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Abstract
This paper fosters both uniform spaces and way below relations with an innovative analysis
of their mutual relationships. A new concept of uniform spaces based on a way below relation
(LB-fuzzifying uniform space, or LBFU space, for short) will be introduced and investigated.
With this aim, first some fundamental concepts in L-fuzzifying topological spaces will be
studied. Then, we shall explore some L-fuzzifying topological spaces induced by an LBFU
space. Furthermore, new concepts of interior, closure, bases and subbases relative to an LBFU
topology will be established. Finally, the continuity of functions between LBFU spaces will
be introduced and investigated.

Keywords Uniform spaces · L-fuzzifying topology · LB-fuzzifying uniform continuity ·
Way below relation

Mathematics Subject Classification 54A40 · 54E15

1 Introduction and preliminary concepts

Zadeh produced the pathbreaking concept of fuzzy set in his acclaimed (Zadeh 1965). Since
thatmilestone,mathematicians have struggled to extend fundamentalmathematical structures
such as groups, rings, vector spaces, topologies, uniformities, and proximities to a fuzzy
framework. Particularly, one of the fuzzy extensions of the notion of a topology was studied
in a sequence of articles and books (Höhle et al. 1995; Höhle and Rodabaugh 1999; Höhle
2001; Liu and Luo 1998; Lowen 1982; Ying 1991). Relatedly, Höhle (1980b) and Zhang
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(2002) put forward the idea of an L-fuzzy topology, which consists of an L-valued mapping
on the standard power set of X , namely, P(X ). According to Höhle and Rodabaugh (Höhle
and Rodabaugh 1999, Chapter 3), an L-fuzzy topology is an L-valued function on the L-
power set LX ofX . Lowen Lowen (1979) generalized the well-developed topological theory
of convergence to the context of stratified I-topologies. In Höhle (1978), Höhle (1982a), a
comparable notion received the name of probabilistic topology. These two structures have
been contrasted in (1999, Chapter 5).

Uniform spaces aremathematical objects that lie in between topological andmetric spaces.
In particular, every uniform space originates a natural topology, and every metric space can
be endowed with a canonical uniform structure. We can trace uniform spaces back to the late
1930s. Many textbooks on general topology (like Willard Willard 1970) adhere to the Weil
approach Weil (1937), which is often known as the “surrounding" or “entourage" approach.
Uniform coverings yield an alternative perspective Tukey (1940), which was followed by
textbooks like Isbell Isbell (1964).L-fuzzy uniform spaceswere considered byHuttonHutton
(1977), Hutton (1983). The fuzzification of the structure of a uniform space was established
by Lowen Lowen (1981), Lowen and Wuyts (1982), Lowen and Wuyts (1983). Another
fuzzification of the concept was introduced by Höhle Höhle (1980a), Höhle (1982b). Kotzé
(1999, Chapter 8) introduced equivalent perspectives on uniform spaces and presented an
approach to L-uniformities extending Höhle’s. Some authors (e.g., 1999, Chapter 9) outlined
how some of the features of the theory of uniform spaces can be generalized to become a
fuzzy notion. When L = [0, 1], Katsaras Katsaras (1984) proved that the [0, 1]-topology
produced from a uniformizable point-set topology must be uniformizable in the sense of
Hutton. Extensions of well-known theorems to L-topological spaces appeared in Artico and
Moresco (1988). Nowadays the theory of fuzzy uniform spaces is under further development
and over 100 papers on the topic have been produced, see Ahsanullah (1992), Artico and
Moresco (1987), Artico and Moresco (1989), Badard et al. (1993), Burton (1993a), Burton
(1993b), Burton (1993c), Burton (1993d), Kandil et al. (1994), Soetens and Wuyts (1993),
Srivastava (1989), Wuyts and Lowen (1983) as a short sample. Burton et al. Burton et al.
(1996) produced generalized uniform spaces. They proved that the categories of Lowen
fuzzy uniform spaces and generalized uniform spaces are isomorphic, and that the category
of generalized uniform spaces is a good extension of the category of uniform spaces. Also,
they showed that the category of super uniform spaces defined in Gutiérrez García and de
Prada Vicente (1997) includes these categories, a fact that is detailedly studied in Gutiérrez
et al. (1997). The semantic method of continuous valued logic allowed Ying Ying (1993b)
to define the fuzzifying uniform space in a completely different direction, and he studied
some of its properties. Khedr et al. Khedr et al. (2003) introduced the notion of the strong
fuzzifying uniformity and established its relationship with the fuzzifying proximity. The way
below relationwas defined in Gierz et al. (1980), and in this article some of its properties were
studied too. Also, Bancerek Bancerek (1997) introduced the way below relation and stated
several propositions in topics such as continuous lattices, directed powers, and topological
spaces.

However, as far as we are aware of there exists no analysis of the relationships between the
fuzzy structure of a uniform space and relations such as the way below relation. So far they
have remained as two divergent fields of research.Herewe shall conduct a substantial analysis
of their mutual relationships. This achievement produces a basically theoretical article which
is nonetheless necessary to provide a strong foundation of this novel aspect of topological
fuzzy set theory. Both disciplines should be promoted with this pioneering analysis, which
may also foster the inspection of other relationships among different types of topological
structures.
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The rest of this paper is organized as follows. This section contains some necessary con-
cepts and properties. In section 2,we shall introduce the newconcepts ofL-fuzzifying derived,
L-fuzzifying interior, and L-fuzzifying closure operators. In the next section, the concepts
of base and subbase in the framework of L-fuzzifying topological spaces are defined, and
with their help we shall investigate L-fuzzifying continuous mapping and L-fuzzifying open
mapping. In section 4, we put forward the structure of an LBFU space in the framework of
L-fuzzifying topology. Then we prove some of their fundamental properties. In section 5, we
investigate some L-fuzzifying topological spaces which are induced by LBFU spaces. Fur-
thermore, the concepts of interior and closure relative to the LBFU topology are investigated.
In section 6, the concept of LBFU continuity is given and some results are discussed. The
goal of the last section is to conclude this paper with a succinct but precise recapitulation of
our main findings, and to give some lines for future research.

In this paperwe adopt the standard terminology from lattice theory (which can be consulted
in monographs like Birkhoff (1967), Gierz et al. (1980), Gratzer (1978)). We assume that
(L,≤) is a complete lattice whose smallest element is ⊥ and whose largest element is �. All
other additional requirements on L will be made explicit when required.

In this context, a first fundamental concept is given in our next definition:

Definition 1.1 (Bancerek 1997; Gierz et al. 1980). Let x, y ∈ L. Then x is way below y,
represented by x � y, when for any directed subset D ⊆ L, the relation y ≤ ∨D always
implies that an element d ∈ D exists with x ≤ d .

Some immediate facts ensue from this notion:

Proposition 1.1 (Bancerek 1997; Gierz et al. 1980). For all u, x, y, z ∈ L, the following
statements hold:

(i) x � y implies x ≤ y;
(ii) u ≤ x � y ≤ z implies u � z;

(iii) If x � z and y � z then x ∨ y � z;
(iv) ⊥ � x;
(v) If x � y and z ≤ y then x � z;

(vi) If L is a complete chain (Birkhoff 1967), then x � y if and only if x ≤ y.

A second fundamental notion is given in the next definition:

Definition 1.2 (Höhle 1980b, (1999, Chapter 5), (Ying 1993a; Zhang 2002)). Let X be the
universe of discourse and τ ∈ LP(X ), where P(X ) is the power set of X . Suppose that the
following conditions hold true:

(1) τ(X ) = τ(φ) = �;
(2) For all A,B ∈ P(X ), τ(A) ∧ τ(B) ≤ τ(A ∩ B);

(3) For all {Ai : i ∈ �} ⊆ P(X ),
∧

i∈�

τ(Ai ) ≤ τ

(
⋃

i∈�

Ai

)

.

Then τ is called an L-fuzzifying topology, and (X , τ ) is called an L-fuzzifying topological
space.
If (X , τ1) and (Y, τ2) are two L-fuzzifying topological spaces, then we say that the function
f : (X , τ1) −→ (Y, τ2) isL-fuzzifying continuous if for allB ∈ P(Y), τ2(B) ≤ τ1( f −1(B)).
Henceforth, (X , τ ) will denote an L-fuzzifying topological space, with X being the uni-

verse of discourse.
Associated with Definition 1.2 a concept exists whose properties are stated below in

Proposition 1.2, under the assumption that the lattice is completely distributive:
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Definition 1.3 ((Höhle and Rodabaugh 1999, Chapter 5), Liu and Zhang (2000), Zhang
(2002)). The L-fuzzifying neighborhood system of a point x ∈ X , denoted byNx ∈ LP(X ),
is defined as follows: Nx (A) = ∨

x∈B⊆A
τ(B), ∀A ∈ P(X ).

Proposition 1.2 (Höhle and Rodabaugh 1999). Let L be a completely distributive lattice.
Then for all x ∈ X , the following statements are true:

(1) Nx (X ) = �, Nx (φ) = ⊥;
(2) Nx (A ∩ B) = Nx (A) ∧ Nx (B);
(3) Nx (A) = ⊥ whenever x /∈ A;
(4) Nx (A) ≤ ∨

y /∈B
(Ny(A) ∨ Nx (B)).

Moreover τ(A) = ∧

x∈A
Nx (A), for each A ∈ P(X ).

2 Fundamental concepts: Derived set, closure, interior

Along this section, L represents a completely distributive lattice with order reversing invo-
lution denoted by ′. Under this condition, we can define:

Definition 2.1 Let x ∈ X and A ∈ P(X ).

(1) The family of all L-fuzzifying closed sets, represented by Fτ ∈ LP(X ), is given by
Fτ (A) = τ(X ∼ A), where X ∼ A is the complement of A;

(2) The L-fuzzifying derived set ofA, represented byDτ (A) ∈ LP(X ), is given as follows:
Dτ (A)(x) = ∧

B∈P(X ),B∩(A∼{x})=φ

(Nx (B))
′
;

(3) The L-fuzzifying interior set ofA, represented by I ntτ (A) ∈ LP(X ), is given as follows:
I ntτ (A)(x) = Nx (A);

(4) The L-fuzzifying closure set ofA, represented by Clτ (A) ∈ LP(X ), is given as follows:
Clτ (A)(x) = (Nx (X ∼ A))

′
.

The next technical result will help us give some important facts about Definition 2.1. We
omit the proofs since they are routine:

Lemma 2.1 For all A ∈ P(X ) and x ∈ X , Dτ (A)(x) = (Nx ((X ∼ A) ∪ {x}))′
.

Theorem 2.1 For all A,B ∈ P(X ) and x ∈ X we have:

(1) Dτ (φ)(x) = ⊥;
(2) If A ⊆ B, then Dτ (A) ≤ Dτ (B);
(3) Dτ (A) ∨ Dτ (B) = Dτ (A ∪ B);
(4) Fτ (A) = ∧

x /∈A
(Dτ (A)(x))

′
.

Theorem 2.2 For all A,B ∈ P(X ) and x ∈ X we have

(1) I ntτ (X )(x) = �;
(2) I ntτ (A)(x) ≤ A(x);
(3) If A ⊆ B, then I ntτ (A)(x) ≤ I ntτ (B)(x);
(4) I ntτ (A ∩ B) = I ntτ (A) ∧ I ntτ (B);
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(5) I ntτ (A)(x) = A(x) ∧ (Dτ (X ∼ A)(x))
′
.

Theorem 2.3 For all A,B ∈ P(X ) and x ∈ X we have:

(1) Clτ (φ)(x) = ⊥;
(2) A(x) ≤ Clτ (A)(x);
(3) If A ⊆ B, then Clτ (A)(x) ≤ Clτ (B)(x);
(4) Clτ (A ∪ B) = Clτ (A) ∨ Clτ (B);
(5) Clτ (A)(x) = ∧

x /∈B⊇A
(Fτ (B))

′
;

(6) Clτ (A)(x) = ∧

A∩B=φ

(Nx (B))
′
;

(7) Clτ (A)(x) = A(x) ∨ Dτ (A)(x);
(8) Fτ (A) = ∧

x /∈A
(Clτ (A)(x))

′
.

3 Bases and subbases

First in this section we introduce the next two related notions:

Definition 3.1 A lattice L is

(1) S-compact, if a ≤ ∨

j∈�

α j for all α j , a ∈ L, implies the existence of j◦ ∈ � such that

a ≤ α j◦ .
(2) I-compact, if

∧

j∈�

α j ≤ a for all α j , a ∈ L, implies the existence of j◦ ∈ � such that

α j◦ ≤ a.

Our next Lemma shows that in the case of complemented lattices, both concepts given in
Definition 3.1 are equivalent:

Lemma 3.1 Let L be a complemented lattice. Then L is S-compact if and only if it is I-
compact.

Proof Suppose that L is S-compact and
∧

j∈�

α j ≤ a. Then a
′ ≤

(
∧

j∈�

α j

)′

. Hence a
′ ≤

∨

j∈�

α
′
j . So, there exists j◦ ∈ � such that a

′ ≤ α
′
j◦ . Thus, α j◦ ≤ a. Therefore L is I-compact.

Similarly, the converse implication can be proven. ��
We now introduce a concept of base of τ , an L-fuzzifying topology on X . This name will

be justified by the subsequent Theorem 3.1:

Definition 3.2 AmapB : P(X ) −→ L is a base of τ , an L-fuzzifying topology on X , if and
only ifB fulfills the following conditions:

(1) B ≤ τ , and
(2) Nx (A) ≤ ∨

x∈B⊆A
B(B).

The following two theorems provide necessary and sufficient condition for a base of an
L-fuzzifying topology. The proof is similar to the proof of Theorem 4.1 (Ying 1991).
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Theorem 3.1 Let B be a base of τ . Define for each A ⊆ X ,

B(∪)(A) =
∨

⋃

λ∈�

Bλ=A

∧

λ∈�

B(Bλ).

Then:

(1) τ ≥ B(∪), and
(2) When L is a completely distributive lattice, it must be the case that τ = B(∪).

Theorem 3.2 If τ = B(∪) and B is monotone, then B is a base of τ .

The next theorem identifies when an element from LP(X ) behaves as a base for some L-
fuzzifying topology, provided that L is a completely distributive lattice. The sketch of proof
is similar to Theorem 3.3 (Liang and Yan 2014).

Theorem 3.3 Let L be a completely distributive lattice and B ∈ LP(X ).

(1) If B is a base of τ , an L-fuzzifying topology on X , then

(a) B(∪)(X ) = �,
(b) B(A) ∧ B(B) ≤ ∨

x∈C⊆A∩B
B(C)

(2) IfB satisfies conditions (a) and (b) in (1), thenB is a base for some L-fuzzifying topology.

We complement the investigation of bases of L-fuzzifying topologies with the related notion
of subbase, defined in the following terms:

Definition 3.3 S : P(X ) −→ L is a subbase of τ if S(�) : P(X ) −→ L is a base, where
S(�)(A) = ∨

�
λ∈�

Bλ=A

∧

λ∈�

S(Bλ), for allA ∈ P(X ),where (�) stands for “finite intersection”.

The restriction to infinitely distributive lattices allows us to give a full characterization of the
elements from LP(X ) that behave as a subbase of some L-fuzzifying topology:

Theorem 3.4 Let L be an infinitely distributive lattice. ThenS ∈ LP(X ) is a subbase of some
L-fuzzifying topology if and only if S(∪)(X ) = �.

Proof Necessity: From the definition of subbase and Theorem 3.3, we have (S(�))(∪)(X ) =
�. Thus ∀α �= � one has

α ≤ (S(�))(∪)(X ) =
∨

⋃

λ∈�

Aλ=X

∧

λ∈�

S(�)(Aλ) =
∨

⋃

λ∈�

Aλ=X

∧

λ∈�

∨

�
ρ∈�λ

Bρ=Aλ

∧

ρ∈�λ

S(Bρ).

Then there exists {Aλ : λ ∈ �} with ⋃

λ∈�

Aλ = X and
{Bρ : ρ ∈ �λ

}
with �

ρ∈�λ

Bρ = Aλ

for each λ ∈ � such that α ≤ S(Bρ). Thus
⋃

ρ∈�λ,λ∈�

Bρ = X and α ≤ ∧

ρ∈�λ,λ∈�

S(Bρ). So

α ≤ ∨
⋃

λ∈�

Aλ=X

∧

λ∈�

S(Bλ) = S(∪)(X ). From the arbitrariness of α, we have S(∪)(X ) = �.

Sufficiency: The proof is similar to the proof of Theorem 4.3 (Ying 1991). ��
Our next goal is to show that subbases are helpful to simplify the verification of certain

properties of mappings between L-fuzzifying topological spaces. The proof is similar to the
proof of Theorem 3.4 (Liang and Yan 2014).
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Theorem 3.5 Let (X , τ ) and (Y, σ ) be two L-fuzzifying topological spaces, and let σ be
generated by its subbase S. Suppose that the mapping f : (X , τ ) −→ (Y, σ ) satisfies
S(U) ≤ τ( f −1(U)), for all U ∈ P(Y). Then f is L-fuzzifying continuous.

Theorem 3.6 Let (X , τ ) and (Y, σ ) be two L-fuzzifying topological spaces, and let τ gener-
ated by its base B. If the mapping f : (X , τ ) −→ (Y, σ ) satisfies B(U) ≤ σ( f (U)), for all
U ∈ P(X ), then f is L-fuzzifying open, i.e., for all W ∈ P(X ), τ(W) ≤ σ( f (W)).

Proof The proof is similar to the proof of Theorem 3.5 (Liang and Yan 2014). ��
Corollary 3.1 If f : (X , τ ) → (Y, σ ) is a bijection and τ is generated by its subbase S, and
S(U) ≤ σ( f (U)) for every U ∈ P(X ), then f is L-fuzzifying open.

Furthermore, the broad idea of relative topologies helps us establish some additional
results. When (X , τ ) is an L-fuzzifying topological space, and Z ⊆ X , we define (Z, τ |Z )

by the expression (τ |Z )(A) = ∨

A=U∩Z
τ(U), for all x ∈ Z, A ∈ P(Z). Then one has:

Theorem 3.7 Let (X , τ ) and (Y, σ ) be two L-fuzzifying topological spaces, and Z ⊆ X . The
mapping f |Z : (Z, τ |Z ) −→ (Y, σ ) is L-fuzzifying continuous, where ( f |Z (x)) = f (x).

The next result shows that under certain circumstances, bases are inherited by relative
topologies:

Theorem 3.8 Let τ be generated by its base B and define B|Y (U) = ∨

W∩Y=U
B(W), for

Y ⊆ X , U ∈ P(Y). If L is S-compact, then B|Y is a base of τ |Y .

Proof The proof is similar to the proof of Theorem 3.6 (Liang and Yan 2014). ��
Now we proceed to investigate the product of L-fuzzifying topologies.

Theorem 3.9 Let {(Xλ, τλ) : λ ∈ �} be a family of L-fuzzifying topological spaces and let

Pα : ∏

λ∈�

Xλ −→ Xα be the projection on the α component. For any W ∈ P
(
∏

λ∈�

Xλ

)

, define

S(W) = ∨

λ∈�

∨

P−1
λ (U)=W

τλ(U). If L is an infinitely distributive lattice, then S is a subbase

of some L-fuzzifying topology τ which is called the product of the L-fuzzifying topologies

{τλ : λ ∈ �}. We write τ = ∏

λ∈�

τλ, and then we say that

(
∏

λ∈�

Xλ,
∏

λ∈�

τλ

)

is the product

space.

Proof The proof is similar to the proof of Theorem 3.7 (Liang and Yan 2014). ��
Note 1 From Theorems 3.3 and 3.9, we have

τ(A) = ∨
⋃

λ∈�

Bλ=A

∧

λ∈�

S(�)(Bλ) = ∨
⋃

λ∈�

Bλ=A

∧

λ∈�

∨

�
α∈	

Cα=Bλ

∧

α∈	

S(Cα)

= ∨
⋃

λ∈�

Bλ=A

∧

λ∈�

∨

�
α∈	

Cα=Bλ

∧

α∈	

∨

j∈J

∨

P−1
j (D)=Cα

τ j (D).

Therefore, we have the following consequence:
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Corollary 3.2 Let

(
∏

α∈J
Xα,

∏

α∈J
τα

)

be the product space of a family of L-fuzzifying topo-

logical spaces {(Xα, τα) : α ∈ J }. Then Pj :
(
∏

α∈J
Xα,

∏

α∈J
τα

)

−→ (X j , τ j ) is L-fuzzifying

continuous, for all j ∈ J .

Proposition 3.1 Let L be a completely distributive lattice and

(
∏

λ∈�

Xλ,
∏

λ∈�

τλ

)

be the prod-

uct space of a family of L-fuzzifying topological spaces {(Xλ, τλ) | λ ∈ �}. Then

τλ(Aλ) ≤
(
∏

λ∈�

τλ

)
(

P−1
λ (Aλ)

)
, for all λ ∈ �, Aλ ⊆ Xλ

Proof Suppose that τ = ∏

λ∈�

τλ. Then for all λ ∈ �, Aλ ⊆ Xλ, we have τ
(

P−1
λ (Aλ)

)
=

∧

xλ∈P−1
λ (Aλ)

Nτ
xλ

(
P−1

λ (Aλ)
)

≥ ∧

xλ∈P−1
λ (Aλ)

N
τλ

Pλ(xλ)(Aλ) = ∧

P(xλ)∈Aλ

N
τλ

Pλ(xλ)(Aλ) ≥
∧

yλ∈Aλ

N
τλ
yλ

(Aλ) = τλ(Aλ), where xλ ∈ P−1
λ (Aλ) ⇔ P(xλ) ∈ Aλ, and Nτ , Nτλ express

τ , τλ-neighborhood system in
∏

λ∈�

Xλ and Xλ, respectively. ��

4 LBFU space

First, we recall the following notations. Suppose x ∈ X , A ⊆ X and U,V ∈ P(X × X ).
Then we define

(1) 
 = 
X := {(x, x) | x ∈ X }.
(2) U−1 := {(x, y) | (y, x) ∈ U}.
(3) U ◦ V := {(x, y) ∈ X × X | ∃z ∈ X , (x, z) ∈ V and (z, y) ∈ U}.
(4) U[x] := {y ∈ X | (x, y) ∈ U}.
(5) U[A] := ⋃

x∈A
U[x] = {y ∈ X | x ∈ A, (x, y) ∈ U}.

Definition 4.1 A normal function U : P(X ×X ) −→ L (see Remark 4.1 below) is called an
LB-fuzzifying uniformity on X , if the following axioms are satisfied for any U,V ⊆ X ×X :

(LBFU1): If 
 � U , then U(U) = ⊥;
(LBFU2): U(U) � U(U−1);
(LBFU3): If U(U) �= ⊥, then U(U) � ∨

V◦V⊆U
U(V);

(LBFU4): U(U) ∧ U(V) � U(U ∩ V);
(LBFU5): If U(U) �= ⊥ and U ⊆ V , then U(U) � U(V).

The pair (X ,U) is called an LBFU space.

Remark 4.1 Let (X ,U) be an LBFU space.

(1) Since U is normal, then there exists U ⊆ X × X such that U(U) = �. From (LBFU5)
we have U(X × X ) = �.

(2) From (LBFU1), if U(U) �= ⊥, then 
 ⊆ U .
(3) IfL = [0, 1], then the LB-fuzzifying uniformity coincides with the fuzzifying uniformity

due to Ying Ying (1993b).
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(4) If L = {⊥,�}, then we obtain the diagonal uniformity (Kotzé 1999, Chapter 8).

Example 4.1 Let X = {a, b} be a finite set. Define a map U : P(X × X ) −→ L, where
L = L(X ,⊆,∩,∪,�,⊥,c ), as follows:

U(U) =
{

�, if 
 ⊆ U,

⊥, otherwise.

Then (X ,U) is an LBFU space.

Example 4.2 Let X be a finite set. Define a map U : P(X × X ) −→ [0, 1], as follows:

U(U) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if U = X × X ,

0.5, if 
 ⊂ U �= X × X ,

0.4, if 
 = U,

0, Otherwise.

Then (X ,U) is an LBFU space.
Note that in the unit interval (0, 1], the way below relation becomes the strictly-less-than

relation.

Note 2 Extensions of standard mathematical notions abound, and the value of any resulting
theory should be judged by the strength of its link with firmly established theories. The
following proposition gives the link between the concept of LBFU space and the diagonal
uniformity (1999, Definition 1.1.1, Chapter 8). The later element is arguably the most impor-
tant concept in the study of uniformities. Thus, a comprehensive research of LBFU spaces
is important for future work in the area of canonical examples in lattice-valued topology.

Proposition 4.1 Let (X ,U) be an LBFU space and suppose that L is S-compact. Then for
each α ∈ L − {⊥}, Uα = {U : U(U) ≥ α} is the diagonal uniformity.

Proof Since U is normal, then there exists U ⊆ X × X such that U(U) = � ≥ α. Hence
U ∈ Uα and Uα �= φ. Also, suppose φ ∈ Uα . Then U(φ) ≥ α. So U(φ) �= ⊥. Hence 
 ⊆ φ,
a contradiction. Therefore φ /∈ Uα;

(DU1): Suppose U ∈ Uα . Then U(U) ≥ α or U(U) �= ⊥. Hence from (LBFU1) we have

 ⊆ U .

(DU2): SupposeU ∈ Uα . ThenU(U) ≥ α. From (LBFU2),we haveα ≤ U(U) � U(U−1).
Hence α ≤ U(U) ≤ U(U−1) or U−1 ∈ Uα .

(DU3): SupposeU ∈ Uα . ThenU(U) �= ⊥ and by (LBFU3)we haveU(U) � ∨

V◦V⊆U
U(V),

V ⊆ X × X . Hence U(U) ≤ ∨

V◦V⊆U
U(V). Since L is S-compact, then there exists Vo ∈

P(X × X ) such that Vo ◦ Vo ⊆ U and U(U) ≤ U(Vo). Therefore, U(Vo) ≥ α and Vo ∈ Uα .
(DU4): Suppose that U,V ∈ Uα . Then U(U) ∧ U(V) ≥ α. From (LBFU4) we have

U(U)∧U(V) � U(U ∩V)which implies α ≤ U(U)∧U(V) ≤ U(U ∩V). Hence U ∩V ∈ Uα .
(DU5): Suppose U,V ∈ P(X × X ) are such that U ∈ Uα and U ⊆ V . Then, from

(LBFU5), U(U) � U(V). Thus, α ≤ U(U) ≤ U(V). Therefore U(V) ≥ α and V ∈ Uα . ��
Definition 4.2 Let (X ,U) be an LBFU space, and let B : P(X × X ) −→ L be a normal
function such that B(U) � U(U) for any U ⊆ X × X and U(U) � ∨

V⊆U
B(V). Then B is

called a base of U.
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Remark 4.2 It is obvious that if B is a base of U, then U(U) = ∨

V⊆U
B(V).

Lemma 4.1 Let αi , βi ∈ L and αi � βi , for each i ∈ �. Then

(1)
∨

i∈�

αi � ∨

i∈�

βi ;

(2) If L is I-compact, then
∧

i∈�

αi � ∧

i∈�

βi .

Proof (1) Suppose that for every directed set D ⊆ L, ∨
i∈�

βi ≤ ∨D is true. Then βi ≤ ∨D
for every i ∈ �. Since αi � βi , then there exists d ∈ D such that αi ≤ d for each i ∈ �.
Hence

∨

i∈�

αi ≤ d . We conclude
∨

i∈�

αi � ∨

i∈�

βi .

(2) Suppose that for every directed setD ⊆ L, ∧
i∈�

βi ≤ ∨D is true. SinceL is I-compact,

then there exists i◦ ∈ � such that βi◦ ≤ ∨D. Since αi◦ � βi• , then there exists d ∈ D such
that αi◦ ≤ d . Hence

∧

i∈�

αi ≤ d . We conclude
∧

i∈�

αi � ∧

i∈�

βi . ��

Our next theorem identifies some properties of the bases of an LB-fuzzifying uniformity. It
also gives conditions that ensure that we are in the presence of a base of some LB-fuzzifying
uniformity:

Theorem 4.1 If B : P(X × X ) −→ L is a base of some LB-fuzzifying uniformity, then B

satisfies the following conditions:
(LBB1): If 
 � U , then B(U) = ⊥;
(LBB2): B(U) � ∨

V⊆U−1
B(V);

(LBB3): B(U) � ∨

V◦V⊆U
B(V);

(LBB4): B(U) ∧ B(V) � ∨

W⊆U∩V
B(W).

Conversely, if B : P(X ×X ) −→ L satisfies (LBB1-LBB4) and L is infinitely meet distribu-
tive, then B is a base of some LB-fuzzifying uniformity U on X .

Proof SupposeB is a base of some LB-fuzzifying uniformity U on X .
(LBB1): IfB(U) �= ⊥, then U(U) �= ⊥ and from (LBFU1), we have 
 ⊆ U .
(LBB2): From (LBFU2) we haveB(U) � U(U) � U(U−1) � ∨

V⊆U−1
B(V).

(LBB3): From (LBFU3) and Lemma 4.1,
B(U) � U(U) � ∨

V◦V⊆U
U(V) � ∨

V◦V⊆U

∨

W⊆V
B(W) ≤ ∨

V◦V⊆U

∨

W◦W⊆V◦V
B(W) =

∨

W◦W⊆U
B(W).

Therefore,B(U) � ∨

W◦W⊆U
B(W).

(LBB4): Since B(U ) � U(U) and B(V) � U(V), then from condition (LBFU4) we
deduceB(U)∧B(V) ≤ U(U)∧U(V) � U(U∩V) � ∨

W⊆U∩V
B(W). ThusB(U)∧B(V) �

∨

W⊆U∩V
B(W).

Conversely, for any B satisfying (LBB1)-(LBB4), we set U(U) = ∨

V⊆U
B(V). We shall

check that it is an LB-fuzzifying uniformity on X . Since B is normal, then there exists
U ⊆ X × X such thatB(U) �= ⊥. Hence U(U) �= ⊥ and U is normal.

123



Uniform spaces based on a way below relation Page 11 of 22     2 

(LBFU1): SupposeU(U) = ∨

V⊆U
B(V) �= ⊥. Then, there existsVo ⊆ U such thatB(Vo) �=

⊥. Thus, from (LBB1), we have 
 ⊆ Vo ⊆ U .
(LBFU2): From (LBB2) and Lemma 4.1, we have U(U) = ∨

V⊆U
B(V) � ∨

V⊆U

∨

W⊆V−1

B(W) = ∨

W⊆U−1
B(W) = U(U−1). Hence U(U) � U(U−1).

(LBFU3): Suppose that U(U) �= ⊥, for any U ∈ P(X × X ). Then, from (LBB3) and
Lemma 4.1, we have
U(U) = ∨

V⊆U
B(V) � ∨

V⊆U

∨

W◦W⊆V
B(W) = ∨

W◦W⊆U
B(W) ≤ ∨

W◦W⊆U

∨

Z⊆W
B(Z)

= ∨

W◦W⊆U
U(W). Hence U(U) � ∨

W◦W⊆U
U(W).

(LBFU4): Since L is infinitely meet distributive, then from (LBB4) and Lemma 4.1,

U(U) ∧ U(V) =
(

∨

W1⊆U
B(W1)

)

∧
(

∨

W2⊆V
B(W2)

)

= ∨

W1⊆U, W2⊆V
(B(W1) ∧ B(W2))

� ∨

W1∩W2⊆U∩V
∨

W⊆W1∩W2

B(W) = ∨

W⊆U∩V
B(W) = U(U ∩ V).

Hence U(U) ∧ U(V) � U(U ∩ V).
(LBFU5): Suppose that U(U) �= ⊥ and U ⊆ V . Then U(U) = ∨

W⊆U
B(W) �

∨

W⊆U

∨

Z⊆W−1
B(Z)

= ∨

Z⊆U−1
B(Z) ≤ ∨

Z⊆V−1
B(Z) = U(V−1) � U(V). ��

Subbases of LBFU spaces are also worth considering. They are defined as follows:

Definition 4.3 Let (X ,U) be an LBFU space, and let S : P(X × X ) −→ L be a normal
function. If for any U ⊆ X ×X ,S(U) � U(U) andS(∩)(U) = ∨

⋂n
i=1 Ui =U

∧n
i=1 S(Ui ),

n ∈ N, and Ui ⊆ X × X is a base of U, then S is said to be a subbase of U.

Theorem 4.2 Let L be an I-compact completely distributive lattice. Let us suppose that
S : P(X × X ) −→ L is a normal function that satisfies the following conditions for any
U,V ⊆ X × X :
(LBS1): If 
 � U , then S(U) = ⊥;
(LBS2): S(U) � ∨

V⊆U−1
S(U);

(LBS3): S(U) � ∨

V◦V⊆U
S(V).

Then S is a subbase of some LB-fuzzifying uniformity on X .

Proof SinceS is normal, thenS(X ×X ) = �. HenceS(∩)(X ×X ) = �. Therefore,S(∩)

is normal. Now, it suffices to check (LBB1-LBB4) for S(∩).
(LBB1): Suppose that S(∩)(U) �= ⊥. Then

∨
⋂n

i=1 Ui =U

∧n
i=1 S(Ui ) �= ⊥. Therefore,

there exists a finite set� = {1, 2, .., n} andUλ ∈ P(X×X ) (λ ∈ �) such that
⋂

λ∈�

Uλ = U and

for any λ ∈ �,S(Uλ) �= ⊥. From (LBS1),
 ⊆ Uλ for any λ ∈ �. Hence
 ⊆ ⋂

λ∈�

Uλ = U .

(LBB2): Suppose that Mi =
{
Vi

∣
∣
∣Vi ⊆ U−1

i

}
, (i = 1, 2, ..., n). If f ∈ ∏n

i=1 Mi , then

V = ⋂n
i=1 f (i) ⊆ ⋂n

i=1 U−1
i = (

⋂n
i=1 Ui )

−1 = U−1. Then from (LBS2), we obtain
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S(∩)(U) = ∨
⋂n

i=1 Ui =U

∧n
i=1 S(Ui ) � ∨

⋂n
i=1 Ui =U

∧n
i=1

∨

Vi ⊆U−1
i

S(Vi )

= ∨
⋂n

i=1 Ui =U

∨

f (i)∈∏n
i=1 Mi

∧n
i=1 S( f (i)) ≤ ∨

⋂n
i=1 Vi ⊆U−1

∧n
i=1 S(Vi ) =

∨

V⊆U−1
S(∩)(V).

Therefore, S(∩)(U) � ∨

V⊆U−1
S(∩)(V).

(LBB3): Suppose that Mi = {Vi : Vi ◦ Vi ⊆ Ui }. If f ∈ ∏n
i=1 Mi , then

V ◦V = (
⋂n

i=1 f (i))◦(
⋂n

i=1 f (i)) = ⋂n
i=1( f (i)◦ f (i)) = ⋂n

i=1(Vi ◦Vi ) ⊆ ⋂n
i=1 Ui = U .

Since L is I-compact, then from (LBS3), we have
S(∩)(U) = ∨

⋂n
i=1 Ui =U

∧n
i=1 S(Ui ) � ∨

⋂n
i=1 Ui =U

∧n
i=1

∨

Vi ◦Vi ⊆Ui

S(Vi )

= ∨
⋂n

i=1 Ui =U

∨

f ∈∏n
i=1 Mi

∧n
i=1S( f (i)) ≤ ∨

V◦V⊆U
S(∩)(V).

Hence S(∩)(U) � ∨

V◦V⊆U
S(∩)(V).

(LBB4): From (LBB2) above, we have

S(∩)(U) ∧ S(∩)(V) =
(

∨
⋂n

i=1 Ui =U

∧n
i=1 S(Ui )

)

∧
(

∨
⋂n

i=1 Vi =V

∧n
i=1 S(Vi )

)

= ∨
⋂n

i=1 Ui =U

∨
⋂n

i=1 Vi =V

((∧n
i=1 S(Ui )

) ∧ (∧n
i=1 S(Vi )

))

≤ ∨
⋂n

λ=1 Wλ=U∩V

∧n
λ=1 S(Wλ) = S(∩)(U ∩ V)

� ∨

W−1⊆U∩V
S(∩)(W−1).

Therefore S(∩)(U) ∧ S(∩)(V) � ∨

W⊆U∩V
S(∩)(W). ��

Proposition 4.2 The following two statements hold true:

(1) If Ui is an LB-fuzzifying uniformity on X for any i ∈ �, then U = ∨

i∈�

Ui is a subbase for

some LB-fuzzifying uniformity on X .
(2) If L is I-compact and Ui is an LB-fuzzifying uniformity on X for any i ∈ �, then

U = ∧

i∈�

Ui is an LB-fuzzifying uniformity on X .

Proof (1) Since Ui is normal for each i ∈ �, then there exists U ⊆ X × X such that
Ui (U) = �. Hence U(U) = (∨

Ui
)
(U) = ∨

(Ui (U)) = �.
To prove that U is a subbase of some LB-fuzzifying uniformity on X , it suffices to check
(LBS1-LBS3) for U.

(LBS1): Suppose that U(U) =
(
∨

i∈�

Ui

)

(U) = ∨

i∈�

(Ui (U)) �= ⊥, U ⊆ X × X . Then

there exists λ ∈ � such that Uλ(U) �= ⊥. Hence 
 ⊆ U .
(LBS2): U(U) =

(
∨

i∈�

Ui

)

(U) = ∨

i∈�

(Ui (U)) � ∨

i∈�

(
Ui (U−1)

) � ∨

i∈�

∨

V⊆U−1
Ui (V) =

∨

V⊆U−1

∨

i∈�

Ui (V) = ∨

V⊆U−1

(
∨

i∈�

Ui

)

(V) = ∨

V⊆U−1
U(V). Hence U(U) � ∨

V⊆U−1
U(V).
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(LBS3):U(U) =
(
∨

i∈�

Ui

)

(U) = ∨

i∈�

(Ui (U)) � ∨

i∈�

∨

V◦V⊆U
Ui (V) = ∨

V◦V⊆U

∨

i∈�

Ui (V) =
∨

V◦V⊆U

(
∨

i∈�

Ui

)

(V) = ∨

V◦V⊆U
U(V).

Therefore U(U) � ∨

V◦V⊆U
U(V).

Then
∨

i∈�

Ui is a subbase of some LB-fuzzifying uniformity on X .

(2) Since Ui is normal for each i ∈ �, then there exists U ⊆ X × X , Ui (U) = � for each
i ∈ �. Hence U(U) = (

∧
Ui )(U) = ∧

(Ui (U)) = �.
To prove that U is an LB-fuzzifying uniformity on X , we check (LBFU1)-(LBFU5) for U.
Since L is I-compact, then we can argue as follows.

(LBFU1): Suppose that U(U) =
(
∧

i∈�

Ui

)

(U) = ∧

i∈�

(Ui (U)) �= ⊥, U ⊆ X × X . Then

for each i ∈ �, Ui (U) �= ⊥. Hence 
 ⊆ U .
(LBFU2): U(U) = ∧

i∈�

(Ui (U)) � ∧

i∈�

(
Ui (U−1)

) =
(
∧

i∈�

Ui

)

(U−1) = U(U−1).

(LBFU3): U(U) = ∧

i∈�

(Ui (U)) � ∧

i∈�

∨

V◦V⊆U
Ui (V) = ∨

V◦V⊆U

∧

i∈�

Ui (V) =
∨

V◦V⊆U

(
∧

i∈�

Ui

)

(V) = ∨

V◦V⊆U
U(V).

(LBFU4): U(U) ∧ U(V) = ∧

i∈�

(Ui (U)) ∧ ∧

i∈�

(Ui (V)) = ∧

i∈�

(Ui (U) ∧ Ui (V)) �
∧

i∈�

Ui (U ∩ V) = U(U ∩ V).

(LBFU5): Suppose U ⊆ V and U(U) �= ⊥. Then U(U) = ∧

i∈�

(Ui (U)) � ∧

i∈�

(Ui (V)) =
(
∧

i∈�

Ui

)

(V) = U(V).

Therefore U is an LB-fuzzifying uniformity on X . ��

5 L-fuzzifying topological spaces induced by LBFU spaces

This section has two related targets. First we introduce three constructions of L-fuzzifying
topologies induced by an L B-fuzzifying uniformity. This is done in Theorem 5.1, and also
in Theorems 5.2 and 5.3. Then we investigate the main design that is given in Theorem 5.1.
Its behavior when L belongs to different classes will be investigated afterwards.

Let us begin with the main construction in this section:

Theorem 5.1 Let (X ,U) be an LBFU space, and assume that L is an I-compact infinitely
distributive lattice. Then τU ∈ LP(X ) defined as τU(A) = ∧

x∈A
∨

U[x]⊆A
U(U), A ⊆ X , is an

L-fuzzifying topology on X , which is called the L-fuzzifying (uniform) topology of U.

Proof The proof is similar to the proof of Lemma 3.1 (Ying 1993b). ��
The next result produces a natural property in relation with coarser L-fuzzifying (uniform)

topologies of a common U:

Proposition 5.1 Let U1, U2 be two LB-fuzzifying uniformities on X . If U1 ≤ U2, then τU1 ≤
τU2 .
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Proof τU1(A) = ∧

x∈A
∨

U[x]⊆A
U1(U) ≤ ∧

x∈A
∨

U[x]⊆A
U2(U) = τU2(A).

Therefore τU1 ≤ τU2 . ��
In the next three theorems we produce other particular expressions for L-fuzzifying (uni-

form) topologies on X generated from certain LB-fuzzifying uniformities.

Theorem 5.2 Let (X ,U) be an LBFU space, and let L be an infinitely distributive lattice.
Then τ

(1)
U ∈ LP(X ) defined as τ

(1)
U (A) = ∨

U[Ac]∩U[A]=φ

U(U), A ⊆ X , U ⊆ X × X , is an

L-fuzzifying (uniform) topology on X .

Proof (1) Since U[X ] = X and U[φ] = φ, then τ
(1)
U (X ) = τ

(1)
U (φ) = �.

(2)Now, setB=((U1 ∩ U2)[(A1 ∩ A2)
c])∩((U1 ∩ U2)[A1∩A2])⊆

(U1[Ac
1] ∪ U2[Ac

2]
)∩

(U1[A1] ∩ U2[A2]) ⊆ (U1[Ac
1] ∩ U1[A1]

) ∪ (U2[Ac
2] ∩ U2[A2]

)
.

τ
(1)
U (A1) ∧ τ

(1)
U (A2) =

(
∨

U1[Ac
1]∩U1[A1]=φ

U(U1)

)

∧
(

∨

U2[Ac
2]∩U2[A2]=φ

U(U2)

)

= ∨

(U1[Ac
1]∩U1[A1])∪(U2[Ac

2]∩U2[A2])=φ

(U(U1) ∧ U(U2))

≤ ∨

B=φ

(U(U1) ∧ U(U2)) � ∨

B=φ

U(U1 ∩ U2)

≤ ∨

B=U[(A1∩A2)c]∩U[A1∩A2]=φ

U(U) = τ
(1)
U (A1 ∩ A2).

(3) τ
(1)
U

(
⋃

j∈�

A j

)

= ∨

U
[
⋂

j∈�

Ac
j

]

∩ U
[
⋃

j∈�

A j

]

=φ

U(U) ≥ ∨

⋃

j∈�

(
U
[
Ac

j

]
∩ U[A j ]

)
=φ

U(U)

= ∧

j∈�

∨

U
[
Ac

j

]
∩ U[A j ]=φ

U(U) = ∧

j∈�

τ
(1)
U (A j ).

Hence τ
(1)
U is an L-fuzzifying uniform topology. ��

Theorem 5.3 Let (X ,U) be an LBFU space and

τ
(2)
U (A)=

{
�, if A=φ,

U(U〈A〉), if φ �= A ∈ P(X ),
where U〈A〉=

{

, if A={x},
{(x, y) |x, y ∈A} , otherwise.

Then τ
(2)
U is an L-fuzzifying (uniform) topology on X .

Proof (1) τ
(2)
U (X ) = U(U〈X 〉) = U(X × X ) = �, and τ

(2)
U (φ) = �.

(2) Since U〈A1〉 ∩ U〈A2〉 = U〈A1 ∩ A2〉, then
τ

(2)
U (A1) ∧ τ 2U(A2) = U(U〈A1〉) ∧U(U〈A2〉) � U(U〈A1〉 ∩ U〈A2〉) = U(U〈A1 ∩A2〉) =

τ
(2)
U (A1 ∩ A2).

(3) Since U (〈A j 〉
) ⊆ U

(

〈 ⋃
j∈�

A j 〉
)

, then we have

∧

j∈�

τ
(2)
U (A j ) ≤ τ

(2)
U (A j ) = U(U〈A j 〉) � U(U

〈
⋃

j∈�

A j

〉

) = τ
(2)
U

(
⋃

j∈�

A j

)

.

Then τ
(2)
U is an L-fuzzifying uniform topology. ��

Theorem 5.4 Let L be an S-compact infinitely meet distributive lattice, and let (X ,U) be an
LBFU space. Then τ

(3)
U ∈ LP(X ) defined as τ

(3)
U (A) = ∨

α∈L−{⊥}, A∈τUα

α is an L-fuzzifying

123



Uniform spaces based on a way below relation Page 15 of 22     2 

topology, where τUα
is the topology generated by the diagonal uniformity (see Höhle and

Rodabaugh 1999, Theorem 1.2.1, Chapter 8).

Proof (1) Since X , φ ∈ τUα
for each α ∈ L − {⊥}, then we have τ

(3)
U (X ) = τ

(3)
U (φ) = �.

(2) For any A,B ⊆ X , we have

τ
(3)
U (A) ∧ τ

(3)
U (B) =

(
∨

α∈L−{⊥}, A∈τUα

α

)

∧
⎛

⎝
∨

β∈L−{⊥}, B∈τUβ

β

⎞

⎠

= ∨

α∧β∈L−{⊥}, A∈τUα , B∈τUβ

(α ∧ β)

≤ ∨

γ∈L−{⊥}, A∩B∈τUγ

γ = τ
(3)
U (A ∩ B).

(3) For any {Aλ|λ ∈ �} ⊆ P(X ), we have
τ

(3)
U (

⋃

λ∈�

Aλ) = ∨

α∈L−{⊥}, ⋃

λ∈�

Aλ∈τUα

α ≥ ∨

α∈L−{⊥}, Aλ∈τUα , λ∈�

α = ∨

f ∈ ∏

λ∈�

Mλ

∧

λ∈�

f (λ)

= ∧

λ∈�

∨

α∈Mλ

α = ∧

λ∈�

∨

α∈L−{⊥}, Aλ∈τUα

α = ∧

λ∈�

τ
(3)
U (Aλ).

where Mλ = {α ∈ L − {⊥} | Aλ ∈ τλ∀λ ∈ �}. ��
In the rest of this section we shall give some results concerning the uniform topology τU

which was defined in Theorem 5.1. For the other topologies defined in this section, similar
results can be obtained. Firstly we investigate the computation of interiors in case that L is
an S-compact completely distributive lattice.

Theorem 5.5 Suppose that L is an S-compact completely distributive lattice. Let (X ,U) be
an LB-fuzzifying uniform space and let τU be the L-fuzzifying topology of U. Then for any
x ∈ X and A ⊆ X :

I nt(A)(x) = ∨

U[x]⊆A
U(U).

Proof The proof is similar to the proof of Theorem 3.2 (Ying 1993b). ��
The conditions of the previous theorem allow us to further enhance the knowledge about

the construction in Theorem 5.1:

Theorem 5.6 Let (X ,U) be an LBFU space, and let τU be the fuzzifying topology of U. If L
is an S-compact completely distributive lattice, then for any x ∈ X and A ⊆ X :

(1) The neighborhood system of x, denoted by Nx ∈ LP(X ), is given by Nx (A) =∨

U[x]=A
U(U).

(2) If B is a base of U, then Bx (A) = ∨

U[x]=A
B(U) is a base of Nx .

(3) If S is a subbase of U, then Sx (A) = ∨

U[x]=A
S(U) is a subbase of Nx .

Proof The proof is similar to the proof of Theorem 3.3 (Ying 1993b). ��
Our last result in this section concerns the construction in Theorem 5.1 too. But now

we investigate its behavior when L is a completely distributive lattice with order reversing
involution ′. Some technical results preceed that result, namely, Theorem 5.7 below.
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Lemma 5.1 Let (X1, τ1) and (X2, τ2) be two L-fuzzifying topological spaces on U, x1 ∈ X1,
x2 ∈ X2. IfL is an S-compact completely distributive lattice, then for anyA1 ⊆ X1,A2 ⊆ X2,
we have N1

x1(A1) ∧ N2
x2(A2) � N(x1,x2)(A1 × A2).

Proof N1
x1(A1)∧N2

x2(A2) = ∨

U[x1]=A1

U(U) ∧ ∨

V[x2]=A2

U(V)= ∨

U[x1]=A1,V[x2]=A2

(U(U)∧
U(V))

� ∨

U[x1]=A1,V[x2]=A2

U(U ∩ V) ≤ ∨

(U∩V)[x1]×(U∩V)[x2]⊆A1×A2

U(U ∩ V)

≤ ∨

W[x1]×W[x2]⊆A1×A2

U(W) = N(x1,x2)(A1 × A2). ��

Lemma 5.2 Let (X1, τ1), and let (X2, τ2) be two L-fuzzifying topological spaces on U, x1 ∈
X1, x2 ∈ X2. If L is an S-compact completely distributive lattice and Bxi is a base of Nxi

(i = 1, 2), then B(x1,x2)(A1 × A2) = Bx1(A1) ∧ Bx2(A2) is a base of N(x1,x2).

Proof B(x1,x2)(A1 ×A2) = Bx1(A1) ∧Bx2(A2) ≤ Nx1(A1) ∧Nx2(A2) � N(x1,x2)(A1 ×
A2).
In addition,

N(x1,x2)(W ) ≤ ∨

U×V⊆W
(Nx1(U) ∧ Nx2(V)) = ∨

U×V⊆W

(
∨

A⊆U
Bx1(A) ∧ ∨

B⊆V
Bx2(B)

)

= ∨

U×V⊆W

∨

A×B⊆U×V

(
Bx1(A) ∧ Bx2(B)

) = ∨

A×B⊆W

(
Bx1(A) ∧ Bx2(B)

)

= ∨

A×B⊆W
B(x1,x2)(A × B). ��

Lemma 5.3 Let (X ,U) be an LBFU space, and let τU be the L-fuzzifying topology on U. If
L is an S-compact completely distributive lattice, then for any x, y ∈ X ,

B(x,y)(A × B) = ∨

U[x]=A,U[y]=B,U=U−1
U(U)

is a base of N(x,y), where N(x,y) is the L-fuzzifying neighborhood system of (x, y) with
respect to τU × τU.

Proof B(x,y)(A × B) = ∨

U[x]=A,U[y]=B,U=U−1
U(U) ≤ ∨

U[x]=A
U(U) ∧ ∨

U[y]=B
U(U)

= Nx (A) ∧ Ny(B) � N(x,y)(A × B).
ThereforeB(x,y)(A × B) � N(x,y)(A × B).
In addition, for any W ⊆ X × X ,
N(x,y)(W) = ∧

(x,y)∈W
∨

A×B⊆W

(
Nx (A) ∧ Ny(B)

) ≤ ∨

A×B⊆W

(
Nx (A) ∧ Ny(B)

)

= ∨

A×B⊆W

(
∨

U[x]=A
U(U) ∧ ∨

V[y]=B
U(V)

)

= ∨

A×B⊆W

∨

U[x]×V[y]=A×B
(U(U) ∧ U(V))

= ∨

U[x]×V[y]⊆W
(U(U) ∧ U(V)) � ∨

U[x]×V[y]⊆W
U(U ∩ V)

≤ ∨

(U∩V)[x]×(U∩V)[y]⊆W
U(U ∩ V)

� ∨

U[x]×U[y]⊆W
U(U) ≤ ∨

(U∩U−1)[x]×(U∩U−1)[y]⊆W
U(U ∩ U−1)

= ∨

U[x]×U[y]⊆W,U=U−1
U(U) = B(x,y)(W) ≤ ∨

Z⊆W
B(x,y)(Z). ��
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Theorem 5.7 Let (X ,U) be an LBFU space, and let τU be the fuzzifying uniform topology
on U. If L is a completely distributive lattice with order reversing involution ′, then for any
x, y ∈ X , A ⊆ X and M ⊆ X × X :

(1) ClτU(A)(x) = ∧

x /∈U[A]
(U(U))

′
;

(2) ClτU×τU(M)(x, y) = ∧

(x,y)∈U◦M◦U
(U(U))

′
.

Proof (1) From Theorems 2.3 (6) and 5.6 (1), the proof is similar to the proof of Theorem
3.8 (1) (Ying 1993b).

(2) From Lemma 5.3, the proof is similar to the proof of Theorem 3.8 (2) (Ying 1993b). ��

6 LBFU continuity

To conclude the theoretical contribution of this paper, in this section we define and investigate
the concept of LBFU continuity. This notion is formalized as follows:

Definition 6.1 Let (X ,U) and (Y,V) be two LBFU spaces. A function f : (X ,U) −→
(Y,V) is calledLB-fuzzifyinguniformly continuous if andonly ifV(V) � U(( f × f )−1(V)),
∀V ∈ P(Y × Y).

A technical characterization gives an alternative view of the concept above:

Lemma 6.1 Suppose that (X ,U) and (Y,V) are two LBFU spaces. Then the function
f : (X ,U) −→ (Y,V) is LB-fuzzifying uniformly continuous if and only if V(V) �∨

( f × f )(U)⊆V
U(U), for each V ∈ P(Y × Y).

Proof Suppose that f is LB-fuzzifying uniformly continuous. Then
V(V) � U(( f × f )−1(V)) ≤ ∨

U⊆( f × f )−1(V)

U(U) = ∨

( f × f )(U)⊆V
U(U).

ThereforeV(V) � ∨

( f × f )(U)⊆V
U(U).

Conversely, V(V) � ∨

( f × f )(U)⊆V
U(U) = ∨

U⊆( f × f )−1(V)

U(U) = U(( f × f )−1(V)).

Hence V(V) � U(( f × f )−1(V)) and f is LB-fuzzifying uniformly continuous. ��
Subbases are helpful for the verification of the axiom of LBFU continuity:

Lemma 6.2 Let (X ,U) and (Y,V) be two LBFU spaces and suppose that S is a subbase
of V. Then f : (X ,U) −→ (Y,V) is LB-fuzzifying uniformly continuous if and only if
S(V) � U(( f × f )−1(V)), for each V ∈ P(Y × Y).

Proof Suppose that f is LB-fuzzifying uniformly continuous. Then V(V) � U(( f ×
f )−1(V)). SinceS is a subbase ofV, thenS(V) � V(V). HenceS(V) � U(( f × f )−1(V)).
Conversely, suppose that S(V) � U(( f × f )−1(V)).

V(V) = ∨

W⊆V
S(∩)(W) = ∨

W⊆V

∨
⋂n

i=1 Ui =W

∧n
i=1 S(Ui ) = ∨

⋂n
i=1 Ui ⊆V

∧n
i=1 S(Ui )

≤ S(V)

� U(( f × f )−1(V))

Then V(V) � U(( f × f )−1(V)). ��
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Another natural property that holds true concerns the composition of LB-fuzzifying uni-
formly continuous functions:

Lemma 6.3 Let (X ,U), (Y,V) and (Z,W) be three LBFU spaces. If f : (X ,U) −→ (Y,V)

and g : (Y,V) −→ (Z,W) are LB-fuzzifying uniformly continuous, then g◦ f : (X ,U) −→
(Z,W) is LB-fuzzifying uniformly continuous.

Proof For all W ∈ P(Z × Z), we haveW(W) � V((g × g)−1(W)) as g is LB-fuzzifying
uniformly continuous. Since f is LB-fuzzifying uniformly continuous, then

V((g × g)−1(W)) � U(( f × f )−1((g × g)−1(W))) = U(((g ◦ f ) × (g ◦ f ))−1(W)).

Therefore W(W) � U(((g ◦ f ) × (g ◦ f ))−1(W)). So g ◦ f is LB-fuzzifying uniformly
continuous. ��
Theorem 6.1 Let L be an I-compact infinitely distributive lattice, let (X ,U) and (Y,V) be
two LBFU spaces, and suppose that f : (X ,U) −→ (Y,V) is LB-fuzzifying uniformly
continuous. Then:

(1) f : (X , τU) −→ (Y, τV) is L-fuzzifying continuous.
(2) f : (X , τ

(1)
U ) −→ (Y, τ

(1)
V ) is L-fuzzifying continuous.

(3) If f : (X ,U) −→ (Y,V) is injective, then f : (X , τ
(2)
U ) −→ (Y, τ

(2)
V ) is L-fuzzifying

continuous.
(4) If f : (X ,U) −→ (Y,V) is surjective, then f : (X , τ

(3)
U ) −→ (Y, τ

(3)
V ) is L-fuzzifying

continuous.

Proof (1) τV(B) = ∧

y∈B
∨

V[y]⊆B
V(V), B ⊆ Y

≤ ∧

x∈ f −1(B)

∨

V[ f (x)]⊆B
V(V)

≤ ∧

x∈ f −1(B)

∨

f −1(V[ f (x)])⊆ f −1(B)

V(V)

� ∧

x∈ f −1(B)

∨

((( f × f )−1(V))[x])⊆ f −1(B)

V(( f × f )−1(V))

≤ ∧

x∈ f −1(B)

∨

U[x]⊆ f −1(B)

U(U)

= τU( f −1(B)).
Then f : (X , τU) −→ (Y, τV) is an L-fuzzifying continuous function.
Note that we used the fact that f −1(V[ f (x)]) = (( f × f )−1(V))[x]. In fact,

∀z ∈ f −1(V[ f (x)]) ⇔ f (z) ∈ V[ f (x)] ⇔ ( f (z), f (x)) ∈ V ⇔ (z, x) ∈ ( f ×
f )−1(V) ⇔ z ∈ (( f × f )−1(V))[x]. Therefore, if V[ f (x)] ⊆ B, then f −1(V[ f (x)]) =
(( f × f )−1V)[x] ⊆ f −1(B).
(2) Since ( f × f )−1(V[ f −1(B)]) = f −1(V[ f ( f −1(B))]) ⊆ f −1(V[B]), then by putting
U = ( f × f )−1(V) we obtain

τ
(1)
V (B) = ∨

V[Bc]∩V[B]=φ

V(V)

= ∨

f −1(V[Bc]∩V[B])=φ

V(V)

� ∨

f −1(V[Bc]∩V[B])=φ

U(( f × f )−1(V))

≤ ∨

U[ f −1(Bc)]∩U[ f −1(B)]=φ

U(U)

= τ
(1)
U ( f −1(B)).
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Therefore f : (X , τ
(1)
U ) −→ (Y, τ

(1)
V ) is an L-fuzzifying continuous function.

(3) If B = φ, then the result holds. Now, suppose B �= φ. Since f is injective, we have
( f × f )−1(U(B)) = U( f −1(B)). Indeed, if x �= y we have (x, y) ∈ ( f × f )−1(U(B)) ⇔
( f (x), f (y)) ∈ U(B) ⇔ f (x), f (y) ∈ B ⇔ x, y ∈ f −1(B) ⇔ (x, y) ∈ U( f −1(B)).
Therefore τ

(2)
V (B) = V(V(B)) � U(( f × f )−1(V(B))) = U(V( f −1(B))) = τ 2U( f −1(B)).

Hence f : (X , τ
(2)
U ) −→ (Y, τ

(2)
V ) is L-fuzzifying continuous.

(4) Suppose that B ∈ τVα
. Then for every y ∈ B, there exists V ∈ Vα such that V[y] ⊆ B.

HenceV(V) ≥ α and V[y] ⊆ B. Since f is a surjective LB-fuzzifying uniformly continuous
function, then V(V) � U(( f × f )−1(V)) and (( f × f )−1(V))[ f −1(y)] ⊆ f −1(B), where
x ∈ f −1(B) and f (x) = y. Hence ( f × f )−1(V) ∈ Uα and (( f × f )−1(V))[ f −1(y)] ⊆
f −1(B). So, f −1(B) ∈ τUα

. Therefore

τ
(3)
V (B) = ∨

α∈L−{⊥}, B∈τVα

α ≤ ∨

α∈L−{⊥}, f −1(B)∈τUα

α = τ
(3)
U ( f −1(B))

Hence f : (X , τ
(3)
U ) → (Y, τ

(3)
V ) is L-fuzzifying continuous. ��

Theorem 6.2 Let f : X −→ Y be a function, and let V be an LB-fuzzifying uniformity on
Y . Then the function U : P(X × X ) −→ L defined by U(U) = V(Y2\( f × f )(Uc)) is an
LB-fuzzifying uniformity on X .

Proof U(X × X ) = V(Y2\( f × f )(X × X )c) = V(Y2) = �. So, U is a normal function.
Now, we need to prove (LBFU1)-(LBFU5).

(LBFU1): If U(U) �= ⊥, then V(Y2\( f × f )(Uc)) �= ⊥. So, 
Y ⊆ Y2\( f × f )(Uc).
Hence 
X ⊆ U .

(LBFU2): U(U) = V(Y2\( f × f )(Uc)) � V((Y2\( f × f )(Uc))−1) = V(Y2\( f ×
f )((U−1)c)) = U(U−1). Hence U(U) � U(U−1)

(LBFU3): Suppose U(U) �= ⊥. ThenV(Y2\( f × f )(Uc)) �= ⊥. Hence, we have
U(U) = V(Y2\( f × f )(Uc)) � ∨

Y2\( f × f )(Vc)◦Y2\( f × f )(Vc)⊆Y2\( f × f )(Uc)

V(Y2\( f ×
f )(Vc))

= ∨

( f × f )(Uc)⊆( f × f )((V◦V)c)

U(V) ≤ ∨

Uc⊆(V◦V)c
U(V) = ∨

V◦V⊆U
U(V).

Therefore U(U) � ∨

V◦V⊆U
U(V).

(LBFU4): U(U) ∧ U(V) = V(Y2\( f × f )(Uc)) ∧ V(Y2\( f × f )(Vc))

� V((Y2\( f × f )(Uc)) ∩ (Y2\( f × f )(Vc)))

= V(Y2\(( f × f )(Uc) ∪ ( f × f )(Vc)))

= V(Y2\(( f × f )(Uc ∪ Vc)))

= V(Y2\(( f × f )(U ∩ V)c)) = U(U ∩ V).
(LBFU5): Suppose that U(U) �= ⊥ and U ⊆ V . Then V(Y2\( f × f )(Uc)) �= ⊥ and we

obtain Y2\( f × f )(Uc) ⊆ Y 2\( f × f )(Vc). Therefore, U(U) = V(Y2\( f × f )(Uc)) �
V(Y2\( f × f )(Vc)) = U(V). Hence U(U) � U(V). Thus U is an LB-fuzzifying uniformity
on X ��
Theorem 6.3 Let f : X −→ Y be a function, and let V be an LB-fuzzifying uniformity on
Y . Define U : P(X × X ) −→ L by U(U) = ∨

( f × f )−1(V)⊆U
V(V). Then U is an LB-fuzzifying

uniformity onX . Also, ifL is a complete chain, thenU is the smallest LB-fuzzifying uniformity
such that f is LB-fuzzifying uniformly continuous.

Proof If ( f × f )−1(V) ⊆ U , then V ⊆ Y2\( f × f )(Uc). So,
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∨

( f × f )−1(V)⊆U
V(V) ≤ V(Y2\( f × f )(Uc)). On the other hand, if M = Y2 \ ( f × f )(Uc),

then ( f × f )−1(M) ⊆ U andV(M) ≤ ∨

( f × f )−1(M)⊆U
V(M). Hence

∨

( f × f )−1(V)⊆U
V(V) =

V(Y2\( f × f )(Uc)). Therefore, from Theorem 6.2 we obtain that U is an LB-fuzzifying
uniformity onX . To prove that U is the smallest LB-fuzzifying uniformity, we know from the
definition of U thatV(V) ≤ U(( f × f )−1(V)), V ∈ P(Y ×Y). Since L is a complete chain,
we deduce thatV(V) � U(( f × f )−1(V)). So, f : (X ,U) −→ (Y,V) is LB-fuzzifying uni-
formly continuous. Now, suppose that f : (X ,U∗) −→ (Y,V) is LB-fuzzifying uniformly
continuous. ThenU(U) = ∨

( f × f )−1(V)⊆U
V(V) � ∨

( f × f )−1(V)⊆U
U∗(( f × f )−1(V)) ≤ U∗(U),

∀U ∈ P(X × X ). ��
Proposition 6.1 Let f : X −→ Y be a function, and let V be an LB-fuzzifying uniformity on
Y . Then S(( f × f )−1(U)) = V(V) is a subbase of some LB-fuzzifying uniformity U on X .

Proof It suffices to check (LBS1)-(LBS3) for S. Since V is an LB-fuzzifying uniformity,
then V(Y × Y) = �. Hence S(( f × f )−1(Y × Y)) = V(Y × Y) = S(X × X ) = �.
Therefore S is normal function.
(LBS1): If S(( f × f )−1(V)) �= ⊥, then V(V) �= ⊥. So, 
Y ⊆ V , where 
Y =
{( f (x), f (x)) | x ∈ X }. Hence 
 ⊆ ( f × f )−1(V) and 
 = {(x, x) | x ∈ X }.
(LBS2):S(( f × f )−1(U)) = V(U) � V(U−1) = S(( f × f )−1(U−1)) ≤ ∨

V⊆( f × f )−1(U−1)

S(V) = ∨

V⊆(( f × f )−1(U))−1
S(V). Therefore S(( f × f )−1(U) � ∨

V⊆(( f × f )−1(U))−1
S(V).

(LBS3): S(( f × f )−1(U)) = V(U) � ∨

V◦V⊆U
V(V) = ∨

V◦V⊆U
S(( f × f )−1(V))

≤ ∨

( f × f )−1(V◦V)⊆( f × f )−1(U)

S(( f × f )−1(V))= ∨

( f × f )−1(V)◦( f × f )−1(V)⊆( f × f )−1(U)

S(( f ×
f )−1(V)). Put ( f × f )−1(U) = M and ( f × f )−1(V) = N , we obtain S(M) �∨

N◦N⊆M
S(N ). Hence S is a subbase of some LB-fuzzifying uniformity U on X . ��

7 Conclusion

Uniformity is an important concept in point-set topology. It is close to the standard notion
of topology thus it constitutes a convenient tool for the investigation of this structure. The
concept of way below relation had never been connected with the structure of uniform spaces,
although both have appeared separately in the literature. Our research has shown that these
two concepts can be linked in an efficient manner. This connection produces noteworthy
fundamental results, therefore we can safely claim that the new model deserves further
consideration.

Technically speaking, the present work defines LBFU spaces. Some of their properties are
investigated in terms of bases and subbases in Theorems 4.1 and 4.2. Furthermore, explicit
relations between the notions of LBFU space and L-fuzzifying topological space are shown
in Theorems 5.1, 5.2, 5.3 and 5.4. Also, some properties of closure and interior are given in
Theorems 5.5, 5.6 and 5.7.

Additionally, we believe that it would be interesting to extend this approach to other struc-
tures such as proximity, pre-uniformity, topogenous, syntopogenous, homotopy, et cetera.
We intend to investigate all these issues in future research works.
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Another avenue of discussion concerns evolutionary biology, as central notions in this
field are intrinsically topological (Stadler and Stadler 2004). Classical models of population
genetics and quantitative genetics presuppose a natural framework for studying the evolution
of phenotypic adaptation and the process of speciation which is a Euclidean vector space.
In this regard, it is interesting to develop a mathematical framework that contains graphs,
recombination sets, and Euclidean vector spaces as special cases. If phenotypes are organized
according to genetic accessibility, the resulting space lacks a metric and is formalized by an
unfamiliar structure. In future studieswe shall investigate if and towhat extent, LB-fuzzifying
uniformities serve this purpose. We expect that patterns of phenotypic evolution—such as
punctuation, irreversibility, or modularity—result from the properties of this space. Also by
inspiration from Stadler and Stadler (2004), future studies might focus on the applicability
of LB-fuzzifying uniformity to combinatorial search spaces, fitness landscapes, evolutionary
trajectories, and artificial chemistry.
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