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ABSTRACT, The concopts of fusrifying y-open sets and fuzsifylng y-closed sets are studied
and wome interesting results (Theorems 5.4 and 5.5) are obtained. Also, the concept of fuxsi-
fying y-continuity are introduced and some important charactorisations (Theorem 6.1) are
obtained, Furthermore, some compositions of lurzifying y-continuity and fuesifying continuity
are presented (Theorem 6.2),

1. Introduction. Tn 1001, Ying (7] used the semantic method of continuous valued
logic to propase the so-called fuzzifying topology as a preliminary of the research on bifurzy
topology and elementally develop topology in the theory of fuzzy sets from a completely
different direction, Briefly speaking, a fuszifying topology on a set X assigns each crisp
subset of X to a certain degree of being open, other than being definitely open or not.
Andrijevié [3] introduced the concepts of b-open sets and b-closed sets in general topology.
In [4] Hanafy used the term y-open sets instead of b-open sets and studied the concepts of
T-0pen sets and y-continuity in fuzzy topology. Follow to Hanafy, we use the terms S-tpen
sets and y-continuity. In the present paper the concepts of fuzzifying y-open sets, fuzzifying
v-closed sets and fuzzifying v-neighbourhoods are introduced and some of their properties
are examined. Also, in the framework of fuzzifying topology, the concepts of y-derived sets,
y-closure operation and ~-interior operation are established and some of their properties
are discussed, In the last section, we introduce the concept of fuzzifying y-continuity as a
unary fuzzy predicate and the characterisations of v-continuity in fuzsifying topology are
presented, '

2. Preliminaries. We present the fuzzy logical and corresponding set thearetical
notations |7, 8] since we need them in this paper.

For any formula o, the symbol [i¢] means the truth value of i, where the set of truth
values in the unit interval [0, 1]. We write |= ¢ if [¢] = 1 for any interpretation. The
original formulae of fuzzy logical and corresponding set theoretical notations are:

(1) () o] = afe € [0,1]);
(b) [ A v = min([g], [v]);
(€) [ = ¥] = min(1,1 =[] + []).
(2) If A € F(X), |« € A) = Alx),
(3) If X is the universe of discourse, then [Vae(x))] = JE'EJ‘F“‘”
In addition the following derived formulae are given,
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(1) [~¢] = [ip = 0] =1 = [g];

(2) [e V4] = [~(~ A =4)| = max([], [¥]);

(3) [eAw] = [(@ = ¥) A (¥ = @)

(4) [eA ] = [~ = )] = max(0, [¢] + [¥] - 1);
(6) [eVf] i= [~ = ] = min(1, ] + [¥]);

(6) [Bap(z)] i= [-Va—p(x)] = :zglwizﬂé

(7) If A, B € F(X), then
(8) [AC B):= [Ve(z € A+ z € B)] = Inf min(1,1 ~ A(x) + B(x));
(b) [A=B]:=[(Ac By (Bc A);
(¢} [A=B] := [(A € B)a (B C A)),
where F(X) is the family of all fuzzy sets in X,
We do often not distinguish the connectives and their truth value functions and state
strictly our results on formalization as Ying did [7 - 9). For the definitions and results in

fuzzifying topology which are used in the sequel we refer to [7 - 9].
We now give some definitions and results which are useful in the rest of the present paper,

Definition 2.1 [7]. Let X be a universe of discourse, © € F (P(X)) satisfy the following
conditions:
(1) 7(X) =1,r(¢) =1
(2) for any A, B,7(ANB) > r{A) A7(B);
(3) for any {Ay: A€ ﬂ}IT{AUA A) = 1}\;{4:.}-
E L

Then 7 is called a fuzzifying topology and (X, 7) is a fuzzifying topological space.

Definition 2.2 [7]. The family of fuzzifying closed sets, denoted by F & F(P(X)), is
defined as follows: A€ F:= X ~ A€ 1, where X ~ A is the complement of A.

Definiton 2.3 (7). Let z € X, The neighbourhood system of z, denoted by N, &
F(P(X)), is defined as follows: No(A4) = LEE r(8).
TE A

Definiton 2.4 (Lemma 5.2 [7]). The closure A of A is defined as A(z) = 1- Ny (X ~ A).
In Theorem 5.3 [7], Ying proved that the closure™: P(X) — F(X) is a fuszifying closure

operator (see Definition 5.3 [7]) because its extension ™ F(X)— .F{X],j. = |J txi:..i €
¥ = wE(ld|

F(X), where A, = {z : A(z) 2 a} is the a-cut of A and ad(z) = o A A(z) satisfies the

following Kuratowski closure axioms:

(1) Ed=a;

(2) for any JEF{X}.%EE 3: y
(3) for myj.ﬁef{m,piﬁua‘ =AU B;
(4) for any A € F(X), = (4) C A.

Definition 2.5 [8]. For any A C X, the fuzzy set of interior points of A is called the
interior of A, and given as follows: A°(x) = N,(A).

From Lemma 3.1 [7] and the definitions of N:(A) and A® we have 7(A) = !ig A®(z),

Definition 2.6 [5]. Forany A € F(X) |= (A)* = X ~ (X ~ A).
Lemma 2.1 [6], If [AC B =1, then (1) |= A C B; (2) |- (A)°  (B)".
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Lemma 2.2 [5]. Let (X,r) bea fund.fylustngubglmlm Forany A, B,
(1) = X° = X; (2) = (A)° € & (3) b= (AN B)" = (A n(B)° (4) |= (A)*° 2 (A).

Lemma 2.3 [5]. Let (X, 7) be a fuzzifying topological space. For any A € F(X),
(1) X ~ (AP = (X ~4)° (2) J-x—-tf}-“s(xwvir"-

Lemma 2.4 [2,5]. If [AC B8] =1, then (1) |= (A)°~ C (B)°~; (2) = (A)° € (B)~°.

Definition 2.7. Let (X, 7) be a fuzifying topological space.

(1) The family of fuzzifying a-open (6] (resp. semi-open [5], pre-open (2], A-open [1])
sets, denoted by a7 (resp. St, Pr,fr) € F(P(X)), is defined as follows:

A € ar (resp. S7,Pr,f7) :=Va(z € A = z € A°° (resp. A°~, A", A7),

(2) The family of fuzzifying a-closed [6] (resp. semi-closed [5], pre-closed [2], B-closed
[1]) sets, denoted by oF (resp, SF, PF,3F) € F(P(X)), is defined as follows:
A € aF (resp. SF,PF,3F) = X ~ A € ar (resp. St, Pr, ).

Definition 2.8 [9]. Let (X,7),(Y,U) be two fuszifying topological spaces. A unary
fuzzy predicate €' € F(YX), called fuzzifying continuity, is given as follows:

C(f) = VYu(u € U - f~'(u) € 7).

3. Fuzzifying y-open sets

Definition 3.1. Let (X,7) be a fuzzifying topological space.
(1) The family of fuzzifying y-open sets, denoted by 7 € F(P(X)), is defined as follows:

A€yri=Ve(ze A ze A" UA™)
(2) The family of fuzzifying y-closed sets, denoted by vF & F(P(X)), is defined as
: A€y i=X~Acqr
Theorem 3.1. Let (X, 7) be a fuzzifying topological space. Then
(1) yr(X) = 1,97(p) = 1; ' _
(2) for any {Ay 1 A€ A}, yr( L) Ay) 2 -/_g_'rfﬂdx)-
AEA he

Proof. The proof of (1) is straightforward, y
(2) From Lemma 2.4,

fuﬂ;‘;(UA;) and |= A7° € UM)
AEA €A
So,

()t () () )

= Ear‘g{a i ((.\lﬁjﬁ. '4"") (x), (:.Léj;,, a‘h) tz:')
2 fnf inf max(A{"(2), 47°(2)) = A\ vr(Ay).
AEA
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Theorem 3.2, Let (X, 7) be a fuzzifying topological space. Then
(1) v F(X) = 1,4F(¢) = 1; (2) TF[JQ-‘E Ax) = ,kQﬂF[A“}‘
Proof. From Theorem 3.1 the proof is obtained,

Theorem 3.3, Let (X, 1) be a fuzzifying topological space. Then
mtﬁ(ﬁ] Fﬁ::w. (b) }= ar € Pr; (c) f=ar € 87 (d) |= 87 C 97} (e) | Pr C 4
"F'l'

(2) (@) k= F € aF; (b) = aF C PF; (c) = oF C 8§F; (d) = §F C +F; (o)
b= PF CAF; (f) l=oF C 8F.

Proof. Fram the properties of the fuzzifying interior and the fuzzifying closure operations
and from Theorem 2.2 (3) [8] we have

(1) (@) [AET] =[ACA°| <[AC A" ]| = [d € ar],
(b)[Acar]=[AC A | <[AC A= [Ae Pr]
(c) [A€ar]=[AC A < [AC A =[A € S7).
(d) y(4) = inf max(A°~(z), A™°(2)) = inf A™%(z) = Pr(A),
(@) yr(A) = Jnf max(A4°(z), A=%(z)) > Inf A" () = St(A),
(F) yr(A) = Inf max(A°~(z), A=%(2)) < Inf A7~ (2) = Br{4),
(2) The proof is obtained from (1).

Remark 3.1, In crisp setting, i.e., in case that the underlying fuzzifying topology is
the ordinary topology, one can have

(l)FAerABeyr—a AnBerr; Q) AcarABeyr -+ ANBEqT.

But these statements may not be true in fuzzifying topology as illustrated by the following
counterexample:

Counterexample 3.1. Let X = {a,b ¢} and let 7 be a fuzzifying topology on X
defined as follows: 7(X) = 7(¢) = 7({a}) = r({a,e}) = 1,7({}) = *{{a,b}) = 0 and

ri{e}) = r{{bje}) = & From the definitions of the interior and the closure nfa subset of X
a.nd the interior nnr:: tha closure of a fuzzy subset of X we have r({h, ¢}) = —, n-rl:{b,-:r}} =
577 b)) = £ and yr({b}) = 0.
Theorem 3.4. FAEYF AY2(ze A" NA” w2z A).
Proof,

[Ve(z € A NA" sz d)|=|Ve(ze X ~A s z2€(X~(A°NA))

. =Vr(reX~A—2ze((X~A7°)U(X ~A4))]
=[Va(ze X ~ A2 € ((X~A)" U(X~A)°)
=[X ~ A €yr]=|A €F]

Theorem 3.5, = AcyreVr(re A—3IB(BeyrAze BC A)),
Proof. Vo(z € A = 3B(B € yr Az € B C A)) =nlgi 'n:g wr(B), First, we have
xE A
iﬂi m;gd Y7{B) 2 4r(A). On the other hand, let B, = {B: 2z € B C A}. Then, for any
A TE
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fe [I Bz, we have UA.ﬁm} = A and furthermore y7(A) = 77( U J(@)) 2 inf yr(f(x)).
Hanﬂa. ‘rrid} 2 supje UL inf yr(/(z)) = inf Py yr(B).

4. Fuzzifying ~-neighbourhood structure.
Definition 4.1, Let * € X. The y-neighbourhood system of @, denoted by yN; €
F(P(X)), is defined as YN, (A) = sup ~7(B).
zEBCA
Theorem 4.1. = A€ yr & Va(zr € A - IB(B e 7N A B C A)).

Proof. By Theorem 3.5 we have
[Vz(z € A~ IB(B € YN, A B C A))] = inf m.'rp YN (B) = jﬂf ;1!1;5 .:EEBTT{G}
= mf uug ¥r(C) = [A € y7].
*EA geC
Corollary 4.1. infeeqyNa(A) = y7(A).

Theorem 4.2. The mapping 4N : X — FN¥(P(X)), & ~+ vN,, where FY¥(P(X)) is the
set, of all normal fuzgy subsets of P(X), has the following properties:

(1) FAEyN, 2z € A;

(2) EAC B - (A€ yN; + BeyN,);

(3) = A€ N, —+VH(H € YN, AH € AAYy(y € H - H € 1N,)).

Proof. (1) If [A € 4N;| = n}t}gnr{ﬂ] > 1), then there exists H. such that € H, C A.
TE

Now, we have [x € A] = 1. Therefore, [A € ¥N;) < |z € A) holds always.
(2) Immediate.
(8) [BH(H € 1N AH © AAVy(y € H ~ H € yN,)] = sup (yNa(H) A Ny (H)) =

P, (YNu(H) Ayr(H)) = sup a7(H) 2 suPsenca yr(H) = [A € 7N].

5. Fuzzifying v-derived sets, fuszifying y-closure, fuzzifying +-interior.

Definition 8.1, Let (X, 7) be a fuzzifying topological space. The fuzzifying y-derived
set 7 — d(A) of A is defined as follows;

TdA)@) = et (= Na(B).

(]

Lemma 5.1. 7 —d(A)(z) = 1 — yN{((X ~ A) U {x}).
Proof,

yod(A)z) =1~  sup  AN(B) =1-yN:((X ~ A) U {2}).
Br(A-{a})=0

Theorem 5.1. Forany A, AevF o y—d(A)C A

Proof,
[y—d(A) C Al = ipf (1-v-d(A)(x) = Jof ANe((X ~A)U{z})
= uei "Ap&J:EiPFA*ATT{H} = y1r(X ~ A) = 1F(A).
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Definition 5.2. Let (X, 7) be a fuzifying topalogical space. The v-closure of A is
defined as follows; 4 — el(A)(z) = ‘igf‘uil — v F(B)).

Theorem 5.2, For any =, A,

(1) 7= el(A)(z) =1 - YN (X ~ A);
(2) =y —elg) = ¢;

(3) ATy - cl(A).

Proof. (1) & — cl(A)(z) = uiﬁg,q“ = 1F(B)) =
sup Y7(X ~ B) =1 - yNz(X ~ A).
sEX~BCX~A
(2) 7 — el(@)(x) = 1 = YN (X ~ ) = 0.
(3) It is clear that if = # A, then YNo(A) = 0. If 2 € A, then y—el(A)(z) = 1 =N (X ~
A)=1. Then [A C 7 —cl(4)] =1.

Lemma 5.2. Forany A€ P(X)and B € F(X),[BC Al = [BuAC A

Theorem 5.3. For any r, A,

(1) Fy—d(d)=y-d(A)u 4,

(2) Freqy—ellA) e YB(BeyN, -+ AnB # ¢);
(3) FA=y—ecl{d) & Ac+F.

Proaf. (1) Applying Lemma 5.1 and Theorem 5.2 (3) we have ¢ € v — d(A) U A =
max(l = YN ((X ~ A) U {z}), A(z)) = v — el(A)(z).

(2) VB(B € Ny — AN B # ¢)] = pdll (1= Ne(B)) = 1 = INz(X ~ 4) = [z €
¥ — el(A)].

(3) Since [A C AU~y —d(A)| = 1, from Theorem 5.1, Lemma 5.2 and (1) above we have

=Ex"—l«g£ﬁ'~4“ ~ K B))=11 ~

SF(A) =y —d(A) C A] = [y~ d(A)UAC A] = |y - d(A) U A C AJA[A C 5 - d{A) U A]
=[y—d(A)UA = A] = |y - cl(A) = A).

Theorem 5.4, For any A, B, |= By — cl(A) —» B € «F,

Proof. If [A € B| = 0, then [B=y — el(A)] = 0. Now, we suppose that [A € B] = 1, then
we have [B C 5 —cl(4)] = 1 - sup YNa(X ~ A),[y~cl(A) C B| = _inf E-rl\r,{x ~ A).
e = P

wE
So, [B=y — el(A)] = max(0, inf ANA(X ~A) - sup AN(X ~ A)).
zEX~H 2EH~A

If [B=y — ¢l(A)] > t, then ﬁi':\}fs-yﬂ,[.!{ ~A) > t+ sgp AN (X ~ A), For any
£ xEB~A
reEX~B, sup 7(C)>t+ sup YN:(X ~ A), Le., there exists C, such that z ¢
eECEX~A EEH~A
Cs CX ~Aunnd yr(Cy) > t+ sup yN.(X ~ A). Now we want to prove €. C X ~ B,
sEB~A
If not, then there exists 2’ € B ~ A with ¥’ € .. Hence, sup YN(X ~ A) = 4N (X ~
rER~A
A) 2 vr(C:) > t+ sup yNL(X ~ A). This is a contradiction. Therefore, vF(B) =
zEB~A
(X ~ B) = ,EI;[.:{BTN@EX ~ B) > LA T(CR) > b+ B a7 YNz(X ~ A) > . Since ¢

is arbitrary, it holds that [B=y — cl(A)] < [B € 7F).

Definition 5.3. Let (X,7) be a fuzzifying topological space. For any A C X, the
y-interior of A is given as follows: 5 — int(A)(z) = yN.(A).
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Theorem 5.5. For any z, A and B,

(1) k- Beyr ABC A BCx int(A);

(2) | A= int(A) & Acr;

53] FrzEy—in(A) Gz EANTE (X ~y-dX ~A))
) Ey—int(A) =X ~q9-c(X ~ A);

(6) = B=y —int{A) = B € 7.

Proof. (1) 1§ B ¢ A, then [B €17 AB C Al = 0. If B C A, then [B C v — int(A)] =
inf 4~ int(4)(2) = inf 1N.(4) 2 inf YN(B) = y7(B) = [B 77 ABC Al

(2) [A = 5 - int(4)] = m*nfnllgi'r T iﬂﬂ-‘mﬁ}-ﬁiﬁaﬂ -7 — int(A)(z)) = }ELT -
int(A)(z) = inf YNu(4) = y7(4) = [A € y7].

(B) Hz ¢ A then [rey—int(A)] =0=[zeArzE (X ~y-d(X ~A)) Ifze 4,
then [z €9 —d(X ~ A)] =1 - 4N (AU {2}) = 1 — yN(A) = 1 — v — int(A)(z), so that
[te ANz E (X ~y=d(X ~ A))] = [z € 4 — int(A)).

(4) Tt follows from Theorem 5.2(1). _

(5) From (4) and Theorem 5.4, we have (B2~ — int(A)] = [X ~ B2y - cl(X ~ A)] <
(X ~ B e~F]=(B €]

6. Fuszzifying y-continuous functions.

Definition 6.1. Let (X, ), (Y,U/) be two fuzzifying topological spaces. A unary fuzay
predicate yC € F(YX), called fuzzy ~-continuity, is given as

YC(f) i=Yulu € U = 7 (u) € 47).

Definition 6.2, Let (X, 1), (Y, ) be two fuzzifying topological spaces. For any [ € YX,
we define the unary fuzzy predicates v; € F(YX) where j = 1,2,... |5 as follows:

(1) m(f) :=VB(B € Fy — [~Y(B) € vFx), where Fy is the family of closed subsets of
Y and vFx is the family of y-closed subsets of X;

(2) va(f) = VaYulu € Nyy — f~'(u) € yN,), where N is the neighbourhood system
of ¥ and 4N is the y-neighbourhood system of X;

(3) valf) = Ya¥ulu € Ny — Ju(f(v) € u— v e yN:));

(4) va(f) = VA(fy — elx (A)) € ely (f(A))); r

(8) 1o(f) :=VB(y — clx (f~1(B)) € [~ (cly (B))).

Theorem 6,1. = [ €4C ¢ [ € 7,5 =1,2, 5.

Proof. (1) We prove that |= f € 4C' & f € 7.

fenl= Fﬁiﬁ.}"] min(1,1 = Fy (F) + vFx (f7'(F)))

= plnf min(l,1=U(Y = F) +97(X ~ f7/(F)))
= pinf, min(L,1 = U(Y — F) 4 qr(¥ - F))

=, Juf min(1,1-U(u) +ar(f " (u)))

= [.f E ‘?C]+

(2) We prove that |= f € 4C & f € 4. First, we prove that vo(f) > 4C(f). If
Ny(e)(u) < yNe(f~}(u)), then the result holds. Suppose Ny(u) > ¥No(f~(u)). It is
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clear that if f(x) € ACuthenz e f~Y(A) C £~ (u). Then, we have

Niwy(uw) = yNo(f M u)) = sup U(A) -  sup  47(B)
f(2)EACH 2EBC -1 (u)

< sup U(A) - sup Ar(f~Y(A))
J(2)EAGH fiz)eACH

< sup (U(A)=4r(f(A).
J{z)€ACu

S0, 1= Ny (u) + YN (f 7 (w)) = fainh o (1= UlA) & y7(£=1(A))).and

g A e M I P i e o

2 dak mindl, 1 = Uv) +47(f (1)) = +C(f).

Hence, nf inf min(1, 1 = Nyo(s) + 7Ne(/ () = [f € 5C)

Secondly, we prove that ¥C(f) > 7a(f). From Corollary 4.1, we have

1C() = Juf,_ min(1, 1= UG + (£~ )

= ek L1 =lat Nj )+ lnf N )
-1
= ol min(l, 1= nf  Npy(u) + inf  aNe(f7 (u))
2 Jﬁfruér”?ﬂ; min(1, 1 = Nya) (u) + ¥N=(f (1) = 1(f).
(3) We prove that = f € w 4 [ € 43, Since 7N is monotonous (Theorem 4.2 (2)), it

S i PO iR M) =TSO

(/) = inf i!lgfﬂ_m{h 1= Ny(ay(u) s . ﬂ;“rmi”}?

= Jnf dnf min(1,1 - Nyg(u) + 9Na(f 7 (4)) = 7 (f)!
(4) We prove that |= f € 74 «+ [ € 7.
Firstly, for each B € P(Y'), there exists A € P(X) such that f~'(B) = A and f(4) C B.
80, [v ~ elx (f~1(B)) € S~ (ely(B))] = [y — clx (4) € £~ (ely (f(A)].

om) = il - dx(fNB) S fNe(B) 2l by - edx(4) ©

£ ety (F(A))) = (f). _
Secondly, for each A € P(X), there exists B € P(Y) such that f(A) = B and f~1(B) 2
A. Hence, [y —el(f~"(B)) C f~Mely (B))] < [y — clx (A) € f~(ely (f(A))]. Thus,

W)=, dnf by = clx(4) € f~ el (F(AN)]
£ u,,w*;}g_mh ~clx(f7(B)) € [~ (ely(B))]

2 dut [y~ clx(£71(B)) C £~ (cly(B))) = (/).
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(5) We prove that |= f € v « f € /2. From Theorem 5.2 (1) we have

() = VB(y — clx (f(B)) € £~ (cly (B)))
= nf  inf min(1,1 - (1= WNa(X ~ £7(B)) +1 = Nyca(Y ~ B)

BePLY
- Bégf l“;. min(1,1 = Ny (¥ ~ B) + 7No (X ~ i (B)))
= Jnf inf min(1,1 = Nye(w) + AN (1)) = 2())-

Theorem 6.2, Let (X, ), (Y,U), (Z, V) be three fuzzifying topological spaces. For any
feYX geZ¥, (1) E4C(f) = (Cla) = ¥Clge 1)); (2) = Clg) = (vC(f) = ¥Cla e f))-

Proof. (1) We need to prove that [vC'(f)] < [Clg) = ~Clg e f)]. 1 [C(g)] < [vClg o f)],
then the result holds. If [C(g)] > [vC(g o f)], then

[C9)] - ¥Clg e )]

= .'H juﬂu[l A= V() +Ulg ) - B }min{l. 1= V{v)+ar(go £ (v)

=l -1 - =1
s.ﬁﬂ{ﬂ{r (v)) —==r(ge f) (u}}ﬂugg{pﬂtmul r(f = (u)).

Tﬁmhre. we obtain

[C(g)] =+ [+C(g 0 £)] = min(1,1 = [C(g)] + [vClg = 1)])
> Jnfmin(l,1- U + r(f M) = +C(f).

(2) Since the conjunction A is commutative, from (1) above one can deduce that
[C(g) =+ (vC(f) =+ 1C(g e )] = [HClghA1C(f)A Clg o f))] =
[F(yCUACIg) A ~Clg e )] = YC(S) = (Clg) =+ C(ge )] = 1.

REFERENCES

1. K. M. Abd El-Hakeim, F. M. Zeyada and O. B Sayed, J-continuty and D{e, 3)-continuty in fussifying
J. Fuzsy Math,, 7 (3)(1900), 547-558.
. M. Abd El-Hakeim, F M. Zeynda and O, R Sayed, Pre-continuity and D(u,,p} ~continuity in fussi-
M topology, Fuzsy Sets and Systems, 119 (2001), 459-471,
B Andrijevid, On b-open sets, Mat, Vesnik, 48 (1064), 59-64,
. 1. M. Hanafy, Fuszy y-open sets and fussy y-continuity, J, Fuzsy Math., 7(2)(1990), 416-430.
o F.H Khedr, F. M. Zeyada and 0. R Sayed, Fuzzy .llmi*mlinmbp nmi fuzsy eaemi-continuity in
fussifying topology, J. Fuzzy Math., 7{1){1009), 105-124.
. F. H. Khedr, F, M. Zeyadn and U i Sayed, a-continuidy and eo-continuity in fuzsifiing topology,
m and Systems, 118 {2000), 326-337,
T Ying, A new approach for fuzssy topology (1), Fuzay Seta and Systems, 38 (1001}, 302-321,
8. Mingsheng Ying, A new approach for fuzsy topology (1), Fussy Sets and Systems, 47 (1062), 221-232.
. Mingahong Ying, A new approach for fussy topolagy (111), Puzsy Sets and Systems, 85 (1003), 183-207.
10, L. A, Zadeh, Fuszy aets,, Inform, and Control, 8 (1066]), 338-353,

""5
'5

DEPARTMENT OF MATHEMATICN YATBUSIHRO NATIONAL CoLLeeE oF TECHNOLOGY, YATSUSHIRG,
Kumamoma, BG6-BE01, Japan
E-mail addross: poirilas yitsushiro-netae jp

DEPARTMENT GF MATHEMATIOS, FAoULTY oF Sciences, Assior UsivensiTy, Assiur 71616, EGyer
E-rnutl address: roshed(7@yshoo.com




