : SP(X) — SN (S(X)), ens — NE | where SE(S(X)) is
the set of all normal fuzzy soft subsets of S(X) has the following properties:

(1) For any enr, Fa, = Fa € N  — ep€Fq;

emM
(2) For any enr, Fa,Fp,|= (Fa € N9 YA (Fp € NgM) < FPyNFg € NSM;

emM

(3) For any enr, Fa, Fp,|= FACFp — (Fa € NY,, — Fp € N?).

Proof. (1) If [F4 € N{ ] =0, then the result holds. If [F4 € N/ ]> 0, then \/ max
_ FpeS(X)

(0, Ne,, (Fp) + [Cl(Fg)CFa] — 1) > 0. There exists Fo € S(X) such that Ne,, (F¢) +

[CI(F¢)CFa] —1 > 0. From Theorems 3.10 (1), 3.16 (3) we have, [CI(Fo)CF4] >

1— N, (Fo) > 1 - [enyEFc] > 1 — CI(Fg)(enr). Therefore, [CI(Fo)CFal = N (1-
e &Fy

Cl(Fc)(en)) > 1 — Cl(Fo)(enm), and so ep €F4. Otherwise, if ey ¢ Fa, then /\ (1-

cHEFa

Cl(Fc)(em)) > 1 — CI(F¢)(en), contradiction with the definition of the infimum. So
[BM S FA] = 1. Then [FA S NSM] < [eMéFA].

(2) Given Fe € S(X),

[Cl(Fc)iFAﬁFB] = VeM (ewjéCl(Fc) — €MéFAﬁFB)
= A min (1,1 - Cl(Fo)(em) + [(FaNFg)(en)])

ep ESP(X)
= /\ (1—Cl(Fc)(en))
eMEFANFR
N (1 - Cl(Fe)(em))
e €E(1ANFA)0(1A\Fp)
(1-ClF)em) A\ (1-Cl(Fc)(en))

e €1AN\F epf€14\Fp

[Cl(Fc)CFa] A [CU(Fc)CFg),

N (FafiFe) = \/  miax (0. Ney (Fe) + [CH(Fe)EFATFE] ~ 1)

) \;cesmr)nax (0, Ney, (Fo) + [CUFC)EFA] A [CUFE)EFg] — 1)
Fi/esm max (0, (Ney, (Fo) + [CUFC)CFaA] = 1) A (Ney (Fo) + [CUF)SFB] — 1))
FVs<x>(maX (0, Ne o, (Fo)+[CU(FC)EFa]—1) A max (0, Ne,, (Fe)+[CLUFe)EFp]—1))
_ (FCV(X) max (0, Ne,, (Fc) + [CUFc)CFa]l — 1)) A

Fo€eS(X)

(V  max (0,Ney (Fo) + [CUFC)CFB] - 1))
Foes(x
:NgM(FA) /\NEGM(FB)' o
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(3) If [FACFp] = 0, then the result holds. If [FyCFg] = 1 and Fy € S(X), then
[CUFe)CFpl= N\ (1=Cl(Fo)(em)) >\ (1=ClU(Fc)(em)) = [CU(Fe)CFal,

eM€1A\Fp e @1a\Fy

and so N, (Fo) + [ClI(Fo)CFg] =1 > N, (Fo) + [CU(Fe)CFa] = 1. Thus, \/  max
FoesS(X)

(0, Ny ( Fe)+[Cl(Fo)CFp]—1) > \/ max (0, Ne,, ( Feo)+[Cl(Fo)CFa]—1). Hence,
Foes(X)

NEOM(FA) <N (FB) |

€M

Definition 4.4. Let (X, 7, A) be a fuzzifying soft topological space and Fa, Fp € S(X).
The fuzzifying soft 6-closure of F4, denoted by Cly € S(S(X)), is defined as

eMéCle(FA) = VFB(FB S NeM — ﬁ(FAﬁCl(FB) = OA))

Example 4.5. The fuzzifying soft topological space (X, 7, A) is the same as in Example
3.2. Let ey = {(e,{x2})} be a soft point. Then, Clg(1a)(err) = Clg(Fa,)(enm) =
Clo(Fa,)(exr) = Clo(Fag)(ear) = 1 and Cl(04) (ear) = Cla(Fa,)(ear) = Clo(Fa,)(ear)
= CZ@(FAS)(CM) =0.

Based on Definition 4.4, we will propose the following Lemma 4.6.

Lemma 4.6. Let (X,7,A) be a fuzzifying soft topological space and Fa,Fp € S(X).
Then Clo(Fa)(enr) == /\  min (1,1 =N, (Fs)+ \/ CU(Fp)(en)).

Fpes(X) e EF
Proof. [VFB(FB c NEM — ﬁ(F‘AﬁC’l(F‘B) = OA))}
= A min (1,1 — Ne,, (Fg) + [~(FaNCU(Fp) = 04)])

FpeS(X)

= A min (1,1 — Ne,, (F) + 1 — [FaNCI(Fp) = 04))

:FB/E\S(X) min (1,1 = Ney, (Fg) + 1 — ([FaNCI(Fp)C04] A [04CFANCI(Fg))))
:F/\”” min (1,1 = Noy, (Fg) +1= [\ min (1,1 = (FaFiCU(Fz)(en) +0)))
_i/\i: min (1,1 = Ne, (Fg) + \/PHEZax (0, (FANCU(F5)(en))))

= A\ min (L1-Ney (Fs) + FH\E/FA min ((Fa)(en), Cl(Fs)(en)))
::B/i\:: min (1,1 — Ne,, (Fg) +EH\€/:A CI(Fz)(en)).

In the following, we show the definitions of fuzzifying soft 6-closed sets and fuzzifying
soft #-open sets.

Definition 4.7. Let (X, 7, A) be a fuzzifying soft topological space and F4 € S(X). The
family of all fuzzifying soft f-closed sets, denoted by F, € I(S(X)), is defined as

Fao€F, :=F4=Cly(Fa),

The family of all fuzzifying soft f-open sets, denoted by 7y € S(S(X)), is defined as
FaeTy ::1A\FA EFS,

Intuitively, the degree to which Fy is fuzzifying soft #-closed is

F,(Fa) = /\ (1= Clg(Fa)lenm)).

em€1a\Fa
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Example 4.8. The fuzzifying soft topological space (X, 7, A) is the same as in Example
3.2, we have [, (1a) = F,(Fa,) = F,(Fa;) = F,(Fas) = 0;/,(04) = [,(Fa,) = 1 and
Fo(Fay) = F,(Fa,) = §. And Tp(1a) = 79(Fa,) = 1,79(04) = Tp(Fa,) = To(Fa,) =
To(Fa,) = 0 and 7p(Fa,) = 79(Fa,) = 1.

Theorem 4.9. Let (X, 7, A) be a fuzzifying soft topological space and Fa, Fp € S(X).
Then
(1) Clo(Fa)(em) =1 = NZ, (14 \ Fa);
2) E CZ(FA)COZG(FA)
3) E Fa €N, %FAGNeM;
1) = Cle(OA) =045
5) FACCI(;(FA)
) ’: FACFB — CZQ(FA)CCZG(FB)
) ): Cle(FAUFB) Clg(FA)UCZQ(FB).

AAA/_\,_\,_\

Proof. (1) Clg(Fa)(enr) = /\  min (11— Ne,, (Fp)+ \/ CIU(Fp)(en))

FpeSs(X) e EF
=1-\/  max(0,N.,(Fz)— \/ Ci(Fp)(en))
FpeSs(X) e EFy
=1- \/ max (0, Ne,, (Fp) + 1 — \/ Cl(Fgp)(em) — 1)
FpesS(X) e EF
=1-\/  max(0,N.,(Fs)+ N\ (1—ClU(Fp)(en))—1)
FpesS(X) e EFy

=1-[(3FB)((Fp € Ney,) ® (CU(Fp)C14\ Fa))]
=1-N¢ (14\ Fa).

(2) Cl(Fa)(emr) = /\  min (1,1-Ney, (F)+ \/ (Fp)(en))

Fpes(X) e EFy

< A\ min(L1-N,(Fs)+ \/ Cl(Fs)(en))
Fpes(X) e EF 4

= CZQ(FA)(CM).

(3) Follows from (2) above.
(4), (5) and (6) are similar to the proof of Theorem 3.16 (2), (3) and (4) respectively.

(7) Tt is easy to get Clg(FA)OClg(FB)éClg(FAOFB).
Conversely, for every ey € SP(X),

Clg(FAUFE)(em)
=N\ wmin (L1=Ney(Fo)+ \/ CllFe)(en)
:FCE/S\(X) min (1,1 — Ne,, (Fc) :IZE(QUFBC)*Z(FC)(eH) \ \[ Cl(Fc)(en)))
< XES(X)min (1,1 — Ne,, (Fo) + \[HEE(Fc)(eH)) v /\CHEFBmin (1,1 = Ney, (Fo)
FCES(XJ’)_ \/F CI(FC)(CH)) e EFy FoeS(X)

= Cle(FA)(eM) V Clyg(Fp)(enm)- u
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The equality in Theorem 4.9 (2) and (3) does not hold as shown in the following
example.

Example 4.10. Let us consider the fuzzifying soft topological space (X, 7, A) in Example
3.2. Then, Clg(Fa,)(er) = 2 < CU(Fa,)(ep) =1 and N¢ (Fa,) =1> Nep(Fa,) = 3

The connect between the fuszylng soft f-closure and fuzzifying soft closure is presented
as follows:

Theorem 4.11. Let (X,7, A) be a fuzzifying soft topological space and Fa,Fp € S(X).
Then

(1) EFas € 77% (Clo(Fa) = Cl(Fa));

(2) EFa€F, = (Clo(Fa) = Cl(Fa)).

Proof. (1) First we prove that = Fy € T — ﬁ(FAﬁCZ(FB) = OA) — ﬂ(FAﬁFB = OA).
In fact, from Corollary 3.9, we have

= max <o, EAQFA Ne,, (Fa) + \/F ClU(Fg)(ex) 1)
— max (o N Cl(Fa)(en) — \/ (1= N (F) )
< max (0, H\/FA (CL(F3)(enr) —AI+AN6M (FA)))

— max <0, <[A ((FsOD(Fp))(enr) — 1+NeM(FA))>

eMEFA

Il
—
B
2]

W
N
A
<

(max ((FB)(QM),D(FB)(QM)) -1+ NeM(FA))>

epEFA

If ey €Fp, then

H(Fa) ® [~(FARCU(FR)) = 04] = max (0, V' (Fs)(en) — 1 +N6M(FA)))

€FA

S \/ NeM M)
Ai[ i FA(BM)
Ai/ i (FA(eM)/\FB(eM))

enfEF

= —\(FAﬁFB = OA).

IN

IN

If eM%FB, then

T(Fa) ® [2(FANCI(FB) = 04)]
= max (0, \/ (D(FB)(ear) =1+ Ney, (FA)))

= max (0, \/ ( /\ min (1, 1— Ne,, (Fc) + \/ (FC \ {eM}(eH)) —

epyf€F, FoES(X) egEFC

+Ney, (FA))))
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< max (o, V(- NeyFEo)+ (FB\{eM}(eH>—1+NEM<FA>)))

= V(P \ fear)) (o)
= \[ (FB)(em) = [~(FaNFp = 04)].

So, [<(FANCI(FB) =04)] = [~(FANFp = 04)] > 7(Fa).

Therefore,

[Clg(FA) = Cl(FA)} =VFp (FB S NeM — ﬁ(FAﬁCl(FB) = OA))
— VF¢ (FO € Ney, = ~(FaNFe = oA))

=VFp <FB € Ney, = =(FANCI(Fp) =04)) — (Fp € Ne,, — ~(FaANFp = 0,4)>

> VFy <—|(FAﬁC’Z(FB) = 04) = —~(FafiF = oA)) > N AEN =F(E).
FpesS(X)

(2) [Clg(Fa) = Cl(Fa)] = [Clg(Fa)SCU(Fa)] A [CU(FA)CSClg(Fa)]

= [Clg(F4)CCI(F4)]

= A\ min (1,1 Clg(Fa)(ear) + CU(Fa)(enr))
e ESP(X)

= A\ min (1,1 Cly(Fa)(enr) +1— Ne,, (14 )\ Fa))
epr ESP(X)

_\ min (1,1 — Cly(Fa)(enr) + 1= Ne,, (14 \ Fa))

enfE1A\Fy
> A min (1,1 — Clg(Fa)(en))
e €1aN\Fu

= A (1 —Clo(Fa)(em))

eME€LANF

Z[IA\FAE?Q}:[FAEFQ]. ]
Next, we will introduce the notion of fuzzifying soft 8-derived of soft set F4.

Definition 4.12. Let (X, 7, A) be a fuzzifying soft topological space and Fx, Fg € S(X).
The fuzzifying soft 6-derived of Fy4, denoted by Dy € I(S(X)), is defined as

em€Dy(Fa) :=VFg(Fp € N! — FpN(Fa\{em}) # 04),

em
ie.
Dy(Fa)(en) = N (1—-N? (Fp)).
FpA(Fa\{ep})=04
Example 4.13. The fuzzifying soft topological space (X, 7, A) is the same as in Example
3.2, we have Dy(1a)(ens) = Do(Fa,)(enr) = Do(Fa,)(enr) = Do(Fag)len) = % and
Dg(04)(enr) = Do(Fa,)(enr) = Do(Fa,)(enr) = Do(Fas)(enr) =0.

Theorem 4.14. Let (X, T, A) be a fuzzifying soft topological space and Fu, Fg € S(X).
Then

(1) | Da(Fa)lear) = 1= N2, ((La\ Fa)0ear);

(2) E Dp(0a) =045

(3) E FaCFp — Do(Fa)SDo(FB);
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(4) )ZCZ@(FALE FAODQ(FB); ~

(5) = Do(Fa)UDy(Fp) = Dg(FaUFp).
Proof. (1), (2) and (3) are similar to the proof of Theorem 3.13 (1), (2) and (3) respec-
tively.

(4) It is similar to the proof of Theorem 3.16 (7).

(5) From Theorem 4.3 (2), we have

DQ(FAOFB)(@]\/[) =1- .N(9 ((lA \ (FAGFB))O{GM})

=1- NeeM (((1,4 \ FA)ﬁ(].A \ FB))O{eM})

NP, ((<1A \ Fa)Oferr})A((1a \FB>O{eM}>)
—1- (NSM ((La\ E)O{enr}) AN, ((1a\ FB>O{eM}))

(1 ~N? ((1a \FA)O{eM})) Vv < NEM((lA\FB)O{eM}))

= Dg(Fa)(enm)V Do(FB)(en)-
(6) Follows from Theorem 4.9 (3). L]

Next, we will introduce the notion of fuzzifying soft §-interior of soft set Fy.

Definition 4.15. Let (X, 7, A) be a fuzzifying soft topological space and F4 € S(X). The
fuzzifying soft f-interior of Fia, denoted by Intg € 3(S(X)), is defined as eyr€Intg(Fa) :=
Fa e NP e, Intg(Fa)len) = NP (Fa).

en emMm

Theorem 4.16. Let (X,7, A) be a fuzzifying soft topological space and Fa, Fp € S(X).

) ': Intg(FA) = 1A\Clg(1A\FA);

) Iilntg(lA)?lA;

) | Into(Fa)CFa;

) ’: Fpet HVGM(eMgFA — Fy € NgM);
) E (Fa € To) N (FACFEB) — FaClnty(Fp);
) ’:FA EITLte(FA) + Fy € Ty;
))ZFAG;Q%FAE;;

Proof. (1), (2) and (3) are similar to the proof of Theorem 3.18 (1), (2) and (3) respec-
tively.

@) [Faed)= /\ (1-Cly(1a\ Fa)len))

eA{éFA
= A\ (- A min(L1-N,,(Fg)+ \/ Ci(Fs)(en)))
epm EFp Fpes(X) ey €14\ Fy

EM \/ CZ(FB)(eH))

e €14\ Fy

(
(07 eM FB +1- \/ CZ(FB)(GH)_I)
(

= \/ max (0, IV,
epfEFy Fpes(x)

I
=
8
2

e EFy FBES(X) e €L \Fy

- A max (0, N, ( A (1=ClUFp)(en)) - 1)
ey €Fy FpES(X) "HélA\FA

- /\ (Newf(FB) ® /\ (1 _Cl(FB)(eH)))
epfEFy FBES(X) eH€1A\Fy
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= [Ver(enr € Fa — 3Fp((Fp € Ne,, ) ® (CU(F)CFa4)))]
= [V (BMEFA%FAGNSM)]

(5) Follows from (4) above.

(6) [FAG?Q] A\FAEF]
\Fa=Clg(1a\ Fa)]

[1

=14

( \FAQClg(lA\FA)]/\[Cla(lA\FA)élA\FA])
=[Cl

Ve

0(1a\ Fa)Cla\ Fa] B
1(enr€CIy(14\ Fa) = ens€(1a \ Fa))

min (1,1~ Clp(1a\ Fa)(en) + [enr€(1a \ Fa)])

enr ESP(X)
(1—=Clo(1a\ Fa)(en))

e €LA\(1A\Fy)

/\ (Intg(FA)(eM))

:e[g%gnta(FA)] _
— ([FaCIntg(Fa)]) A [Intg(Fa)CFa))
= [Fy = Intg(Fy)).

(7) From Corollary 3.9 and Theorem 4.9 (2), we have
[Faedl= /\ (1-Clo(1a\Fa))(en))

eMEFA

(
< N\ (1-Ci(1a\ Fa)(en))
(

mt

e Fu

=

A

1 =1+ Ne,, (Fa))

I
=

®

g
m
=

kS

I
=

NSM (FA)
=F(F4) = [F4 € 7).

(8) Follows from (7) above. ]

The equality in Theorem 4.16 (7) and (8) does not hold as shown in the following
example.

Example 4.17. Let us consider consider the fuzzifying soft topological (X, 7, A) in Ex-
ample 3.2. Then, Tg(Fa,) =1 > 7(Fa,) = £ and F,(Fa,) =1> F (Fa,) = 3.

5. FUZZIFYING SOFT 0-CONTINUOUS MAPPINGS

In this section, we will present the concepts of fuzzifying soft continuous, fuzzifying soft
f-continuous and fuzzifying soft strong #-continuous between two fuzzifying soft topolog-
ical spaces (X,7,A) and (Y, 7, B).

Definition 5.1. Let (X,7,A) and (Y,0,B) be two fuzzifying soft topological spaces,
uw:X — Y and p: A — B be mappings. The fuzzifying soft continuity, denoted by
C € 3(S(Y, B)S(XA4) is defined as

Cfy) i= (YFp) ((Fp € 7) = (f.! (Fi) € 7).
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Intuitively, the degree to which f,, is a fuzzifying soft continuous is

[Cfp))= N\ min(1,1=5(Fg) + 7(f,.} (Fg)))-
FResS(Y)

Example 5.2. Let (X,7,A) be the fuzzifying soft topological space defined in Ex-
ample 3.2; consider Y = {y1,y2} and B = {m}. Then Fp, = {(m,{n1i})},Fp, =
{(m,{y2})}, F, = 1p,Fp, = Op are all soft subﬁetﬁ of 1p. Deﬁne a mapping o €
3(S(X)) as follows: 6(0p) = 5(1p) =1,5(Fp,) = & and 6(Fp,) = 1. Then, 7 is a fuzzi-
fying soft topology. Let u : X — Y be the map such that u(xy) = u(mz) = u(z3) =y and
p: A — B be the map such that p(e) = m. Then, the degree to which f, is a fuzzifying
soft continuous is [C'(fpu)] = 1.

Theorem 5.3. Let (X,7,A) and (Y,0,B) be two fuzzifying soft topological space and
em € SP(X). We set

(1) en(fpu) = (V) ((F € Fy) = (£ (Fp) € Fx)),

where F x,Fy are the families of fuzzifying soft closed sets soft subsets of X and Y,
respectively;

(2) az(fpu) = (Venr) (VFe) (Fo € N} (¢, = (S (Fo) € NEL, ),

where NX,NY are fuzzifying soft nezghborhood systems of X and Y, respectively;

(3) as(fpu) = (Venr) (VFc) (Fc € Nf (.., = 3Fp(Fp € NZ, = fou(Fp)CSFc));

(4) as(fpu) = (VFa) (fyul le(FA))CCly(fpu(FA»)
where Clx,Cly are fuzzzfymg soft closure of X and Y, respectively;

(5) as(fpu) := (VFB) (Clx (f, (FB))Cfpu (Cly (Fg))).
Then, = C(fpu) <—>al(fpu) 1=1,2,3,4,5.

Proof. (1) We prove that [C(fu)] = o1 (fpu)]-

o1 (fpu)]= A\ min (L1-Fy(Fs)+ 7 x (. (Fs)))
:FB/E\S(Y) min (1,1 -0o(1g\ Fg) +7(1a\ f,.' (FB)))
:FB/E\SM min (1,1 —o(1g\ FB) +7(f5' (15 \ FB)))
zFB/E\S(Y) min (1,1 - 6(Fy) + 7 (/. (Fu))) = [C(fpu)]-

(2) First, Wepxi;sri: )prove that [C(fpu)] < [az(fpu)]- Since [z (fpu)] =

epm €SP(X) FoeS(Y)

min (1,1- Nf (EM)(FC)+NX (fpu' (Fc))), it suffices to show that for any ey € SP(X)
and Fo € S(Y), min (1,1 — )+ NS (f ( L)) = [C(fou)]-

If N};U(QM)(F ) < NZXK, (f’ (Fc)), it holds obviously. Suppose N}/ (eanyFO) >

N2, (frul (Fo)). Tt is clear that, if foulerr)EFpCFo, then eME Sy (FB)Cfp (F¢). Then,

em

N};u(eM)(FC) - Né)§4 (fl;il (FC)) = \/ 5(FB) - \/ 7~—(F‘D)

fpuer)EFRCFG err€FpChpi (Fo)

= A R A D)

fpulep)EFBCFo fpulen)EFBCFo

eM)(
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< (3(Fp) = 7(fy! (FB)))-

fpu(eA[)éFBQFC

So, 1= NY o (Fo)+ NX (Rl (Fe)) = N\ (1-3(Fp) +7(f,. (Fr))),
fpulen)EFpCFC
and thus, min (1,1 — N}:,u(eM)(FC) + NX (£ 1(Fe)) = /\ min (1,1 —

fpulen)EFBCFG

F(Fp)+7(fpl(Fp) > N\ min(1,1-G(F) + 7(f, (FL))) = [C(fou)].

Fp eS(Y)

Hence,

min (1,1 - N};u(eM)(FC) + NX, (f;ul(FC))) > [C(fpu)]-

erfESP(X) FoeS(Y)
Secondly, we prove that [C'(fpu)] > [a2(fpu)]. From Corollary 3.9, we have

Clh)l= A min(1,1-&(Fe) + 7 (/71 (Fe)))

Foes(Y)

= A (e A NLEE A NS E)
Foes(y) fpuler)EFG emEfpu (Fo)

> A wn(ie A NLaoFr A NG ER)
Foes(y) enr &l (Fe) emEfpu (Fo)

> A A wmin (L1=NY (Fo)+ N (1. (Fe)))

epf ESP(X) Foes(Y)

:[QQ(fPU>]~

(}?;) We prove that [az (fpu)] = [as(fpu)]. Since FpC f,.H(Fe) if and only if f,.} (Fp)C Fe
we have

las(fpu)] =\ /\ min (1,1—N};u(eM)(Fc)+ \V NjL(FD)>

en ESP(X) FoeS(Y) Fpes(X), fpu(Fp)CFo

= /\ /\ min (1, 1-— N}/pu(eM)(Fc) + Ne)fw (f;;}(FC))>
epfESP(X) FoeS(Y)
= [ (fpu)]

(4) We prove that [cy (fpu)] = o5 (fpu)]- First, for Fp € S(Y) one can deduce that

[l (fou(Clx (£} (FB))) 2CUx (£l (FB))] = 1, [Cly (fyu(fu (F5))ECly (Fp)] = 1

and

ok (Cly (fou(frnd (F) £ (Cly (Fp))] = 1.

[Clx (Fpu (FB))Cfput (Cly (Fp)] 2 [fp (fpu (Clx (fpud (FB)))C i (Cly (Fi))]
> [Fou (fpu(Clx (Fou (FB))E fpu (Cly (Fou(Fou (FB))))]
> [fou (Clx (o (FB))CCly (Fou (S (FB)))]-
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Therefore,

[as(fou)] = N\ [Clx(f. (FB) >Cf,,u (Cly (Fp))]
Fpes(Y)
> N [ Clx(fl (Fe)SC (frulfr (F5)))]
Fges(y)

> /\ [fpu(CZX(FA))ECZY(fpu(FA))] = [oa(fpu)]

Secondly, for FA 6 S(X), there exists Fp € S(Y) such that f,,(Fa) = Fp and
FACf L(Fp). Hence,

< [Clx (Fa) Sl (Cly (fpu(Fa))]
< [Fu(CLe(EANEfyuFd (Cly (i Fa)))]
< [fou(Clx (Fa))CCly (fpu(Fa))]-

[Clx (£} (FB)C £k (Cly (Fp))]

Thus,

loa(fo)] = N [Clx(FA)Cf (Cly (fpu(Fa)))]

Faes(X)

> A [Clx (f! (FB))Cfp (Cly (Fp))]
FReS(Y),Fg=fpu(Fyu)

> N [Clx (£, (F))C 1ty (Cly (Fi))] = o5 (fpu)]-

Fges(y)

(5) Finally, We prove that [a5 (fpu)] = [042 (fpu)].

[as (fpu)] = [VFB(Clx (f5! (F8))C fpu (Cly (Fi)))]
= A A min (1,1— (1= Nep, (1a\fpu (F5))) +1= Ny, (e (18\F5))

FRes(Y) ep €SP(X)

= A A min (1,1 = N, (er) (LB\FB) + Ney, (fou! (15\(F5))))

Fpes(Y) ep €SP(X)

min (17 1- pru<€M)(FC) + NeM (fp_ul(FC)))

Fo€eS(Y) epn€SP(X)

(a2 (fou)]- .

Definition 5.4. Let (X,7,A) and (Y,7, B) be two fuzzifying soft topological space,
u:X —Y and p: A — B be mappings. The fuzzifying soft strong #-continuity, denoted
by Csg € S(S(Y, B)S(X4) is defined as

Cso(fpu) = (VFp) ((Fp €)= (£, (Fp) € 7),

where 7y is the family of fuzzifying soft 6-open sets soft subsets of X.

Intuitively, the degree to which f,, is a fuzzifying soft strong f-continuous is

[Cso(fp)] = \  min(1,1—5(Fp) +7(f,. (Fr))).

Fges(Y)

Example 5.5. Let (X, 7, A) and (Y, 7, B) be two fuzzifying soft topological space defined
in Example 3.2. Let u : X — Y be the map such that u(z1) = u(zs) = u(xs) = y; and
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p: A — B be the map such that p(e) = m. Then, the degree to which f,, is a fuzzifying
soft strong @-continuous is [Cse(fpu)] = 1.

Theorem 5.6. Let (X,7,A) and (Y,0,B) be two fuzzifying soft topological space and
em € SP(X). We set

(1) Bi(fou) = (VFe) ((Fe € Fy) = (£ (Fe) € Fo)),

where F ¢ is the family of fuzzifying soft 0-closed sets soft subset of X;

(2) B2 (fou) = (¥ enr) (Y Fi) (Fp € N} (0,) = (3F0) ((Fe € N&,) @ (fou(CUFC)SF)));

(3) Bs(fpu) = (VFB) (fpu (Ole<FB>)C01(fpu<FB)>),

(4) Ba(fpu) = (VEC) (Clo(f! (F) S 1 (CUFE))).

Then '= Osg(fpu) A d ﬁ, (fpu) 1 2 3,4.

Proof. (1) [Bi(fpu)] = /\  min (1,1=Fy(Fo) + Fo(f;. (Fc)))

Foes(X)
= /\ min (1,1—5(1B\FC)+7~'0(1A\f;;}(FC)))
Foes(Y)
= /\ min (1,1—5(1B\FC)+7~'0(fg;L1(1B\FC)))
FoeS(Y)
= /\ min (1,1 —o(Fy) 4 79 (fo (Fu))) = [Cso(fpu)]-
Fyes(y)

(2) First, we prove that [Cso(fpu)] < [B2(fpu)]. Since [Ba(fpu)] =

epM ESP(X) Fges(y)

min (1,1 — N}/pu(eM)(FB) + \/ max (0 Né’fw (Fe) + [fpu(Cl(Fc))éFB] — 1)), it

FoeS(X)

suffices to show that for any ep; € SP(X) and Fp € S(Y),
min <1 1-— pru(eM)(FB) + \/ max (0, N (Fc) + [fpu(Cl(Fc))CFp] — 1)) >

FeeS(X)
[Cso(fpu)]- I N}:JM(SM)(FB) < \/ max (O7Ne)i/1 (Fc) + [fpu(Cl(FC))iFB] - 1)a i

Foes(X)

-+

holds obviously.

Suppose NY ey (FB) > \/ max (0, N> (F¢) + [fou(CI(Fo))CFR] — 1). It is

Foes(X)

clear that, if CZ(FC)Cf '(Fp), then f,,(Cl(Fc))C(Fg). Therefore,

NY e(FB) =\ max (0, N5, (Fo) + [fpu(CU(FC))CFp] - 1)

FoesS(X)
<N (eM)(FB)_ \/ max (OﬂNe)i/z(FC)"_[Cl(Fc)ifﬁl(FB)}_1)
Foes(X)
= N};u(ekf)(FB) - \/ max (0 NeM (FC) + N/\ (1 B CZ(FC)(BH)) B 1)
Foes(X) eqg@fpi (Fp)

=V G(Fa)— \/ max (0,NX (Fo)— \/ Cl(Fc)(en))

fpulep)EFACFp Fo€5(X) eq&fpi (Fp)
<V aE0- V om ONSFo)- ) ClE)en)
fpulen)EFACFR Fo€5(X)

eHéfp_ul(FA)

=V F(Fa)-(1- A\ min(L1-NX (Fo)+ \/ Cl(Fc)(en)))

fpulepr)EFACFR Foes(X) e &fpu (Fa)
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SV, G(Fa) = (1 = Clo(fpe (1a \ Fa))(en))

fpu(eM)éFAéFB

<V FF) - N\ (1= Clo(fp' (La\ Fa))(em))

fpulen)EF4CFp e &fpu (Fa)

-V F(Fa) — To(f (Fa))

fpu(eju)éFAiFB

\ (F(Fa) — Fo(fl (Fa))).

fpu(eM)éFAQFB

IN

Hence,

min (171 —NY (ery (FB) + \/  max (0,NX (Fo) + [fpu(Cl(Fc))CFB] — 1))

FoeS(X)

w(enm

>\ min (1,1 —G(Fa) +%g(fp—u1(FA))>

fpu(eM)éFAéFB

> \/ min (1, 1-0(Fp)+ ?g(fwl(FB))) = [Cso(fpu)]-

Fpes(Y)
(3) We prove [ﬁg (fpu)] < [53 (fpu)]. Since

ol = A A min(11= Fpu(ClatFB) em) + Ol (Fi)em) )

FReS(X) ey €SP(Y)

It is sufficient to show that for any Fg € S(X) and ey € SP(Y),

min(1,1 = fou(Clo(Fp))(en) + Clfpu(Fp))(en)) = [B2(fou)]-

If fou(Clo(Fp))(enr) < Cl(fpu(FB))(en), it holds obviously.
Suppose fp (Clyg(Fp))(er)> CUfpu(Fr))(em).

Therefore,

fru (Cle(FB))(eH) = Cl(fpu(FB))(en)

=V A min (1, 1= Ney (Fo)+ \/  CUFc)(ez)) — (1 — Ney(1a\ fpu(FB))>

fpulepr)=epg Fo€S(X) ez EFp
S\/ ( /\ min (171_NeM(FC)+ \/ fpu(Cl(FC)(eZ)))_1+pru(EM)(1A\fpu(FB))>
epfESP(X) “FoeS(X) ez €fpu(Fp)
=V (pru<eM>(1A \ fou(FB) — max (0, Ne, (Fo) — \/ fpu(chc)(ez))))
e ESP(X) Foes(x) ez Efpu(FR)
=\ (pru(eM)(lA\fpu(FB))— \Vi max (0, N, (Fo)+ A\ (1= fpu(CL(FC)(ez)) —1))
e ESP(X) FoeS(X) ez Efpu(Fp)
=V (pru<eM><1A \pu(F5) =\ max(0, Nepy (Fo) + [fpu(CUFE)S@a\ fpu(F5))] ~ 1))
e) ESP(X) FoeS(X)
< V \/ (pru<eM)<FD) -V max (0, Ney, (Fo) + [fpu(CU(F))CFp] — 1)>,

ep ESP(X)FpES(X) FoeS(X)
min (1,1 =y (Clo(F)) (en) + Cllhpu(Fo))en) )

> A N min <1, 1= Nyputean) (Fp) = \/ max (0, Ne,, (Fc) + [fpu(CU(Fc))CFp] — 1))

ep ESP(X) FpeS(X) FoeS(X)
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= [B2(fpu)]-

(4) We prove that [63 (fpu)] [B4 (fpu)] For any Fo € S(Y),
Wlth f (fpu(CZG pu FC ) )) fpu(fpu (FC))CFC’CZ(fPu(fpu (FC)))
gCl(FC) fpu (Cl(fpu(fpu (FC))))gfpu (CZ(FC)) we have

[Clo (! (FO)) S foud (CUFC))] = [foud (fou(Clo (£ (F))))Efp (CUFC))]
> [foud (fou(Clo(fr (FEN) C fpi (CU fpu(fi (F))))]
> [fou (Clo(fri (F&))) SOU fpu (fird (F)))] -

Therefore,

[Ba(fr)] = N [Ow HFe)C S (CU(Fe))]

FoeS(Y

> A [fpu(cleu,:u (Fo))SCU fpufra (FE)))]
Foes(Y)

> [fou(Clo(FR)CCU fpu(FB))] = [B3(fou)]-
FpesS(X)

(5) We want to show that [ﬁ4 (fpu)] < [Bl (fpu)]. In fact for any Fo € S(Y),

[Clo(fpu (F)C fpd (CUEFC))] ® Fy (Fc)

= A min (1,1 — Clp(fpu (Fo))(em) + fpu' (CUFC))(em)) ® Fy (Fc)
epr ESP(X)

= A min (Fy(Fe), max (0.7 v (Fo) + f (CUFE) enr) = Clafil (Fe)ear) ).
e ESP(X)

Fy(Fe) + fpd (CUFC))(enr) — 1
= [CUFC)CFC] + foul (CUEFE)))(ear) — 1
< [foud (CUFE) S (FO)] + fpu (CUFE))(enr) — 1
= /\SP | min (L1 = fpu! (CUFO)) (enr) + o (Fo)(ear)) + foul (CUFE))(enr) — 1
< PiM—Ef;} <)01(Fc>>(eM) + fpu (Fe)(em) + fpu (CUFE)) (enr) — 1
= fou (Fo)(en),

[Clo(fpu (F)C fpud (CUFC))] @ Fy (Fc)

IN

min (1,1 — Clg(fpll(Fc))(eM) + fz;}(FC)(eM))
enf ESP(X)
= [Clo(fpui! (FC))Cfpid (FC)] = [fpu (Fo) € Fo),
[Clo(foid (FO)C fpud (F&)] < (Fy (Fe) = [fou (Fo) € Fol)-

Therefore,
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[Ba(fpu)] = [VFo(Cla( £, (Fe)) S fd (CUFE))]
< [VFC((FC €EFy)— f;;]l(FC) € FG)} = [51(fpu)]- u

Definition 5.7. Let (X,7,A) and (Y,7,B) be two fuzzifying soft topological space,
u:X — Y and p: A — B be mappings. The fuzzifying soft #-continuity, denoted by
Cy € I(S(Y, B)S(XA) is defined as

Colfpu) = (VFi) (Fx € 50) = (£} (F) € 70),

where gy is the family of fuzzifying soft #-open sets soft subsets of Y.

Intuitively, the degree to which f,, is a fuzzifying soft 0-continuous is

Colfp)l = \  min(1,1—Go(Fp) + 7o(f5 (Fp)))-
Fpes(Y)

Example 5.8. Let us consider Examples 3.2 and 5.2. Then, we can calculate oy. First,
let ey = {(e,{y1})} be a soft point. The fuzzifying soft neighborhood system of ey are:
Ney (1) =1;N,, (0p) = N, (F,) = 0 and N, (Fp,) = 1. Second, let e, = {(e, {y2})}
be another soft point. The fuzzifying soft neighborhood system of ez are: N.,(1p) =
1;N.,(0g) = Ne,(Fp,) =0 and N, (Fp,) = % and we have the fuzzifying soft closure
of ez are: Cl(1p)(ez) = Cl(Fp,)(ez) = 1;C1(0p)(ez) = 0 and CI(Fp,)(ez) = %. The
fuzzifying soft f-closure of ey are: Clyg(1p)(ev) = Clg(Fp,)(ev) =1 and Cly(0p)(ev)
Clyg(Fp,)(ev) = 0. Now, the family of all fuzzifying soft -open sets of Y are: g9(1p)
EQ(FBI) =1 and 59(03) = GQ(FBZ) =0.

Example 5.9. Let (X,7, A) and (Y, 7, B) be two fuzzifying soft topological space defined
in Examples 3.2 and 5.2, respectively and 7y and gy defined in Examples 4.8 and 5.8,
respectively. Let u : X — Y be the map such that u(zy) = u(z2) = u(x3) = yo and
p: A — B be the map such that p(e) = m. Then, the degree to which f,, is a fuzzifying
soft continuous is [Co(fpu)] = 1.

Theorem 5.10. Let (X,7,A) and (Y,0,B) be two fuzzifying soft topological space and
em € SP(X). We set

(D) 1 (fpu) := (VEe) ((Fo € FJ) = (£, (Fo) € F§f)),

where F‘;(, Fg are the families of fuzzifying soft 0-closed sets soft subsets of X andY,
respectively;

(2) v2(fpu) == (Y em) (Y Fg) (Fp € NY — (3Fc) ((Fo e NY,,) ® (fpu(CZ(FC))QCl(FB))));

fpulenr)
(3) 75 (fou) = (YFB) (Fpu (Clo (F5)) SClo(fyu(Fi))):
(4) va(fpu) := (YEC) (Clo(f5.! (Fo))C £l (Clo(Fe))).
Then, = Co(fpu) ¢ Yi(fpu). i =1,2,3,4.

Proof. The proof is similar to that of Theorem 5.6. [

6. CONCLUSION

The present paper investigates soft topological notions in semantic method of continu-
ous valued-logic. It continue various investigations into fuzzy soft topology in a legitimate
way and extend some fundamental results in soft topology to fuzzifying soft topology. An
important virtue of our approach is that we define fuzzifying soft topological notions by
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formulae of Lukasiewicz logic. Unlike the (more wide-spread) style of defining notions in
fuzzy soft mathematics as crisp predicates of fuzzy soft sets, fuzzy soft predicates of fuzzy
soft sets provide a more genuine fuzzification; furthermore the theorems in the form of
valid fuzzy soft implications are more general than the corresponding theorems on crisp
predicates of fuzzy soft sets. The main contributions of the present paper are to give the
definitions of fuzzifying soft topological spaces and fuzzifying soft continuity and obtain
some of their basic properties.

An obvious problem for further study is:

Our results are derived in Lukasiewicz continuous logic. It is possible to generalize
them to more general logic setting, like BL-Algebra or residuated lattice-valued logic
considered in [25, 26].

In the future, we expect that the fuzzifying soft topology will be of great importance to
researchers in more than one field interested in the decision-making process and problem-
solving. Further, we will provide a real applications with a real data set or we will
apply the fuzzifying soft topology to lung cancer disease [27] and coronary artery disease
[28]. Further, we will extent the fuzzifying soft topology to fuzzifying b-6-open sets [29],
fuzzifying semipre-6-open sets [30], and fuzzifying pre-6-open sets [31].
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