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Abstract

This paper fosters both uniform spaces and way below relations with an innovative analysis
of their mutual relationships. A new concept of uniform spaces based on a way below relation
(LB-fuzzifying uniform space, or LBFU space, for short) will be introduced and investigated.
With this aim, first some fundamental concepts in L-fuzzifying topological spaces will be
studied. Then, we shall explore some L-fuzzifying topological spaces induced by an LBFU
space. Furthermore, new concepts of interior, closure, bases and subbases relative to an LBFU
topology will be established. Finally, the continuity of functions between LBFU spaces will
be introduced and investigated.

Keywords Uniform spaces - L-fuzzifying topology - LB-fuzzifying uniform continuity -
Way below relation

Mathematics Subject Classification 54A40 - 54E15

1 Introduction and preliminary concepts

Zadeh produced the pathbreaking concept of fuzzy set in his acclaimed (Zadeh 1965). Since
that milestone, mathematicians have struggled to extend fundamental mathematical structures
such as groups, rings, vector spaces, topologies, uniformities, and proximities to a fuzzy
framework. Particularly, one of the fuzzy extensions of the notion of a topology was studied
in a sequence of articles and books (Hohle et al. 1995; Hohle and Rodabaugh 1999; Hohle
2001; Liu and Luo 1998; Lowen 1982; Ying 1991). Relatedly, Hohle (1980b) and Zhang
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(2002) put forward the idea of an L-fuzzy topology, which consists of an L-valued mapping
on the standard power set of X', namely, P(X’). According to Hohle and Rodabaugh (Hohle
and Rodabaugh 1999, Chapter 3), an L-fuzzy topology is an L-valued function on the L-
power set £ of X. Lowen Lowen (1979) generalized the well-developed topological theory
of convergence to the context of stratified /-topologies. In Hohle (1978), Hohle (1982a), a
comparable notion received the name of probabilistic topology. These two structures have
been contrasted in (1999, Chapter 5).

Uniform spaces are mathematical objects that lie in between topological and metric spaces.
In particular, every uniform space originates a natural topology, and every metric space can
be endowed with a canonical uniform structure. We can trace uniform spaces back to the late
1930s. Many textbooks on general topology (like Willard Willard 1970) adhere to the Weil
approach Weil (1937), which is often known as the “surrounding” or “entourage" approach.
Uniform coverings yield an alternative perspective Tukey (1940), which was followed by
textbooks like Isbell Isbell (1964). L-fuzzy uniform spaces were considered by Hutton Hutton
(1977), Hutton (1983). The fuzzification of the structure of a uniform space was established
by Lowen Lowen (1981), Lowen and Wuyts (1982), Lowen and Wuyts (1983). Another
fuzzification of the concept was introduced by Hohle Hohle (1980a), Hohle (1982b). Kotzé
(1999, Chapter 8) introduced equivalent perspectives on uniform spaces and presented an
approach to L-uniformities extending Hohle’s. Some authors (e.g., 1999, Chapter 9) outlined
how some of the features of the theory of uniform spaces can be generalized to become a
fuzzy notion. When £ = [0, 1], Katsaras Katsaras (1984) proved that the [0, 1]-topology
produced from a uniformizable point-set topology must be uniformizable in the sense of
Hutton. Extensions of well-known theorems to L-topological spaces appeared in Artico and
Moresco (1988). Nowadays the theory of fuzzy uniform spaces is under further development
and over 100 papers on the topic have been produced, see Ahsanullah (1992), Artico and
Moresco (1987), Artico and Moresco (1989), Badard et al. (1993), Burton (1993a), Burton
(1993b), Burton (1993c¢), Burton (1993d), Kandil et al. (1994), Soetens and Wuyts (1993),
Srivastava (1989), Wuyts and Lowen (1983) as a short sample. Burton et al. Burton et al.
(1996) produced generalized uniform spaces. They proved that the categories of Lowen
fuzzy uniform spaces and generalized uniform spaces are isomorphic, and that the category
of generalized uniform spaces is a good extension of the category of uniform spaces. Also,
they showed that the category of super uniform spaces defined in Gutiérrez Garcia and de
Prada Vicente (1997) includes these categories, a fact that is detailedly studied in Gutiérrez
et al. (1997). The semantic method of continuous valued logic allowed Ying Ying (1993b)
to define the fuzzifying uniform space in a completely different direction, and he studied
some of its properties. Khedr et al. Khedr et al. (2003) introduced the notion of the strong
fuzzifying uniformity and established its relationship with the fuzzifying proximity. The way
below relation was defined in Gierz et al. (1980), and in this article some of its properties were
studied too. Also, Bancerek Bancerek (1997) introduced the way below relation and stated
several propositions in topics such as continuous lattices, directed powers, and topological
spaces.

However, as far as we are aware of there exists no analysis of the relationships between the
fuzzy structure of a uniform space and relations such as the way below relation. So far they
have remained as two divergent fields of research. Here we shall conduct a substantial analysis
of their mutual relationships. This achievement produces a basically theoretical article which
is nonetheless necessary to provide a strong foundation of this novel aspect of topological
fuzzy set theory. Both disciplines should be promoted with this pioneering analysis, which
may also foster the inspection of other relationships among different types of topological
structures.
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The rest of this paper is organized as follows. This section contains some necessary con-
cepts and properties. In section 2, we shall introduce the new concepts of L-fuzzifying derived,
L-fuzzifying interior, and L-fuzzifying closure operators. In the next section, the concepts
of base and subbase in the framework of L-fuzzifying topological spaces are defined, and
with their help we shall investigate L-fuzzifying continuous mapping and L-fuzzifying open
mapping. In section 4, we put forward the structure of an LBFU space in the framework of
L-fuzzitying topology. Then we prove some of their fundamental properties. In section 5, we
investigate some L-fuzzifying topological spaces which are induced by LBFU spaces. Fur-
thermore, the concepts of interior and closure relative to the LBFU topology are investigated.
In section 6, the concept of LBFU continuity is given and some results are discussed. The
goal of the last section is to conclude this paper with a succinct but precise recapitulation of
our main findings, and to give some lines for future research.

In this paper we adopt the standard terminology from lattice theory (which can be consulted
in monographs like Birkhoff (1967), Gierz et al. (1980), Gratzer (1978)). We assume that
(L, <) is a complete lattice whose smallest element is L and whose largest element is T. All
other additional requirements on £ will be made explicit when required.

In this context, a first fundamental concept is given in our next definition:

Definition 1.1 (Bancerek 1997; Gierz et al. 1980). Let x, y € £. Then x is way below y,
represented by x < y, when for any directed subset D C L, the relation y < \/ D always
implies that an element d € D exists with x < d.

Some immediate facts ensue from this notion:

Proposition 1.1 (Bancerek 1997; Gierz et al. 1980). For all u, x,y,z € L, the following
statements hold:

(i) x K yimplies x <y,

(ii) u <x Ky <zimpliesu < z;
(iii) If x K zandy K< 7thenx Vy <L z;
(iv) L < x;

(v) Ifx < yandz <y thenx < z;
(vi) If L is a complete chain (Birkhoff 1967), then x < y if and only if x < y.

A second fundamental notion is given in the next definition:

Definition 1.2 (Hohle 1980b, (1999, Chapter 5), (Ying 1993a; Zhang 2002)). Let X be the
universe of discourse and T € L7, where P(X) is the power set of X'. Suppose that the
following conditions hold true:

D (X)) =1()=T;
(2) Forall A, B e P(X), 7(A) AT(B) < t(ANDB);
(3) Forall{4; :i €e A} S PX), ANt(4) <t <UAi .
ieA ieA

Then t is called an L-fuzzifying topology, and (X, 7) is called an L-fuzzifying topological
space.
If (X, 71) and (), 12) are two L-fuzzifying topological spaces, then we say that the function
f (X, 1) — (Y, ) is L-fuzzifying continuous if forall B € P(Y), 12(B) < n(f~1(B)).

Henceforth, (X, ) will denote an L-fuzzifying topological space, with X’ being the uni-
verse of discourse.

Associated with Definition 1.2 a concept exists whose properties are stated below in
Proposition 1.2, under the assumption that the lattice is completely distributive:
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Definition 1.3 ((Hohle and Rodabaugh 1999, Chapter 5), Liu and Zhang (2000), Zhang
(2002)). The L-fuzzifying neighborhood system of a point x € X, denoted by 0, € LF¥),

is defined as follows: M, (A) = \/ t(B), VA € P(X).
xeBCA

Proposition 1.2 (Hohle and Rodabaugh 1999). Let L be a completely distributive lattice.
Then for all x € X, the following statements are true:

(1) Me(X) =T, Nye(p) = L;
(2) N (AN B) = Ny (A) A I (B);
(3) Ny (A) = L whenever x ¢ A;

(4) Me(A) <V O, (A) v N (B)).
y¢B

Moreover t(A) = /\ 9, (A), for each A € P(X).
xeA

2 Fundamental concepts: Derived set, closure, interior

Along this section, £ represents a completely distributive lattice with order reversing invo-
lution denoted by ’. Under this condition, we can define:

Definition 2.1 Let x € X and A € P(X).

(1) The family of all L-fuzzifying closed sets, represented by §, € L7, is given by
F:(A) = t(X ~ A), where X ~ A is the complement of A;
(2) The L-fuzzifying derived set of A, represented by D, (A) € LPM), is given as follows:

D (A)(x) = A M (B));
BeP(X),BN(A~{x})=¢

(3) The L-fuzzifying interior set of A, represented by I'nt, (A) € LP ) is given as follows:
Int: (A)(x) = N, (A);

(4) The L-fuzzifying closure set of A, represented by Cl; (A) € £P) is given as follows:
Cl: (A (x) = (M (X ~ A)) .

The next technical result will help us give some important facts about Definition 2.1. We
omit the proofs since they are routine:

Lemma2.1 Forall A e P(X)and x € X, D.(A)(x) = N, (X ~ A) U {x}))".

Theorem 2.1 Forall A, B € P(X) and x € X we have:

(1) D(p)(x) = L;
(2) If AC B, then ®:(A) < D.(B);
(3) D (A) VD (B) =D (AU B);
(4) (A = N\ D (D)) .
x¢A
Theorem 2.2 Forall A, B € P(X) and x € X we have

(1) Int;(X)(x) =T;

(2) Int;(A)(x) < Ax);

(3) If A C B, then Int;(A)(x) < Int;(B)(x);
(4) Int: (AN B) = Int; (A) A Int: (B);
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(5) Int:(A)(x) = AX) A (D (X ~ A ().
Theorem 2.3 Forall A, B € P(X) and x € X we have:

(1) Cle($)(x) = L;

(2) A(x) = ClL(A)(x);

(3) If A S B, then Cl (A)(x) = Cl (B)(x);
(4) Cl:(AUB) = Cl(A) v Cl(B);

(5) CLLAX) = A §B);
x¢B2A

6) ClL(AH(x)= A OL®B):
ANB=¢
(7) Clo(A)(x) = AX) VD (A)(x);

(8) Fe(A) = A (Cl(A)(x)).
x¢A

3 Bases and subbases

First in this section we introduce the next two related notions:

Definition 3.1 A lattice £ is

(1) S-compact, ifa < \/ aj forall aj,a € L, implies the existence of j, € A such that

JEA
a < oj,.
(2) T-compact, if /\ @; < a forall @;,a € L, implies the existence of j, € A such that
jeA
o, <a.

Our next Lemma shows that in the case of complemented lattices, both concepts given in
Definition 3.1 are equivalent:

Lemma 3.1 Let L be a complemented lattice. Then L is S-compact if and only if it is I-
compact.

’
Proof Suppose that £ is S-compact and /\ «; < a. Then d <[ A a; | . Hence d <
JjeA jeA
\V a;. So, there exists j, € A such that a < a}o. Thus, @, < a. Therefore £ is I-compact.
JeA
Similarly, the converse implication can be proven. O

We now introduce a concept of base of t, an L-fuzzifying topology on X. This name will
be justified by the subsequent Theorem 3.1:

Definition 3.2 A map B : P(X) —> L is abase of 7, an L-fuzzifying topology on X, if and
only if B fulfills the following conditions:

(1) B <rt,and

2 MW <V BDB).
xeBCA

The following two theorems provide necessary and sufficient condition for a base of an
L-fuzzifying topology. The proof is similar to the proof of Theorem 4.1 (Ying 1991).
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Theorem 3.1 Let B be a base of t. Define for each A C X,
VW= \/  ABB.

U Bi=A AeA
reA

Then:

(1) © > BV and

(2) When L is a completely distributive lattice, it must be the case that T = BY).
Theorem 3.2 Ift = B and B is monotone, then B is a base of t.

The next theorem identifies when an element from £7*) behaves as a base for some L-
fuzzifying topology, provided that £ is a completely distributive lattice. The sketch of proof
is similar to Theorem 3.3 (Liang and Yan 2014).

Theorem 3.3 Let £ be a completely distributive lattice and 8 € L7,

(1) If B is a base of t, an L-fuzzifying topology on X, then

(a) BOX) =T,

(b) BAABMB) < \/ B
xeCCANB

(2) If*B satisfies conditions (a) and (b) in (1), then *B is a base for some L-fuzzifying topology.

We complement the investigation of bases of L-fuzzifying topologies with the related notion
of subbase, defined in the following terms:

Definition3.3 & : P(X) —> L is a subbase of 7 if 5™ : P(X) —> L is a base, where

SMA) = \V A\ &(B,),forall A € P(X), where (M) stands for “finite intersection”.
n B,=A AeA
AEA

The restriction to infinitely distributive lattices allows us to give a full characterization of the
elements from £7(¥) that behave as a subbase of some L-fuzzifying topology:

Theorem 3.4 Let L be an infinitely distributive lattice. Then & € LPY) is a subbase of some
L-fuzzifying topology if and only if 8 (x) = T.

Proof Necessity: From the definition of subbase and Theorem 3.3, we have (&™) (x) =
T. Thus Yo # T one has

a<@MPy = \/ A=V A V AsesBy.

U Ay=Xx €A U AA=X reA N By=A, peA;
AEA AeA PEA,
Then there exists {A; : A € A} with | J A, = X and {Bp 1pE AA} with I‘IA B, = Ax
rEA PEA
foreach A € Asuchthata < &(B,). Thus |J By=Xande< /A &(B,).So
pEN; AEA peEN; LEA
a< A 6(B;) = GV (x). From the arbitrariness of , we have & (X) = T.
UA/\:X rEA
reA
Sufficiency: The proof is similar to the proof of Theorem 4.3 (Ying 1991). O

Our next goal is to show that subbases are helpful to simplify the verification of certain
properties of mappings between L-fuzzifying topological spaces. The proof is similar to the
proof of Theorem 3.4 (Liang and Yan 2014).
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Theorem 3.5 Let (X, t) and (), o) be two L-fuzzifying topological spaces, and let o be
generated by its subbase &. Suppose that the mapping f : (X,t) —> (Y, 0) satisfies
GWU) < r(f_l(Z/I)),for alld € P(Y). Then f is L-fuzzifying continuous.

Theorem 3.6 Let (X, 1) and (Y, o) be two L-fuzzifying topological spaces, and let T gener-
ated by its base B. If the mapping [ : (X, t) —> (), 0) satisfies BU) < o (f(U)), forall
U € P(X), then f is L-fuzzifying open, i.e., for all YW € P(X), t(W) < o (f(W)).

Proof The proof is similar to the proof of Theorem 3.5 (Liang and Yan 2014). O

Corollary 3.1 If f : (X, t) — (¥, 0) is a bijection and 7 is generated by its subbase &, and
GU) < a(fUL)) foreveryU € P(X), then f is L-fuzzifying open.

Furthermore, the broad idea of relative topologies helps us establish some additional
results. When (X, ) is an L-fuzzifying topological space, and Z C X, we define (Z, 7|z)

by the expression (t]z)(A) = \/ ), forallx € Z, A € P(Z). Then one has:
A=UNZ

Theorem 3.7 Let (X, t) and (Y, o) be two L-fuzzifying topological spaces, and Z C X. The
mapping f|z : (£, t|z) —> (Y, 0) is L-fuzzifying continuous, where (f|z(x)) = f(x).

The next result shows that under certain circumstances, bases are inherited by relative
topologies:

Theorem 3.8 Ler t be generated by its base B and define BlyU) = \/ BW), for
Wwny=u
Y X, UePQ).If LisS-compact, then Bly is a base of T|y.

Proof The proof is similar to the proof of Theorem 3.6 (Liang and Yan 2014). O
Now we proceed to investigate the product of L-fuzzifying topologies.

Theorem 3.9 Let {(X), 70) : A € A} be a family of L-fuzzifying topological spaces and let

Py : [] X —> Xy be the projection on the o component. ForanyW € P | [] X,\>, define
AEA AEA
eW) =V \/  w@). If L is an infinitely distributive lattice, then S is a subbase
reA pelan=w
of some L-fuzzifying topology t which is called the product of the L-fuzzifying topologies

{tx : A € A}. We write T = [] 1., and then we say that ( ITx. 11 IA> is the product

rEA rEA reA
space.

Proof The proof is similar to the proof of Theorem 3.7 (Liang and Yan 2014). O

Note 1 From Theorems 3.3 and 3.9, we have

W=V A6TBHY= V A V ASC)
U By=A AeA U Ba=A AeA r‘lrcasz aell
AEA AEA ae

=V AV AV V uD.
U By=A 2eA N Co=B, acl’ jeJ pfl(D):Ca
AEA el J

Therefore, we have the following consequence:
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Corollary 3.2 Let <H KXo, T1 ta> be the product space of a family of L-fuzzifying topo-
ael aeclJ
logical spaces {(Xy, T¢) : a € J}. Then P : (]_[ KXo, |1 ‘L’a> — (X}, 1)) is L-fuzzifying
aelt ael
continuous, for all j € J.

Proposition 3.1 Let L be a completely distributive lattice and < IT%, 1 t,\> be the prod-
reA reA
uct space of a family of L-fuzzifying topological spaces {(X,, 1)) | A € A}. Then

(A = (HU) (P,\_I(Ax)>, foralll € A, Ay C Xy
AEA

Proof Suppose that T = [] 75. Then for all . € A, A, C X, we have T (PA_I(AA)) =
LEA

A (PTTA) = A M) = A M)
weP (A v.eP (A P(xy)eA;
A N (A) = Ta(Ay), where x; € P;l(A,\) & P(xy) € Ay, and N, N™ express
€A

7, Ty -neighborhood system in [] X and X;, respectively. O
AEA

%

4 LBFU space

First, we recall the following notations. Suppose x € X, A € X and U,V € P(X x X).
Then we define

(1) A=Ax ={(x,x) | x € X}.
Q) U i={x, y) | (v, x) €U},
B) UV ={(x,y) e X x X |Tz€ X, (x,2) € Vand (z,y) € U}.
® Ulx]=={ye X[ (x,y) €U}
B) UIAl:= UUIxI={ye X |x € A, (x,y) € U}.
xeA

Definition 4.1 A normal function i : P(X x X) —> L (see Remark 4.1 below) is called an
LB-fuzzifying uniformity on &', if the following axioms are satisfied for any 4,V C X x X:

(LBFU1): If A € U, then U(U) = L;

(LBFU2): U(U) <« UU™;

(LBFU3): If h(UY) # L, then UU) <« \/ UV);

VoVCU

(LBFU4): UU) A U(YV) € UUNV);

(LBFUS): If h(Uf) # L and U C V, then UU) < UV).
The pair (X, Y) is called an LBFU space.

Remark 4.1 Let (X, 1) be an LBFU space.

(1) Since 4 is normal, then there exists / € X x X such that (/) = T. From (LBFUS)
we have U(X x X) =T.

(2) From (LBFU1), if 4(Uf) # L, then A C U.

(3) If £ = [0, 1], then the LB-fuzzifying uniformity coincides with the fuzzifying uniformity
due to Ying Ying (1993b).
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(4) If £ = {L, T}, then we obtain the diagonal uniformity (Kotzé 1999, Chapter 8).

Example 4.1 Let X = {a, b} be a finite set. Define a map {4 : P(X x X) —> L, where
L=L(X CS,NUT,L°),as follows:

T, if AcCu,

1, otherwise.

) = {

Then (X, Y1) is an LBFU space.

Example 4.2 Let X be a finite set. Define a map i : P(X x X) —> [0, 1], as follows:

1, if U=Xx X,

G = 0.5, if ACU#X XX,
0.4, if A=U,
0, Otherwise.

Then (X, Y1) is an LBFU space.
Note that in the unit interval (0, 1], the way below relation becomes the strictly-less-than
relation.

Note 2 Extensions of standard mathematical notions abound, and the value of any resulting
theory should be judged by the strength of its link with firmly established theories. The
following proposition gives the link between the concept of LBFU space and the diagonal
uniformity (1999, Definition 1.1.1, Chapter 8). The later element is arguably the most impor-
tant concept in the study of uniformities. Thus, a comprehensive research of LBFU spaces
is important for future work in the area of canonical examples in lattice-valued topology.

Proposition 4.1 Let (X, ) be an LBFU space and suppose that L is S-compact. Then for
eacha € L — {1}, Uy = {U : UU) > a} is the diagonal uniformity.

Proof Since i is normal, then there exists I/ € X x X such that U@lf) = T > «. Hence
U € Uy and Uy # ¢. Also, suppose ¢ € L. Then U(¢p) > «. So U(¢p) # L. Hence A C ¢,
a contradiction. Therefore ¢ ¢ i1,

(DU1): Suppose U € $Uy. Then U(U) > o or L) # L. Hence from (LBFU1) we have
ACU.

(DU2): Supposef € iy. Then () > . From (LBFU2), we have o < {(U) < UWU™).
Hence o < U(U) < UU Y ortd™! € Y.

(DU3): SupposeUd € . Then () # L andby (LBFU3) wehave U(U) < \/ U(V),

VoVu
YV C X x X.Hence UU) < \/ UV). Since L is S-compact, then there exists V, €
VoVvcu

P(X x X) such that V, oV, € U and U(U) < U(V,). Therefore, U(V,) > o and V, € L.

(DU4): Suppose that U,V € . Then UU) A U(V) > «. From (LBFU4) we have
UU) AUV) < U NY) which implies o < UU) AUYV) < WU NV). Henced NV € Uy
(DUS): Suppose U,V € P(X x X) are such that i/ € i, and & < V. Then, from
(LBFUS), 4(U) < (V). Thus, a < UU) < (V). Therefore U(V) > ¢ andV € U,. O

Definition 4.2 Let (X, &) be an LBFU space, and let B : P(X x X) —> L be a normal

function such that B(U) K UU) forany Y € X x X and UU) < \/ B(V). Then B is
vcu
called a base of 4.
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2 Page 100f 22 0O.R.Sayed et al.

Remark 4.2 1t is obvious that if B is a base of i, then UU) = \/ BOV).
yvcu

Lemma 4.1 Let «;, Bi € L and o; K i, for eachi € A. Then
(1) Vo <\ Bis

ieA ieA
(2) If £ is I-compact, then N\ o; < N\ Bi-
ieA ieA

Proof (1) Suppose that for every directed set D C £, \/ 8; < \/ D is true. Then §; < \/ D
ieA
forevery i € A. Since o; < B, then there exists d € D such that o; < d foreachi € A.
Hence \/ «; <d.Weconclude \/ o; < \/ Bi.
ieA ieA ieA
(2) Suppose that for every directed set D C £, /A Bi < \/ Dis true. Since L is I-compact,
ieA
then there exists i, € A such that 8;, < \/ D. Since ¢;, < Bi,, then there exists d € D such
that o;, < d.Hence A o; <d.Weconclude A o; < A Bi. O
ieA ieA ieA

Our next theorem identifies some properties of the bases of an LB-fuzzifying uniformity. It
also gives conditions that ensure that we are in the presence of a base of some LB-fuzzifying
uniformity:

Theorem 4.1 IfB : P(X x X) —> L is a base of some LB-fuzzifying uniformity, then 5
satisfies the following conditions:

(LBBI): If A € U, then BU) = L;

(LBB2): B(U) < \/ BWV);

ycu-!
(LBB3): B(U) <« \/ BW),
VoVU
(LBB4): BU) ABV) < \/ BW).

wacuny
Conversely, if B : P(X x X) —> L satisfies (LBBI1-LBB4) and L is infinitely meet distribu-
tive, then B is a base of some LB-fuzzifying uniformity L on X.

Proof Suppose B is a base of some LB-fuzzifying uniformity £{ on X.
(LBB1): If B(UA) # L, then UU) # L and from (LBFU1), we have A C U.
(LBB2): From (LBFU2) we have B(U) < UU) <« UUH < \V BOW).

veu-1
(LBB3): From (LBFU3) and Lemma 4.1,
BU) < UU) <« V 4y <« V VIB3W < V Vo BOW) =
VoVCU YVoVCU WCVY VoVCU WoWCTVoV
V.  BOW).
WoWCU
Therefore, BU) < \/ BW).

WoW<cCuU
(LBB4): Since B(U) < UU) and B(V) K UV), then from condition (LBFU4) we
deduce BU)ABV) < UUHAUDV) K HUNV) K/ BOW). Thus BU)AB(V) K

wauny
Vo BW).
wauny
Conversely, for any B satisfying (LBB1)-(LBB4), we set s4l) = \/ B(V). We shall

veu
check that it is an LB-fuzzifying uniformity on X'. Since ‘B is normal, then there exists

U C X x X such that B(U) # L. Hence U(U) # L and & is normal.
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(LBFU1): Suppose Lh(U) = \/ B(V) # L. Then,thereexistsV, C U suchthat B(V,) #
vau

L. Thus, from (LBB1), we have A €V, C U.

(LBFU2): From (LBB2) and Lemma 4.1, we have 4U) = \/ BOV) <« \

veu vau ywey-l
BW)= \V BOW) =UU""). Hence UWU) <« UU™).
wauy-!

(LBFU3): Suppose that (L) # L, for any U4 € P(X x X). Then, from (LBB3) and

Lemma 4.1, we have

qu) = VBV <« V vV BWwW) =V BW=< V V B(2)

veu VaU WoWcy WoWcl WoWcu ZCw
= V UOW).Hence UU) € \/ UW).
WoWwcu WoWcU

(LBFU4): Since L is infinitely meet distributive, then from (LBB4) and Lemma 4.1,

UU) AUV) = ( V f/B(Wl)> A ( V BOWy) | = \V (BW1) A BW,))
Wicu WLV WicU, Whrcov
< V VOB =\ BOW) =UUNY).
WINWLCUNY WIWINW, wacuny
Hence UU) A UV) < LU NV).
(LBFUS): Suppose that 4(U) # L and U C V. Then UU) = \ BW) K
wacu
VoV B3
wcu zcw-!
=V B@ < V BE =40 <UO). o
Zcu-! Zcy-l

Subbases of LBFU spaces are also worth considering. They are defined as follows:

Definition 4.3 Let (X, ) be an LBFU space, and let & : P(X x X) —> L be a normal

function. If forany U € X x X, S(U) <« UU) and 6OV (1) = \V NiZ, &),
Nz Ui=U

neN, andf; C X x X is a base of U, then G is said to be a subbase of 4.

Theorem 4.2 Let L be an I-compact completely distributive lattice. Let us suppose that
G : P(X x X) —> L is a normal function that satisfies the following conditions for any
U VX xX:
(LBSI): If A € U, then SU) = L;
(LBS2): 6 <« '\ 6WU);
vay-!
(LBS3): 6L < \/ 6WV).
VoVu
Then G is a subbase of some LB-fuzzifying uniformity on X.

Proof Since & is normal, then &(X x X) = T.Hence 5™ (X x X) = T. Therefore, &7
is normal. Now, it suffices to check (LBB1-LBB4) for s,
(LBB1): Suppose that 3™ (f) # L. Then \/ N, &U;) # L. Therefore,

i=1

ﬂ;’:l U=
thereexists afiniteset A = {1, 2, .., n}andUy € P(XxX) (A € A)suchthat (| Uy = U and
reEA
forany A € A, S(U,) # L.From (LBS1), A C U, foranyr € A.Hence A C [ Uy =U.
rEA

V= £ SN U = (2 U)™" =uU~". Then from (LBS2), we obtain
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sOuw= V AN U< V ALV &
U,

Nizy Ui=U Niz Ui=U vicu!
-V vV L 8(fiy <V Ni=1 60 =
Moy U=t FOelTy M Ny vicu™!
\VARCLRIOOY
yau-!
Therefore, 5V () « \ s w).

vcu-!
(LBB3): Suppose that M; = {V; : V; o V; C U} If f € [[}_; M;, then
VoV = (s f@)o(Miz) f@) == (f@Dof@) =ie VioV) S o Ui =U.
Since L is I-compact, then from (LBS3), we have
ePu= V A e VALV 6w

Niz) Ui=U Niey Ui=U VioVi CU;
= V V N_i&(fin =< V 6Ow).
Nicy U= feli) Mi Voveu
Hence SV Uy <« \/ 6Mw).
YVoVCU

(LBB4): From (LBB2) above, we have

6<“>(u)A6<”>(V)=< Vo AL 68U ) ( Vo Ao 6(v,>
m 1 Z/{—u ﬂ, 1 V =V
=V Vo (A2 8Un) A (N2 600))
Nizi U=t N2y Vi=V
< \ NiZ; W) =60 wUNY)
MNiz; Wh=uUny

< VvV e,
w-lcuny

Therefore SVU) ASODV V) </ &8O W). O
WwWacuny

Proposition 4.2 The following two statements hold true:

(1) IfY; is an LB-fuzzifying uniformity on X foranyi € A, then 4l = \/ 4; is a subbase for
ieA
some LB-fuzzifying uniformity on X.
(2) If L is I-compact and Y; is an LB-fuzzifying uniformity on X for any i € A, then
st = A is an LB-fuzzifying uniformity on X.
ieA

Proof (1) Since 4; is normal for each i € A, then there exists f C X x X such that
U (U) = T. Hence 4) = (V&) @) = Vi) =T
To prove that i1 is a subbase of some LB-fuzzifying uniformity on X, it suffices to check
(LBS1-LBS3) for 4.
(LBS1): Suppose that () = (\/ili) o =V W) # L, U € X x X. Then
ieA ieA
there exists A € A such that i, (/) # L. Hence A C U.

(LBS2): UUf) = (\/%’) W=V ) <V tuh) <V V hy=

ieA ieA ieA ieA ycy-!
V Vs = V <\/ﬂi) V)=V (V). Hence b)) < \/ UW).
vcu-! ieA ycu-1 \ieA vcu-! veu-!
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(LBS3): UWt) = <\/ili> W=V @wu <V V M=V V)=

ieA ieA ieN VoVCU VoVCU ieA

v (vu,»)m: Vo).

VoVCU \ieA VoVCu
Therefore UU) < \/ UWV).
VoVu

Then \/ 4l; is a subbase of some LB-fuzzifying uniformity on X’.

ieA
(2) Since ; is normal for each i € A, then there exists i/ C X x X, U; (U4) = T for each
i € A.Hence UU) = (AU)U) = N W) =T.
To prove that 4l is an LB-fuzzifying uniformity on X, we check (LBFU1)-(LBFUS) for L.
Since L is I-compact, then we can argue as follows.

(LBFU1): Suppose that ${(Uf) = (/\Lli) Uy = N\ W) # L, U € X x X. Then
ieA ieA
foreachi € A, U; () # L. Hence A C U.

(LBFU2): @) = A\ (@) < N\ (@™H) = (/\u,) U =uu"h.

ieA ieA ieA
(LBFU3): Ul = N\ ey < AV W= V AU =
ieA ieA VoVU VoVCU ieA
Vo (ps)or= v s
VoVCU \ieA VoVCU

(LBFU4): U@ A UV) = A W) /}\ V) = /}\ W) AL (V) <L
ieA ie ie
AL UNY) =UUNY).

ieA
(LBFUS5): Suppose Y € V and $k(Uf) # L. Then h@U) = A WLU) < A\ (V) =
i€eA ieA
( /\11i> V) =U).
icA
Therefore ( is an LB-fuzzifying uniformity on X. O

5 L-fuzzifying topological spaces induced by LBFU spaces

This section has two related targets. First we introduce three constructions of L-fuzzifying
topologies induced by an L B-fuzzifying uniformity. This is done in Theorem 5.1, and also
in Theorems 5.2 and 5.3. Then we investigate the main design that is given in Theorem 5.1.
Its behavior when £ belongs to different classes will be investigated afterwards.

Let us begin with the main construction in this section:

Theorem 5.1 Let (X, 1) be an LBFU space, and assume that L is an I-compact infinitely

distributive lattice. Then ty € LT defined as ty(A) = N\ \V U, AC X, isan
xeA U[x]CA

L-fuzzifying topology on X, which is called the L-fuzzifying (uniform) topology of L.

Proof The proof is similar to the proof of Lemma 3.1 (Ying 1993b). O

The next result produces a natural property in relation with coarser L-fuzzifying (uniform)
topologies of a common 4:

Proposition 5.1 Let U1, £r be two LB-fuzzifying uniformities on X. If 4y < o, then Ty, <
Tsl,-
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Proof ty, (A) = A V et < A V ) = 1y, (A).
xeA U[x]CA xeA U[x]CA
Therefore 7y, < 7yy,. o

In the next three theorems we produce other particular expressions for L-fuzzifying (uni-
form) topologies on X generated from certain LB-fuzzifying uniformities.

Theorem 5.2 Let (X, Y) be an LBFU space, and let L be an infinitely distributive lattice.

Then 1:1(11) e LPX) defined as t m(A) \Vi UU), AC X, UC X X X, isan
ULAINUTAl=¢

L-fuzzifying (uniform) topology on X.

Proof (1) Since U[X] = X and U[¢] = ¢, then 7’ (X) = 7" (¢) = T.
(2) Now, set B= (U1 NU)[(A1 N A) DN NU)[AINAL]) € (U1 [AST U LLLAST)N

U LA NU[A]) S (U LATTNULLALT) U (Lol AST N[ AS]).

A At (A = ( vV il(“l)) A vV u(uz))
U LATINU [ A ]=¢ Ur[ASINUL [Az]=0
= \ UU) A ULh))
UL TATINU LA DU LASINUL [A2])=¢
< V @) Ah)) K \/ﬂ(umuz)
B=¢ =¢

< V u(u) = 7 (A1 N A).
=U[(AINA) INU[AIN A2 |=¢
RN (u A,») = V U = V Uw)

jeA c 1) =

P ] eeyale kel
JEA JjeEA

= A \ den = A Ap.
Tyl as] nutaj=¢ Jen
Hence Ti(i) is an L-fuzzifying uniform topology. O

Theorem 5.3 Let (X, L) be an LBFU space and
if A= A if A=
(2)( A= T, i A é, where (A =12 if A ‘{x},
UU(A)), if ¢ #A € P(X), {(x,y) |x, ye A} , otherwise.
Then rL([z ) is an L-fuzzifying (uniform) topology on X.

Proof (1) 7{0(X) = UU(X)) = (X x X) = T,and 77 (@) = T
(2) Since U{ A1) NU{Ap) = U({A; N Ay), then
t7 (AN A T2 (A2) = UU(AD) AU (A)) < SULAL N UA)) = WU AT N A)) =
2)
T4 (A N Ay).

(3) Since U ((A;)) € < UAjp ) then we have
JjeA

A LA < TP (A)) = UUA;)) <<u(u<UA,-> —rf)(UAj).

JeA JEA jeA
Then r;lz) is an L-fuzzifying uniform topology. O

Theorem 5.4 Let L be an S-compact infinitely meet distributive lattice, and let (X, L) be an
LBFU space. Then t;f) € LPX) defined as t (3) (A) = \V o is an L-fuzzifying

ael—{1}, Aety,
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topology, where Ty, is the topology generated by the diagonal uniformity (see Hohle and
Rodabaugh 1999, Theorem 1.2.1, Chapter 8).

Proof (1) Since X', ¢ € 1y, for each & € £ — {L}, then we have 7[’(X) = 7 (¢) = T.
(2) For any A, B € X, we have

r$>(A)Ar;f><B)=( V a) A
ael—{1}, Aety, peLl—{L}, Bauﬂ

= V (@np)
anBel—{Ll}, Aety,, Beruﬂ
< Y, y =t (ANB).

 yeL—{L), AnBery,
(3) For any {A,|A € A} € P(X), we have

3

7 (U A = V o> V a= "V ASf®
rEA ael—{1l}, U Aj €Ty, ael—{1}, Ayety,., reA fel My reA
reA reA
3

=N Va=A V a= A 13 (A

LEA aeM,;, AeA aeL—{L}, Ajety, AEA

where M, ={a e L —{L}| Ay € VA € A} O

In the rest of this section we shall give some results concerning the uniform topology ty(
which was defined in Theorem 5.1. For the other topologies defined in this section, similar
results can be obtained. Firstly we investigate the computation of interiors in case that £ is
an S-compact completely distributive lattice.

Theorem 5.5 Suppose that L is an S-compact completely distributive lattice. Let (X, 1) be
an LB-fuzzifying uniform space and let g be the L-fuzzifying topology of Y. Then for any
xeXand AC X:

Int(AHx) =\ U4@).
A

Ulx]c
Proof The proof is similar to the proof of Theorem 3.2 (Ying 1993b). O

The conditions of the previous theorem allow us to further enhance the knowledge about
the construction in Theorem 5.1:

Theorem 5.6 Let (X, L) be an LBFU space, and let Ty be the fuzzifying topology of . If L
is an S-compact completely distributive lattice, then for any x € X and A C X:

(1) The neighborhood system of x, denoted by M, € LFPX, is given by M (A) =

Vo U).
Ulx]=A
(2) If B is a base of 4, then B (A) = \/ BU) is a base of Ny.
Ulx]=A
(3) If G is a subbase of 8\, then S (A) = \/ &) is a subbase of N,.
U[x]=A

Proof The proof is similar to the proof of Theorem 3.3 (Ying 1993b). O

Our last result in this section concerns the construction in Theorem 5.1 too. But now
we investigate its behavior when £ is a completely distributive lattice with order reversing
involution . Some technical results preceed that result, namely, Theorem 5.7 below.
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Lemma 5.1 Let (X1, 11) and (X3, 12) be two L-fuzzifying topological spaces on i\, x| € X},
xy € Xo. If Lis an S-compact completely distributive lattice, then for any A1 C X1, Ay C X,
we have NL (A1) A N2, (A2) € Nixy iy (A1 X Ad).

Proof ML (ADATE (A) =/ da) A/ UW)= \/ O
Ulxi]=A, Vxal=Az Ulx1]=A1,VIx2]=A2
UV))
< \V HuUuny) < \/ Uy ny)
Ulx1]=A1,VIx2]=Az UMV [x1 IxUNV)[x2]CS AL x A
< \/ HUOWV) = Nxy x0) (A1 X A2). [}

T W IXWIKICA| x A

Lemma5.2 Let (X, 11), and let (Xa, 12) be two L-fuzzifying topological spaces on i, x| €
X1, xp € Xo. If L is an S-compact completely distributive lattice and By, is a base of Ny,
(i =1,2), then By, x,) (A1 X A2) = By (A1) A By, (A) is a base of My xy).-

Proof By, x,) (A1 X A2) = By, (A1) A By, (A2) < My, (A1) Ay, (A2) K Ny oy (A1 X
A»).
In addition,

NayW) =V @ AN, (V) =V ( \ By (A)AB\/V%XQ(B))

UXVW UXVW \ AU

= \/ \/ (%xl (A) A ngz (B)) = \/ (SBxl (A) AN SBXQ (B))
UXVW AxBCUXYV AxBCW

= \/ %(xl,XQ)(A S B) m}
AxBCW

Lemma 5.3 Let (X, ) be an LBFU space, and let Ty be the L-fuzzifying topology on . If
L is an S-compact completely distributive lattice, then for any x,y € X,

%(x,y)(-A x B) = \/ Hw)
Ulx]=AUy]=B,U=U~

is a base of Ny y), where Ny yy is the L-fuzzifying neighborhood system of (x,y) with
respect to Tg( X Ty.

Proof B, (A x B) = \V Uy <\ UU) A \/ U
Ulx]=AUly]=B.U=U"! Ulx]=A Uulyl=s8
= N (A) A Ny (B) < Ny (A x B).

Therefore By ) (A x B) K N,y (A x B).

In addition, for any W C X x X,

NayW) = A Vo (W AM®B) < V(A ANB))
(x,y)eW AxBSW AxBCW

=V (\/il(lfl)/\ \/il(V)>

AxBSW \U[x]=A Viyl=B
= V \ U@ AUO))

AXBCW U[x]xV[yl=AxB
= \ W) AUOV)) K \/  duUny)

Ux]xVIylew Ux]xV[yleWw
< V 4Uny)
UNV)[xIxUNV)[yIEW
< \/ UU) < \ duUnNu=h
Ulx]xU[yleW UNUDH[x]xUNUH[y]lSW
= \/ Ll(Z/{) = %(x,y)(W) < \/ gB()(,)1)(2’7)- O
Ux]xU[y]SW,U=U"] ZCW
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Theorem 5.7 Let (X, ) be an LBFU space, and let Ty be the fuzzifying uniform topology
on . If L is a completely distributive lattice with order reversing involution’, then for any
x,yeX, ACXand M C X x X:
(1) Cloy (D) = A\ EU)';

x¢ULA]

(2) Clrgxry (M)(x,y) = A W)’
(x,y)edoMold

Proof (1) From Theorems 2.3 (6) and 5.6 (1), the proof is similar to the proof of Theorem
3.8 (1) (Ying 1993b).
(2) From Lemma 5.3, the proof is similar to the proof of Theorem 3.8 (2) (Ying 1993b). O

6 LBFU continuity

To conclude the theoretical contribution of this paper, in this section we define and investigate
the concept of LBFU continuity. This notion is formalized as follows:

Definition 6.1 Let (X, i) and (), V) be two LBFU spaces. A function f : (X, ) —>
(¥, V) is called LB-fuzzifying uniformly continuous if and only if (V) << U((f X f Loy,
YV e P x)).

A technical characterization gives an alternative view of the concept above:

Lemma 6.1 Suppose that (X,) and (), V) are two LBFU spaces. Then the function

f (XY — (V,D) is LB-fuzzifying uniformly continuous if and only if ‘U(V) <
\V WU), for each’V € P(Y x V).

(fxpHaney

Proof Suppose that f is LB-fuzzifying uniformly continuous. Then

VW) KU(f x H7TW) < AV 1 (Z) R VAR 1 (7))

US(fx )~ V) (fxHaney
Therefore (V) < Voo u).
(f*xHAHSY
Conversely, (V) « Vo UU) = \V UU) = UW((f x H™HOV)).
(fxHHSy US(fxH='wv)
Hence (V) <K U((f x f Yy~1(V)) and f is LB-fuzzifying uniformly continuous. O

Subbases are helpful for the verification of the axiom of LBFU continuity:

Lemma 6.2 Let (X, ) and (Y, V) be two LBFU spaces and suppose that S is a subbase
of U. Then [ : (X,) — (V,V) is LB-fuzzifying uniformly continuous if and only if
SW) K U(f x /W), foreach v € P(Y x V).

Proof Suppose that f is LB-fuzzifying uniformly continuous. Then U(V) <« U((f X
)71 (V). Since & is a subbase of U, then (V) <« B(V). Hence S(V) < U((fx )~ (V).
Conversely, suppose that G(V) < U((f X f)_1 V)).
TV =Vem=V vV AL eu= \V A 6uU)
Wey WV M| U= izt UiSV
=6V
LU x HHV)
Then B(V) < U(f x )7 V). D
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Another natural property that holds true concerns the composition of LB-fuzzifying uni-
formly continuous functions:

Lemma 6.3 Let (X, L), (), V) and (Z, W) be three LBFU spaces. If f : (X, 1) — (¥, D)
andg : (),0) — (2, 20) are LB-fuzzifying uniformly continuous, then go f : (X, ) —>
(2, 20) is LB-fuzzifying uniformly continuous.

Proof For all W € P(Z x Z), we have (W) < V((g x g)~'(W)) as g is LB-fuzzifying
uniformly continuous. Since f is LB-fuzzifying uniformly continuous, then

V(g x )W) < U(f x HT (g x ' W) =U(((go f) x (go HT V).
Therefore 20(W) <« U(((g o f) x (g o f)™'OWV)). So g o f is LB-fuzzifying uniformly

continuous. O

Theorem 6.1 Let L be an I-compact infinitely distributive lattice, let (X, ) and (Y, V) be
two LBFU spaces, and suppose that f : (X,4) — (,*0) is LB-fuzzifying uniformly
continuous. Then:

(1) f: (X, ty) — (Y, 1) is L-fuzzifying continuous.

(2) f: (&, 'L'S)) — (), rg)) is L-fuzzifying continuous.

(3) If f (X, 80) —> (V, D) is injective, then f : (X, 1) —> (¥, 1)) is L-fuzzifying

continuous.
(4) If f : (X, ) — (¥, D) is surjective, then f : (X, TS)) — (), rg)) is L-fuzzifying
continuous.

Proof D wy(B)= A V BOWV),BCY

yeB V[ylcB
< Vo 8O
xef~1(B) VIfx)IcB
= A V BV)
xef=1B) VIS f~1(B)
A \Vi B((f x H' V)

xef~1B) (fx N~ WD F~1(B)
= A AV ((2))
xef~1(B) UL f~1(B)
=ty (f~1(B)).
Then f : (X, ty) —> (Y, t) is an L-fuzzifying continuous function.
Note that we used the fact that f‘1 VIfx)D = ((f x f)‘1 (V))[x]. In fact,

Vi e fIVIFMD & f(2) € VIF)] & (@), f(x) € V & (2.x) € (f x
HTIW) & z € (f x /)7 W)Ix]. Therefore, if V[f(x)] € B, then f~'(V[f(x)]) =
((f x H~WIxI € £ B).

(2) Since (f x 7'V B = VLTI B)YD € fHVIB)), then by putting
U=(f x )~ (V) we obtain

B =\ B
VBNV B]=¢
= Y, B(V)
FLVIBINVIB)=¢
< V U x H7TY
£ VIBINVIB)=¢
< V UU)

Bl UL~ BOINULF 1 (B)]=¢
1 _
=" B)).
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Therefore f : (X, ri(ll)) — (), rg) ) is an L-fuzzifying continuous function.
(3) If B = ¢, then the result holds. Now, suppose B # ¢. Since f is injective, we have
(f x H7T'UB) = U(f~(B)). Indeed, if x # y we have (x, y) € (f x f)" UB)) &
(fQ). f() € UB) & [, f() € B xye fT1B) & (x.y) € USB).
Therefore Tg)(B) = BVB)) K U(f x 7' VMB))) = UV (f~1B) = 13 (f~(B)).
Hence f : (X, 71(12)) — (), ‘L}g)) is L-fuzzifying continuous.
(4) Suppose that B € tq3,. Then for every y € B, there exists V € U, such that V[y] C B.
Hence U(V) > o and V[y] C B. Since f is a surjective LB-fuzzifying uniformly continuous
function, then V(V) < U((f x )71 (V) and ((f x HHT'ONLFT )] S £71(B), where
x € f71(B) and f(x) = y. Hence (f x f)"'(V) € Uy and ((f x /)T WNLF '] <
f7YB). So, f~1(B) € 1y, . Therefore
w®B= V  as V a =1 (f7'B)

aeL—{Ll}, Berg, ael—{L}, f~1(B)ery,
Hence f : (X, r}f) ) — (Y, tg)) is L-fuzzifying continuous. ]

Theorem 6.2 Let f : X —> Y be a function, and let U be an LB-fuzzifying uniformity on
Y. Then the function $§ : P(X x X) —> L defined by h(U) = BQO\(f x f)UC)) is an
LB-fuzzifying uniformity on X.

Proof $1(X x X) = B \(f x )X x X)) = B(Q?) = T. So, i is a normal function.
Now, we need to prove (LBFU1)-(LBFUS).

(LBFU1): If 4U@) # L, then BQVX\(f x f)U)) # L. So, Ay € YA\(f x /HU).
Hence Ay C U.

(LBFU2): UU) = BO\(f x /HU)) < B\(f x HUNT") = BO\(f x
FH@UH)) = U@, Hence UU) < AU

(LBFU3): Suppose $(if) # L. Then BQV>\(f x f)UC)) # L. Hence, we have
UU) = VBOAS x HU)) < V BO\(f x

V2% )HV)Y\(f % FH(VOSYA\(F X fHUC)

HOYY)
= Uy = VvV U=V um).
(f X FYU)CS(f x FH)(VoV)©) US(VoV)* Vovelu
Therefore U4(U) < \/ (V).

VoVCU

(LBFU4): U@) A U(V) = DA\ (f x HHU)) AV x V)

LB\ x HUN NS x HV))
=B\ x HU)Y U x V)

= BO\((f x HU UVO)))

=D\ x HUNV))) =UdUN V).

(LBFUS): Suppose that () # L and 4/ € V. Then BOA\(f x /HUY)) # L and we
obtain Y*\(f x f)U) S Y2\(f x f)(V°). Therefore, UU) = BQ\(f x fHU)) <
B\ x HVO)) = U(V). Hence (U) < LU(V). Thus £ is an LB-fuzzifying uniformity
on X m}

Theorem 6.3 Let f : X —> Y be a function, and let U be an LB-fuzzifying uniformity on

V. Define M : P(X x X) — L by UU) = \V U(V). Then L is an LB-fuzzifying
(fxH~tocu

uniformity on X. Also, if L is a complete chain, then AL is the smallest LB-fuzzifying uniformity

such that f is LB-fuzzifying uniformly continuous.

Proof If (f x )~ (V) C U, then V € Y2\(f x f)(UC). So,
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\/ VW) < VQ2\(f x fHUC)). On the other hand, if M = Y2\ (f x f)U),
(fxpH-tvcu
then (f x f)~'(M) C U and B(M) < \/ U(M). Hence \/ B(V) =

(fxpHtncu (fxH=tocu
B\ (f x f)U)). Therefore, from Theorem 6.2 we obtain that { is an LB-fuzzifying
uniformity on X'. To prove that s the smallest LB-fuzzifying uniformity, we know from the
definition of i that U (V) < U((f x f)_1 ),V e P(Y xY). Since L is a complete chain,
we deduce that (V) < U((f x £)~1(V)).So, f : (X, %) — (¥, V) is LB-fuzzifying uni-
formly continuous. Now, suppose that f : (X, U*) — (¥, V) is LB-fuzzifying uniformly
continuous. Then L) = \ BV) <« \ S x H)HW) < 45 @U),
(fxH=tocu (fxHtocu

YU € P(X x X). m]

Proposition 6.1 Let f : X —> Y be a function, and let U be an LB-fuzzifying uniformity on
V. Then S((f x f)~LU)) = B(V) is a subbase of some LB-fuzzifying uniformity $ on X.

Proof Tt suffices to check (LBS1)-(LBS3) for &. Since U is an LB-fuzzifying uniformity,
then V(Y x V) = T.Hence G((f x ) 'Y x V) =V x)) =GX xX) =T.
Therefore G is normal function.
(LBS1): If 6((f x /H)~'V)) # L, then B(V) # L. So, Ay C V, where Ay =
{(f(x), f(x)) | x € X}.Hence A C (f x f)’l(V) and A = {(x,x) | x € X}.
(LBS2): &((f x /)7 ) =VBU) <« VU ) =6&((f x H'U™) <

Ve(fxH-tu-n

SWV) = V S (V). Therefore S((f x )~ U) « V S(V).
VE((fx )t V= Ht )
LBS3):&((fx H' ) =B < V IV =\ &(fxNH v
VoVCU VoVCUu
< V S((fxH' V)= V S((fx
(fx P voVICS(fx ) W) (Fx L WV)o(fx LIS (fx W)

V). Put (f x )M U) = M and (f x )~L(V) = N, we obtain G(M) <

\/  &(N).Hence G is a subbase of some LB-fuzzifying uniformity £ on X' O
NoNCM

7 Conclusion

Uniformity is an important concept in point-set topology. It is close to the standard notion
of topology thus it constitutes a convenient tool for the investigation of this structure. The
concept of way below relation had never been connected with the structure of uniform spaces,
although both have appeared separately in the literature. Our research has shown that these
two concepts can be linked in an efficient manner. This connection produces noteworthy
fundamental results, therefore we can safely claim that the new model deserves further
consideration.

Technically speaking, the present work defines LBFU spaces. Some of their properties are
investigated in terms of bases and subbases in Theorems 4.1 and 4.2. Furthermore, explicit
relations between the notions of LBFU space and L-fuzzifying topological space are shown
in Theorems 5.1, 5.2, 5.3 and 5.4. Also, some properties of closure and interior are given in
Theorems 5.5, 5.6 and 5.7.

Additionally, we believe that it would be interesting to extend this approach to other struc-
tures such as proximity, pre-uniformity, topogenous, syntopogenous, homotopy, et cetera.
We intend to investigate all these issues in future research works.
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Another avenue of discussion concerns evolutionary biology, as central notions in this
field are intrinsically topological (Stadler and Stadler 2004). Classical models of population
genetics and quantitative genetics presuppose a natural framework for studying the evolution
of phenotypic adaptation and the process of speciation which is a Euclidean vector space.
In this regard, it is interesting to develop a mathematical framework that contains graphs,
recombination sets, and Euclidean vector spaces as special cases. If phenotypes are organized
according to genetic accessibility, the resulting space lacks a metric and is formalized by an
unfamiliar structure. In future studies we shall investigate if and to what extent, LB-fuzzifying
uniformities serve this purpose. We expect that patterns of phenotypic evolution—such as
punctuation, irreversibility, or modularity—result from the properties of this space. Also by
inspiration from Stadler and Stadler (2004), future studies might focus on the applicability
of LB-fuzzifying uniformity to combinatorial search spaces, fitness landscapes, evolutionary
trajectories, and artificial chemistry.
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