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Abstract: In this article, we introduce two new rough set models based on the concept of double

fuzzy relations. These models are called optimistic and pessimistic multi-granulation double fuzzy

rough sets. We discuss their properties and explore the relationship between these new models and

double fuzzy rough sets. Our study focuses on the lower and upper approximations of these models,

which generalize the conventional rough set model. In addition, we suggest that the development of

the multi-granulation double fuzzy rough set model is significant for the generalization of the rough

set model.

Keywords: double fuzzy rough set; optimistic multi-granulation double fuzzy rough set; pessimistic

multi-granulation double fuzzy rough set
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1. Introduction and Preliminaries

The theory of rough sets, introduced by Pawlak [1,2], has become a well-established
mathematical tool for studying uncertainty in a variety of applications and intelligent sys-
tems that deal with incomplete or inadequate information. The equivalence classes defined
by the equivalence relation are used to determine the lower and upper approximations
to approximate undefinable sets. Rough sets have been widely applied in various fields,
including granular computing, graph theory, algebraic systems, partially ordered sets,
medical diagnosis, data mining, and conflict analysis, among others [3–8].

The study of set theory involves a significant exploration of the generalization and
extension of the rough set model. Qian et al. [9,10] introduced the multi-granulation rough
set model, which is defined by a family of equivalence relations, as opposed to Pawlak’s
rough set model, which is defined by only one equivalence relation. The multi-granulation
rough set model includes two types: the optimistic and pessimistic multi-granulation rough
sets. The term “optimistic” is used to refer to the idea that in multi-independent granular
structures, at least one granular structure must satisfy the inclusion relation between the
equivalence class and the undefinable set. Meanwhile, “pessimistic” denotes the idea that
each granular structure must satisfy the inclusion relation between the equivalence class
and the undefinable set. There have been several studies exploring multi-granulation rough
set models based on various types of relations, leading to a number of intriguing ideas,
such as those presented in [11–18].

On the other hand, one of these trends is to combine other theories dealing with uncer-
tain knowledge, such as fuzzy set and rough set theory. The fuzzy set theory addresses po-
tential uncertainties associated with erroneous cases, perceptions, and preferences, whereas
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approximate sets identify uncertainty caused by the ambiguity of information. As both
types of uncertainty can arise in real-world problems, there have been numerous proposed
approaches to combining fuzzy set theory with approximation set theory. Dubois and Prade
introduced rough fuzzy sets and fuzzy rough sets based on approximations of fuzzy sets
by crisp approximation spaces, as seen in [19,20]. Using the same framework, researchers
have developed an approach to enhance coarse fuzzy rough sets and rough fuzzy sets, as
demonstrated in [21–26].

Atanassov [27] proposed the concept of intuitionistic fuzzy sets, which provide mem-
bership and non-membership degrees for an element. This allows for more flexibility and
efficiency when dealing with incomplete or inaccurate information compared with Zadeh’s
fuzzy sets [28].

The use of the term “intuitionistic” in relation to complete lattice L has generated some
debate regarding its applicability. However, Garcia and Rodabaugh [29] definitively settled
these doubts by demonstrating that this term is not appropriate for mathematics and its
applications. As a result, they have adopted the name “double” for their work in this area.

Inspired and motivated by the recent works [1–30], our aim in this paper is to investi-
gate and enhance the study of multi-granulation double fuzzy approximation spaces by
exploring the double fuzzy upper and lower approximation operators. The framework
focuses on introducing two types of double fuzzy sets using multiple pairs of double fuzzy
relations on U and analyzing their relationship.

Throughout this paper, let U = {x1, x2, ...xn} be a nonempty and finite set of objects
and I = [0, 1]. A fuzzy set is a map from U to I. The set of all fuzzy sets on U is denoted
by IU . R is a fuzzy binary relation on U, i.e., R(x, y) ∈ [0, 1] for any x, y ∈ U. The set of all
fuzzy binary relations on U is denoted by IU×U .

Definition 1 ([30]). Let U and V be two arbitrary sets. A double fuzzy relation on U × V is a pair
(R, R∗) of maps R, R∗ : U × V → I such that R(x, y) ≤ 1 − R∗(x, y) for all (x, y) ∈ U × V. If
R, R∗ : U × U → I, then (R, R∗) is called a double fuzzy relation on U. R(x, y) (resp. R∗(x, y)),
referred to as the degree of relation (resp. non-relation) between x and y.

Definition 2 ([30]). Let U be an arbitrary universal set and (R, R∗) a double fuzzy relation on U.

Then, for each fuzzy set λ on U, the pairs (RRλ,R∗
R∗λ), (RRλ,R

∗
R∗λ) of maps RRλ,R∗

R∗λ,RRλ,

R
∗
R∗λ : U → I are called double fuzzy lower approximation and double fuzzy upper approximation

of a fuzzy set λ, respectively, and are defined as follows: For all x ∈ U,

(RRλ)(x) =
∧

y∈U

((1 − R(x, y)) ∨ λ(y)), (R∗
R∗λ)(x) =

∨

y∈U

((1 − R∗(x, y)) ∧ (1 − λ(y)))

(RRλ)(x) =
∨

y∈U

(R(x, y) ∧ λ(y)), (R
∗
R∗λ)(x) =

∧

y∈U

(R∗(x, y) ∨ (1 − λ(y))).

The quaternary (RRλ,R∗
R∗λ,RRλ,R

∗
R∗λ) is called double fuzzy rough set of λ. The pairs

(RR,R∗
R∗), (RR,R

∗
R∗) of operators RR,R∗

R∗ ,RR,R
∗
R∗ : IU → IU are called double fuzzy

lower approximation and double fuzzy upper approximation operators, respectively.

Definition 3 ([30]). For all x, y ∈ U, a double fuzzy relation (R, R∗) on U is called as follows:
(1) Double fuzzy reflexive if R(x, x) = 1 and R∗(x, x) = 0.
(2) Double fuzzy transitive if R(x, z) ≥

∨

y∈U(R(x, y) ∧ R(y, z)) and R∗(x, z) ≤
∧

y∈U(R∗

(x, y) ∨ R∗(y, z)) ∀z ∈ U.
(3) Double fuzzy symmetric if R(x, y) = R(y, x) and R∗(x, y) = R∗(y, x).

2. Optimistic Multi-Granulation Double Fuzzy Rough Sets

In this section, we provide some concepts along with an example and discuss the
optimistic multi-granulation double fuzzy rough sets based on multiple double fuzzy
relations.
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Definition 4. Let U be an arbitrary universal set, and (R1, R∗
1) and (R2, R∗

2) be double fuzzy rela-
tions on U. Then, for each fuzzy set λ on U, the pairs (ORR1+R2

λ,OR∗
R∗

1+R∗
2
λ) and (ORR1+R2

λ,

OR∗
R∗

1+R∗
2
λ) of maps ORR1+R2

λ, OR∗
R∗

1+R∗
2
λ, ORR1+R2

λ, OR∗
R∗

1+R∗
2
λ : U → I are called

optimistic two-granulation double fuzzy lower approximation and optimistic two-granulation double
fuzzy upper approximation of a fuzzy set λ, respectively, and are defined as follows: For all x ∈ U,

(ORR1+R2
λ)(x) =







∧

y∈U

((1 − R1(x, y)) ∨ λ(y))







∨







∧

y∈U

((1 − R2(x, y)) ∨ λ(y))







;

(OR∗
R∗

1+R∗
2
λ)(x) =







∨

y∈U

((1 − R∗
1(x, y)) ∧ 1 − λ(y))







∧







∨

y∈U

((1 − R∗
2(x, y)) ∧ 1 − λ(y))







;

(ORR1+R2
λ)(x) =







∨

y∈U

(R1(x, y) ∧ λ(y))







∧







∨

y∈U

(R2(x, y) ∧ λ(y))







;

(OR∗
R∗

1+R∗
2
λ)(x) =







∧

y∈U

(R∗
1(x, y) ∨ 1 − λ(y))







∨







∧

y∈U

(R∗
2(x, y) ∨ 1 − λ(y))







.

The quaternary (ORR1+R2
λ,OR∗

R∗
1+R∗

2
λ,ORR1+R2

λ,OR∗
R∗

1+R∗
2
λ) is called optimistic two-

granulation double fuzzy rough set of λ (in short, OTGDFRS). The pairs (ORR1+R2
,OR∗

R∗
1+R∗

2
)

and (ORR1+R2
,OR∗

R∗
1+R∗

2
) of operators ORR1+R2

, OR∗
R∗

1+R∗
2
,ORR1+R2

,OR∗
R∗

1+R∗
2

: U →

I are called optimistic two-granulation double fuzzy lower approximation and optimistic two-
granulation double fuzzy upper approximation operators, respectively.

The OTGDFRS approximations are defined by many separate pairs of double fuzzy
relations, whereas the normal double fuzzy rough approximations are represented by those
produced by only one pair of double fuzzy relations, as can be seen from the preceding
definition. In fact, when (R1, R∗

1) = (R2, R∗
2), the OTGDFRS degenerates into a double fuzzy

rough set. Put another way, a double fuzzy rough set model is a subset of the OTGDFRS.

Proposition 1. Let U be an arbitrary universal set, and (R1, R∗
1) and (R2, R∗

2) be double fuzzy
relations on U. For each λ ∈ IU , the following apply:

(1) ORR1+R2
λ = RR1

λ ∨RR2
λ, and OR∗

R∗
1+R∗

2
λ = R∗

R∗
1
λ ∧R∗

R∗
2
λ.

(2) ORR1+R2
λ = RR1

λ ∧RR2
λ, and OR∗

R∗
1+R∗

2
λ = R∗

R∗
1
λ ∨R∗

R∗
2
λ.

Proof. The proofs follow directly from Definitions 2 and 4.

From Definition 4, it is possible to determine the properties of the optimistic multi-
granulation double fuzzy rough sets, as in the following.

Theorem 1. Let U be an arbitrary universal set, and (R1, R∗
1) and (R2, R∗

2) be double fuzzy
relations on U. For each λ ∈ IU , the following apply:

(1) ORR1+R2
λ ≤ 1̃ −OR∗

R∗
1+R∗

2
λ, and ORR1+R2

λ ≥ 1̃ −OR∗
R∗

1+R∗
2
λ.

(2) ORR1+R2
1̃ = 1̃, and OR∗

R∗
1+R∗

2
1̃ = 0̃.

(3) ORR1+R2
0̃ = 0̃, and OR∗

R∗
1+R∗

2
0̃ = 1̃.

(4) ORR1+R2
(1̃ − λ) = 1̃ −ORR1+R2

λ, and OR∗
R∗

1+R∗
2
(1̃ − λ) = 1̃ −OR∗

R∗
1+R∗

2
λ.

(5) ORR1+R2
(1̃ − λ) = 1̃ −ORR1+R2

λ, and OR∗
R∗

1+R∗
2
(1̃ − λ) = 1̃ −OR∗

R∗
1+R∗

2
λ.
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Proof. (1) For each x ∈ U, λ ∈ IU , we have

(

1̃ − (OR∗
R∗

1+R∗
2
λ)

)

(x)

= 1 −













∧

y∈U

(R∗
1(x, y) ∨ 1 − λ(y))







∨







∧

y∈U

(R∗
2(x, y) ∨ 1 − λ(y))













=







1 −







∧

y∈U

(R∗
1(x, y) ∨ 1 − λ(y))













∧







1 −







∧

y∈U

(R∗
2(x, y) ∨ 1 − λ(y))













=







∨

y∈U

1 − {R∗
1(x, y) ∨ 1 − λ(y)}







∧







∨

y∈U

1 − {R∗
2(x, y) ∨ 1 − λ(y)}







=







∨

y∈U

{1 − R∗
1(x, y) ∧ λ(y)}







∧







∨

y∈U

{1 − R∗
2(x, y) ∧ λ(y)}







≥







∨

y∈U

(R1(x, y) ∧ λ(y))







∧







∨

y∈U

(R2(x, y) ∧ λ(y))







= (ORR1+R2
λ)(x) for all x ∈ U.

Hence, ORR1+R2
λ ≤ 1̃ −OR∗

R∗
1+R∗

2
λ. Similarly, ORR1+R2

λ ≥ 1̃ −OR∗
R∗

1+R∗
2
λ.

(2) Since, for each x ∈ U, 1̃(x) = 1, we obtain

(ORR1+R2
1̃)(x) =







∧

y∈U

((1 − R1(x, y)) ∨ 1̃(y))







∨







∧

y∈U

((1 − R2(x, y)) ∨ 1̃(y))







= 1 = 1̃(x),

and

(OR∗
R∗

1+R∗
2
1̃)(x) =







∨

y∈U

((1 − R∗
1(x, y)) ∧ 1 − 1̃(y))







∧







∨

y∈U

((1 − R∗
2(x, y)) ∧ 1 − 1̃(y))







= 0 = 0̃(x).

Therefore, we obtain ORR1+R2
1̃ = 1̃ and OR∗

R∗
1+R∗

2
1̃ = 0̃.

(3) The proof is similar to the proof of (2).
(4) For each x ∈ U, we have
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OR∗
R∗

1+R∗
2
(1̃ − λ)(x)

=







∧

y∈U

(R∗
1(x, y) ∨ 1 − (1 − λ(y)))







∨







∧

y∈U

(R∗
2(x, y) ∨ 1 − (1 − λ(y)))







=







1 −







∨

y∈U

(1 − R∗
1(x, y) ∧ 1 − λ(y))













∨







1 −







∨

y∈U

(1 − R∗
2(x, y) ∧ 1 − λ(y))













= 1 −













∨

y∈U

(1 − R∗
1(x, y) ∧ 1 − λ(y))







∧







∨

y∈U

(1 − R∗
2(x, y) ∧ 1 − λ(y))













= 1 −OR∗
R∗

1+R∗
2
λ(x).

Thus, we obtain OR∗
R∗

1+R∗
2
(1̃ − λ) = 1̃ − OR∗

R∗
1+R∗

2
λ. Similarly, we can prove that

ORR1+R2
(1̃ − λ) = 1̃ −ORR1+R2

λ

(5) The proof is similar to the proof of (4).

Theorem 2. Let U be an arbitrary universal set, and (R1, R∗
1) and (R2, R∗

2) be double fuzzy
relations on U. For each λ, µ ∈ IU , the following apply:

(1) ORR1+R2
(λ ∧ µ) ≤ ORR1+R2

λ ∧ORR1+R2
µ, and

OR∗
R∗

1+R∗
2
(λ ∧ µ) ≥ OR∗

R∗
1+R∗

2
λ ∨OR∗

R∗
1+R∗

2
µ.

(2) ORR1+R2
(λ ∨ µ) ≥ ORR1+R2

λ ∨ORR1+R2
µ, and

OR∗
R∗

1+R∗
2
(λ ∨ µ) ≤ OR∗

R∗
1+R∗

2
λ ∧OR∗

R∗
1+R∗

2
µ.

(3) If λ ≤ µ, then ORR1+R2
λ ≤ ORR1+R2

µ, and OR∗
R∗

1+R∗
2
λ ≥ OR∗

R∗
1+R∗

2
µ.

(4) If λ ≤ µ, then ORR1+R2
λ ≤ ORR1+R2

µ, and OR∗
R∗

1+R∗
2
λ ≥ OR∗

R∗
1+R∗

2
µ.

(5) ORR1+R2
(λ ∨ µ) ≥ ORR1+R2

λ ∨ORR1+R2
µ, and

OR∗
R∗

1+R∗
2
(λ ∨ µ) ≤ OR∗

R∗
1+R∗

2
λ ∧OR∗

R∗
1+R∗

2
µ.

(6) ORR1+R2
(λ ∧ µ) ≤ ORR1+R2

λ ∧ORR1+R2
µ, and

OR∗
R∗

1+R∗
2
(λ ∧ µ) ≥ OR∗

R∗
1+R∗

2
λ ∨OR∗

R∗
1+R∗

2
µ.

Proof. (1) For each x ∈ U and λ, µ ∈ IU , we have

(ORR1+R2
(λ ∧ µ))(x)

=







∧

y∈U

((1 − R1(x, y)) ∨ (λ ∧ µ)(y))







∨







∧

y∈U

((1 − R2(x, y)) ∨ (λ ∧ µ)(y))







=













∧

y∈U

((1 − R1(x, y)) ∨ (λ)(y)







∧







∧

y∈U

((1 − R1(x, y)) ∨ (µ)(y)













∨













∧

y∈U

((1 − R2(x, y)) ∨ (λ)(y)







∧







∧

y∈U

((1 − R2(x, y)) ∨ (µ)(y)
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=
{

(RR1
λ)(x) ∧ (RR1

µ)(x)
}

∨
{

(RR2
λ)(x) ∧ (RR2

µ)(x)
}

≤
{

(RR1
λ)(x)

∨

(RR2
λ)(x)

}

∧
{

(RR1
µ)(x)

∨

(RR2
µ)(x)

}

= (ORR1+R2
λ)(x) ∧ (ORR1+R2

µ)(x).

Also, for each x ∈ U, we have

(OR∗
R∗

1+R∗
2
(λ ∧ µ))(x)

=







∨

y∈U

((1 − R∗
1(x, y)) ∧ 1 − (λ ∧ µ)(y))







∧







∨

y∈U

((1 − R∗
2(x, y)) ∧ 1 − (λ ∧ µ)(y))







=







∨

y∈U

((1 − R∗
1(x, y)) ∧ (1 − λ(y) ∨ 1 − µ(y))







∧







∨

y∈U

((1 − R∗
2(x, y)) ∧ (1 − λ(y) ∨ 1 − µ(y))







=













∨

y∈U

((1 − R∗
1(x, y)) ∧ (1 − λ(y)







∨







∨

y∈U

((1 − R∗
1(x, y)) ∧ (1 − µ(y)













∧













∨

y∈U

((1 − R∗
2(x, y)) ∧ (1 − λ(y)







∨







∨

y∈U

((1 − R∗
2(x, y)) ∧ (1 − µ(y)













=

{

(R∗
R∗

1
λ)(x) ∨ (R∗

R∗
1
µ)(x)

}

∧

{

(R∗
R∗

2
λ)(x) ∨ (R∗

R∗
2
µ)(x)

}

≥

{

(R∗
R∗

1
λ)(x) ∧ (R∗

R∗
2
λ)(x)

}

∨

{

(R∗
R∗

1
µ)(x) ∧ (R∗

R∗
2
µ)(x)

}

= (OR∗
R∗

1+R∗
2
λ)(x) ∨ (OR∗

R∗
1+R∗

2
µ)(x)

(2) The proof is similar to the proof of (1).
(3) If λ ≤ µ, then for all y ∈ U, λ(y) ≤ µ(y), we get

∧

y∈U

(1 − R1(x, y) ∨ λ(y)) ≤
∧

y∈U

(1 − R1(x, y) ∨ µ(y)) (1)

and

∧

y∈U

(1 − R2(x, y) ∨ λ(y)) ≤
∧

y∈U

(1 − R2(x, y) ∨ µ(y)). (2)

From Equations (1) and (2), we have







∧

y∈U

(1 − R1(x, y) ∨ λ(y))







∨







∧

y∈U

(1 − R2(x, y) ∨ λ(y))







≤







∧

y∈U

(1 − R1(x, y) ∨ µ(y))







∨







∧

y∈U

(1 − R2(x, y) ∨ µ(y))







.

Therefore, ORR1+R2
λ ≤ ORR1+R2

µ. Also,

∨

y∈U

(1 − R∗
1(x, y) ∧ 1 − λ(y)) ≥

∨

y∈U

(1 − R∗
1(x, y) ∧ 1 − µ(y)) (3)
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and

∨

y∈U

(1 − R∗
2(x, y) ∧ 1 − λ(y)) ≥

∨

y∈U

(1 − R∗
2(x, y) ∧ 1 − µ(y)). (4)

From Equations (3) and (4), we have







∨

y∈U

(1 − R∗
1(x, y) ∧ 1 − λ(y))







∧







∨

y∈U

(1 − R∗
2(x, y) ∧ 1 − λ(y))







≥







∨

y∈U

(1 − R∗
1(x, y) ∧ 1 − µ(y))







∧







∨

y∈U

(1 − R∗
2(x, y) ∧ 1 − µ(y))







Hence, OR∗
R∗

1+R∗
2
λ ≥ OR∗

R∗
1+R∗

2
µ.

(4) The proof is similar to the proof of (3).
(5) Since λ ≤ λ ∨ µ and µ ≤ λ ∨ µ, from (3), we have

ORR1+R2
λ ≤ ORR1+R2

(λ ∨ µ) and ORR1+R2
µ ≤ ORR1+R2

(λ ∨ µ).

Therefore, ORR1+R2
λ ∨ORR1+R2

µ ≤ ORR1+R2
(λ ∨ µ). Also, we have

OR∗
R∗

1+R∗
2
λ ≥ OR∗

R∗
1+R∗

2
(λ ∨ µ) and OR∗

R∗
1+R∗

2
µ ≥ OR∗

R∗
1+R∗

2
(λ ∨ µ).

This implies that OR∗
R∗

1+R∗
2
λ ∧OR∗

R∗
1+R∗

2
µ ≥ OR∗

R∗
1+R∗

2
(λ ∨ µ).

(6) The proof is similar to the proof of (5).

In the following example, we demonstrate that the converse of Theorem 2 (1) is
not true.

Example 1. Let U = {x, y, z}. Define R1, R∗
1 , R2, R∗

2 : U × U → I as follows:

R1 =





0.2 0.4 0.7
0.9 0.3 0.7
0.6 0.3 0.2



 R∗
1 =





0.1 0.6 0.2
0.0 0.6 0.2
0.3 0.0 0.7





R2 =





0.1 0.5 0.6
0.4 0.3 0.8
0.7 0.2 0.3



 R∗
2 =





0.2 0.3 0.4
0.1 0.6 0.1
0.3 0.6 0.6





Define λ, µ ∈ IU as follows:

λ = {(x, 0.5), (y, 0.7), (z, 0.1)},

µ = {(x, 0.4), (y, 0.2), (z, 0.8)},

λ ∧ µ = {(x, 0.4), (y, 0.2), (z, 0.1)}.

Then,
(ORR1+R2

λ)(x) = 0.4, (ORR1+R2
λ)(y) = 0.3, (ORR1+R2

λ)(z) = 0.5

(ORR1+R2
µ)(x) = 0.6, (ORR1+R2

µ)(y) = 0.6, (ORR1+R2
µ)(z) = 0.4

(ORR1+R2
(λ ∧ µ))(x) = 0.4, (ORR1+R2

(λ ∧ µ))(y) = 0.2, (ORR1+R2
(λ ∧ µ))(z) = 0.4

Therefore, ORR1+R2
(λ ∧ µ) � ORR1+R2

λ ∧ORR1+R2
µ.
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(OR∗
R∗

1+R∗
2
λ)(x) = 0.6, (OR∗

R∗
1+R∗

2
λ)(y) = 0.8, (OR∗

R∗
1+R∗

2
λ)(z) = 0.5

(OR∗
R∗

1+R∗
2
µ)(x) = 0.6, (OR∗

R∗
1+R∗

2
µ)(y) = 0.6, (OR∗

R∗
1+R∗

2
µ)(z) = 0.6

(OR∗
R∗

1+R∗
2
(λ ∧ µ))(x) = 0.7, (OR∗

R∗
1+R∗

2
(λ ∧ µ))(y) = 0.8, (OR∗

R∗
1+R∗

2
(λ ∧ µ))(z) = 0.6.

Therefore, OR∗
R∗

1+R∗
2
(λ ∧ µ) � OR∗

R∗
1+R∗

2
λ ∨OR∗

R∗
1+R∗

2
µ.

Theorem 3. Let (R1, R∗
1) and (R2, R∗

2) be double fuzzy relations on an universal set U. Then, the
following statements are equivalent:

(1) (R1, R∗
1) and (R2, R∗

2) are double fuzzy reflexive relations.

(2) λ ≤ ORR1+R2
λ, and 1̃ − λ ≥ OR∗

R∗
1+R∗

2
λ.

(3) ORR1+R2
λ ≤ λ, and OR∗

R∗
1+R∗

2
λ ≥ 1̃ − λ.

Proof. (1) ⇒ (2) Let (R1, R∗
1) and (R2, R∗

2) be double fuzzy reflexive relations. Then,
Ri(x, x) = 1, and R∗

i (x, x) = 0 for all i ∈ {1, 2} and x ∈ U. Therefore,

λ(x) = 1 ∧ λ(x)

= {R1(x, x) ∧ λ(x)} ∧ {R2(x, x) ∧ λ(x)}

≤







∨

y∈U

(R1(x, y) ∧ λ(y))







∧







∨

y∈U

(R2(x, y) ∧ λ(y))







= ORR1+R2
λ

and

1̃ − λ(x) = 0 ∨ 1̃ − λ(x)

=
{

R∗
1(x, x) ∨ 1̃ − λ(x)

}

∨
{

R∗
2(x, x) ∨ 1̃ − λ(x)

}

≥







∧

y∈U

(R∗
1(x, y) ∨ 1̃ − λ(y))







∨







∧

y∈U

(R∗
2(x, y) ∨ 1̃ − λ(y))







= OR∗
R∗

1+R∗
2
λ.

(2) ⇒ (1) Suppose that there exist some x ∈ U such that Ri(x, x) = ai 6= 1 and R∗
i (x, x) =

bi 6= 0 for all i ∈ {1, 2}; then, we can define fuzzy set δx : U −→ I as

δx(y) =

{

1, if y = x
0, if y 6= x.

Then,

ORR1+R2
δx(x) =







∨

y∈U

(R1(x, y) ∧ δx(y))







∧







∨

y∈U

(R2(x, y) ∧ δx(y))







= R1(x, x) ∧ R2(x, x)

= a1 ∧ a2 6= 1 = δx(x)
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and

OR∗
R∗

1+R∗
2
δx(x) =







∧

y∈U

(R∗
1(x, y) ∨ 1 − δx(y))







∨







∧

y∈U

(R∗
2(x, y) ∨ 1 − δx(y))







= R∗
1(x, x) ∨ R∗

2(x, x)

= b1 ∨ b2 6= 0 = 1 − δx(x).

Therefore δx � ORR1+R2
δx and 1̃ − δx � OR∗

R∗
1+R∗

2
δx. This is a contradiction. Hence,

Ri(x, x) = 1, and R∗
i (x, x) = 0 for all i ∈ {1, 2} and x ∈ U.

(2) ⇔ (3) It is easy to show this from Theorem 1 ((4) and (5)).

Theorem 4. Let (R1, R∗
1) and (R2, R∗

2) be double fuzzy relations on an universal set U. Then, the
following statements are equivalent:

(1) (R1, R∗
1) and (R2, R∗

2) are double fuzzy transitive relations.

(2) ORR1+R2
(ORR1+R2

λ) ≤ ORR1+R2
λ, and

OR∗
R∗

1+R∗
2
(1̃ −OR∗

R∗
1+R∗

2
λ) ≥ OR∗

R∗
1+R∗

2
λ.

(3) ORR1+R2
(ORR1+R2

λ) ≥ ORR1+R2
λ, and

OR∗
R∗

1+R∗
2
(1̃ −OR∗

R∗
1+R∗

2
) ≤ OR∗

R∗
1+R∗

2
λ.

Proof. (1) ⇔ (2) For each λ ∈ IU ,

ORR1+R2
(ORR1+R2

λ)(x)

=







∨

y∈U

(R1(x, y) ∧ (ORR1+R2
)(y)







∧







∨

y∈U

(R2(x, y) ∧ (ORR1+R2
)(y)







= b1 ∨ b2 6= 0 = 1 − δx(x).

As part of the extension of the optimistic two-granulation double fuzzy rough set, we
will introduce the optimistic multi-granulation double fuzzy rough set (in short, OMGDFRS)
and its associated properties.

Definition 5. Let U be an arbitrary set and the pairs (Ri, R∗
i ), such that 1 ≤ i ≤ m, double fuzzy

relations on U. Then, (U,R,R∗) is called the multi-granulation double fuzzy approximation space
(in short, MGDFAS), where R = {R1, R2, ...Ri} and R∗ = {R∗

1 , R∗
2 , ...R∗

i }.

Definition 6. Let (U,R,R∗) be an MGDFAS. Then, for each fuzzy set λ on U, the pairs

(OR m
Σ

i=1
Ri

λ,OR∗
m
Σ

i=1
R∗

i

λ) and (OR m
Σ

i=1
Ri

λ,OR∗
m
Σ

i=1
R∗

i

λ) of maps OR m
Σ

i=1
Ri

λ,OR∗
m
Σ

i=1
R∗

i

λ,

OR m
Σ

i=1
Ri

λ,OR∗
m
Σ

i=1
R∗

i

λ : U → I are called optimistic multi-granulation double fuzzy lower ap-

proximation and optimistic multi-granulation double fuzzy upper approximation of a fuzzy set λ,
respectively, and are defined as follows: For all x ∈ U,

(OR m
Σ

i=1
Ri

λ)(x) =
m
∨

i=1

∧

y∈U

((1 − Ri(x, y)) ∨ λ(y)),

(OR∗
m
Σ

i=1
R∗

i

λ)(x) =
m
∧

i=1

∨

y∈U

((1 − R∗
i (x, y)) ∧ 1 − λ(y)),
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(OR m
Σ

i=1
Ri

λ)(x) =
m
∧

i=1

∨

y∈U

(Ri(x, y) ∧ λ(y)),

(OR∗
m
Σ

i=1
R∗

i

λ)(x) =
m
∨

i=1

∧

y∈U

(R∗
i (x, y) ∨ 1 − λ(y)).

The quaternary (OR m
Σ

i=1
Ri

λ,OR∗
m
Σ

i=1
R∗

i

λ,OR m
Σ

i=1
Ri

λ,OR∗
m
Σ

i=1
R∗

i

λ) is called optimistic multi-

granulation double fuzzy rough set of λ (in short, OMGDFRS).

The pairs (OR m
Σ

i=1
Ri

,OR∗
m
Σ

i=1
R∗

i

) and (OR m
Σ

i=1
Ri

,OR∗
m
Σ

i=1
R∗

i

) of operators OR m
Σ

i=1
Ri

,OR∗
m
Σ

i=1
R∗

i

,

OR m
Σ

i=1
Ri

, OR∗
m
Σ

i=1
R∗

i

: IU → IU are called optimistic multi-granulation double fuzzy lower approxi-

mation and optimistic multi-granulation double fuzzy upper approximation operators, respectively.

Proposition 2. Let (U,R,R∗) be an MGDFAS. For each λ ∈ IU , the following apply:

(1) OR m
Σ

i=1
Ri

λ =
m
∨

i=1
RRi

λ, and OR∗
m
Σ

i=1
R∗

i

λ =
m
∧

i=1
R∗

R∗
i
λ.

(2) OR m
Σ

i=1
Ri

λ =
m
∧

i=1
RRi

λ, and OR∗
m
Σ

i=1
R∗

i

λ =
m
∨

i=1
R∗

R∗
i
λ.

Proof. The proof is similar to the proof of Proposition 1.

Theorem 5. Let (U,R,R∗) be an MGDFAS. For each λ ∈ IU , the following apply:

(1) OR m
Σ

i=1
Ri

λ ≤ 1̃ −OR∗
m
Σ

i=1
R∗

i

λ, and OR m
Σ

i=1
Ri

λ ≥ 1̃ −OR∗
m
Σ

i=1
R∗

i

λ.

(2) OR m
Σ

i=1
Ri

1̃ = 1̃, and OR∗
m
Σ

i=1
R∗

i

1̃ = 0̃.

(3) OR m
Σ

i=1
Ri

0̃ = 0̃, and OR∗
m
Σ

i=1
R∗

i

0̃ = 1̃.

(4) OR m
Σ

i=1
Ri

(1̃ − λ) = 1̃ −OR m
Σ

i=1
Ri

λ, and OR∗
m
Σ

i=1
R∗

i

(1̃ − λ) = 1̃ −OR∗
m
Σ

i=1
R∗

i

λ.

(5) OR m
Σ

i=1
Ri

(1̃ − λ) = 1̃ −OR m
Σ

i=1
Ri

λ, and OR∗
m
Σ

i=1
R∗

i

(1̃ − λ) = 1̃ −OR∗
m
Σ

i=1
R∗

i

λ.

Proof. The proof is similar to the proof of Theorem 1.

Theorem 6. Let (U,R,R∗) be an MGDFAS. For each λ, µ ∈ IU , the following apply:

(1) OR m
Σ

i=1
Ri

(λ ∧ µ) ≤ OR m
Σ

i=1
Ri

λ ∧OR m
Σ

i=1
Ri

µ, and

OR∗
m
Σ

i=1
R∗

i

(λ ∧ µ) ≥ OR∗
m
Σ

i=1
R∗

i

λ ∨OR∗
m
Σ

i=1
R∗

i

µ.

(2) OR m
Σ

i=1
Ri

(λ ∨ µ) ≥ OR m
Σ

i=1
Ri

λ ∨OR m
Σ

i=1
Ri

µ, and

OR∗
m
Σ

i=1
R∗

i

(λ ∨ µ) ≤ OR∗
m
Σ

i=1
R∗

i

λ ∧OR∗
m
Σ

i=1
R∗

i

µ.

(3) If λ ≤ µ, then OR m
Σ

i=1
Ri

λ ≤ OR m
Σ

i=1
Ri

µ, and OR∗
m
Σ

i=1
R∗

i

λ ≥ OR∗
m
Σ

i=1
R∗

i

µ.

(4) If λ ≤ µ, then OR m
Σ

i=1
Ri

λ ≤ OR m
Σ

i=1
Ri

µ, and OR∗
m
Σ

i=1
R∗

i

λ ≥ OR∗
m
Σ

i=1
R∗

i

µ.
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(5) OR m
Σ

i=1
Ri

(λ ∨ µ) ≥ OR m
Σ

i=1
Ri

λ ∨OR m
Σ

i=1
Ri

µ, and

OR∗
m
Σ

i=1
R∗

i

(λ ∨ µ) ≤ OR∗
m
Σ

i=1
R∗

i

λ ∧OR∗
m
Σ

i=1
R∗

i

µ.

(6) OR m
Σ

i=1
Ri

(λ ∧ µ) ≤ OR m
Σ

i=1
Ri

λ ∧OR m
Σ

i=1
Ri

µ, and

OR∗
m
Σ

i=1
R∗

i

(λ ∧ µ) ≥ OR∗
m
Σ

i=1
R∗

i

λ ∨OR∗
m
Σ

i=1
R∗

i

µ.

Proof. The proof is similar to the proof of Theorem 2.

3. Pessimistic Multi-Granulation Double Fuzzy Rough Sets

In this section, we provide the pessimistic multi-granulation double fuzzy rough sets
based on multiple double fuzzy relations and discuss the relationship between optimistic
multi-granulation double fuzzy rough sets and pessimistic multi-granulation double fuzzy
rough sets.

Definition 7. Let U be an arbitrary universal set, and (R1, R∗
1) and (R2, R∗

2) be double fuzzy rela-
tions on U. Then, for each fuzzy set λ on U, the pairs (PRR1+R2

λ,PR∗
R∗

1+R∗
2
λ) and (PRR1+R2

λ,

PR∗
R∗

1+R∗
2
λ) of maps PRR1+R2

λ,PR∗
R∗

1+R∗
2
λ,PRR1+R2

λ,PR∗
R∗

1+R∗
2
λ : U → I are called pes-

simistic two-granulation double fuzzy lower approximation and pessimistic two-granulation double
fuzzy upper approximation of a fuzzy set λ, respectively, and are defined as follows: For all x ∈ U,

(PRR1+R2
λ)(x) =







∧

y∈U

((1 − R1(x, y)) ∨ λ(y))







∧







∧

y∈U

((1 − R2(x, y)) ∨ λ(y))







;

(PR∗
R∗

1+R∗
2
λ)(x) =







∨

y∈U

((1 − R∗
1(x, y)) ∧ 1 − λ(y))







∨







∨

y∈U

((1 − R∗
2(x, y)) ∧ 1 − λ(y))







;

(PRR1+R2
λ)(x) =







∨

y∈U

(R1(x, y) ∧ λ(y))







∨







∨

y∈U

(R2(x, y) ∧ λ(y))







;

(PR∗
R∗

1+R∗
2
λ)(x) =







∧

y∈U

(R∗
1(x, y) ∨ 1 − λ(y))







∧







∧

y∈U

(R∗
2(x, y) ∨ 1 − λ(y))







.

The quaternary (PRR1+R2
λ,PR∗

R∗
1+R∗

2
λ,PRR1+R2

λ,PR∗
R∗

1+R∗
2
λ) is called pessimistic two-

granulation double fuzzy rough set of λ (in short, PTGDFRS). The pairs (PRR1+R2
,PR∗

R∗
1+R∗

2
)

and (PRR1+R2
,PR∗

R∗
1+R∗

2
) of operators PRR1+R2

, PR∗
R∗

1+R∗
2
, PRR1+R2

,PR∗
R∗

1+R∗
2

: U → I

are called pessimistic two-granulation double fuzzy lower approximation and pessimistic two-
granulation double fuzzy upper approximation operators, respectively.

The PTGDFRS approximations are defined by many separate pairs of double fuzzy
relations, whereas the normal double fuzzy rough approximations are represented by only
one pair of double fuzzy relations. This can be observed from the above definition. In fact,
when (R1, R∗

1) = (R2, R∗
2), the PTGDFRS degenerates into a double fuzzy rough set. This

means that a double fuzzy rough set is a subset of the PTGDFRS.

Proposition 3. Let U be an arbitrary universal set, and (R1, R∗
1) and (R2, R∗

2) be double fuzzy
relations on U. For each λ ∈ IU , the following apply:
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(1) PRR1+R2
λ = RR1

λ ∧RR2
λ, and PR∗

R∗
1+R∗

2
λ = R∗

R∗
1
λ ∨R∗

R∗
2
λ.

(2) PRR1+R2
λ = RR1

λ ∨RR2
λ, and PR∗

R∗
1+R∗

2
λ = R∗

R∗
1
λ ∧R∗

R∗
2
λ.

Proof. They can be proved using Definition 2 and Definition 7.

From Definition 7, we can obtain the following result for the pessimistic multi-
granulation double fuzzy rough sets.

Theorem 7. Let U be an arbitrary universal set, and (R1, R∗
1) and (R2, R∗

2) be double fuzzy
relations on U. For each λ ∈ IU , the following apply:

(1) PRR1+R2
λ ≤ 1̃ −PR∗

R∗
1+R∗

2
λ, and PRR1+R2

λ ≥ 1̃ −PR∗
R∗

1+R∗
2
λ.

(2) PRR1+R2
1̃ = 1̃, and PR∗

R∗
1+R∗

2
1̃ = 0̃.

(3) PRR1+R2
0̃ = 0̃, and PR∗

R∗
1+R∗

2
0̃ = 1̃.

(4) PRR1+R2
(1̃ − λ) = 1̃ −PRR1+R2

λ, and PR∗
R∗

1+R∗
2
(1̃ − λ) = 1̃ −PR∗

R∗
1+R∗

2
λ.

(5) PRR1+R2
(1̃ − λ) = 1̃ −PRR1+R2

λ, and PR∗
R∗

1+R∗
2
(1̃ − λ) = 1̃ −PR∗

R∗
1+R∗

2
λ.

Proof. (1) For each x ∈ U, λ ∈ IU , we have

(

1̃ − (PR∗
R∗

1+R∗
2
λ)

)

(x)

= 1 −













∧

y∈U

(R∗
1(x, y) ∨ 1 − λ(y))







∧







∧

y∈U

(R∗
2(x, y) ∨ 1 − λ(y))













=







1 −







∧

y∈U

(R∗
1(x, y) ∨ 1 − λ(y))













∨







1 −







∧

y∈U

(R∗
2(x, y) ∨ 1 − λ(y))













=







∨

y∈U

1 − {R∗
1(x, y) ∨ 1 − λ(y)}







∨







∨

y∈U

1 − {R∗
2(x, y) ∨ 1 − λ(y)}







=







∨

y∈U

{1 − R∗
1(x, y) ∧ λ(y)}







∨







∨

y∈U

{1 − R∗
2(x, y) ∧ λ(y)}







≥







∨

y∈U

(R1(x, y) ∧ λ(y))







∨







∨

y∈U

(R2(x, y) ∧ λ(y))







= (PRR1+R2
λ)(x) for all x ∈ U.

Hence, PRR1+R2
λ ≤ 1̃ −PR∗

R∗
1+R∗

2
λ. Similarly, we have

PRR1+R2
λ ≥ 1̃ −PR∗

R∗
1+R∗

2
λ.

(2) Since, for each x ∈ U, 1̃(x) = 1, we obtain

(PRR1+R2
1̃)(x) =







∧

y∈U

((1 − R1(x, y)) ∨ 1̃(y))







∧







∧

y∈U

((1 − R2(x, y)) ∨ 1̃(y))







= 1 = 1̃(x),



Symmetry 2023, 15, 1926 13 of 19

and

(PR∗
R∗

1+R∗
2
1̃)(x) =







∨

y∈U

((1 − Ri(x, y)) ∧ 1 − 1̃(y))







∨







∨

y∈U

((1 − Ri(x, y)) ∧ 1 − 1̃(y))







= 0 = 0̃(x).

Therefore, we obtain PRR1+R2
1̃ = 1̃ and PR∗

R∗
1+R∗

2
1̃ = 0̃.

(3) The proof follows steps similar to those of the proof of (2).
(4) For each x ∈ U, we have

OR∗
R∗

1+R∗
2
(1̃ − λ)(x)

=







∧

y∈U

(R∗
1(x, y) ∨ 1 − (1 − λ(y)))







∧







∧

y∈U

(R∗
2(x, y) ∨ 1 − (1 − λ(y)))







=







1 −







∨

y∈U

(1 − R∗
1(x, y) ∧ 1 − λ(y))













∧







1 −







∨

y∈U

(1 − R∗
2(x, y) ∧ 1 − λ(y))













= 1 −













∨

y∈U

(1 − R∗
1(x, y) ∧ 1 − λ(y))







∨







∨

y∈U

(1 − R∗
2(x, y) ∧ 1 − λ(y))













= 1 −PR∗
R∗

1+R∗
2
λ(x).

Thus, we obtain PR∗
R∗

1+R∗
2
(1̃−λ) = 1̃−PR∗

R∗
1+R∗

2
λ. Similarly, we can prove PRR1+R2

(1̃−

λ) = 1̃ −PRR1+R2
λ.

(5) The proof follows steps similar to those of the proof of (4).

Theorem 8. Let U be an arbitrary universal set, and (R1, R∗
1) and (R2, R∗

2) be double fuzzy
relations on U. For each λ, µ ∈ IU , the following hold:

(1) PRR1+R2
(λ ∧ µ) = PRR1+R2

λ ∧ PRR1+R2
µ, and

PR∗
R∗

1+R∗
2
(λ ∧ µ) = PR∗

R∗
1+R∗

2
λ ∨ PR∗

R∗
1+R∗

2
µ.

(2) PRR1+R2
(λ ∨ µ) = PRR1+R2

λ ∨ PRR1+R2
µ, and

PR∗
R∗

1+R∗
2
(λ ∨ µ) = PR∗

R∗
1+R∗

2
λ ∧ PR∗

R∗
1+R∗

2
µ.

(3) If λ ≤ µ, then PRR1+R2
λ ≤ PRR1+R2

µ, and PR∗
R∗

1+R∗
2
λ ≥ PR∗

R∗
1+R∗

2
µ.

(4) If λ ≤ µ, then PRR1+R2
λ ≤ PRR1+R2

µ, and PR∗
R∗

1+R∗
2
λ ≥ PR∗

R∗
1+R∗

2
µ.

(5) PRR1+R2
(λ ∨ µ) ≥ PRR1+R2

λ ∨ PRR1+R2
µ, and

PR∗
R∗

1+R∗
2
(λ ∨ µ) ≤ PR∗

R∗
1+R∗

2
λ ∧ PR∗

R∗
1+R∗

2
µ.

(6) PRR1+R2
(λ ∧ µ) ≤ PRR1+R2

λ ∧ PRR1+R2
µ, and

PR∗
R∗

1+R∗
2
(λ ∧ µ) ≥ PR∗

R∗
1+R∗

2
λ ∨ PR∗

R∗
1+R∗

2
µ.
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Proof. (1) For each x ∈ U, λ, µ ∈ IU ,

(PRR1+R2
(λ ∧ µ))(x)

=







∧

y∈U

((1 − R1(x, y)) ∨ (λ ∧ µ)(y))







∧







∧

y∈U

((1 − R2(x, y)) ∨ (λ ∧ µ)(y))







=













∧

y∈U

((1 − R1(x, y)) ∨ (λ)(y)







∧







∧

y∈U

((1 − R1(x, y)) ∨ (µ)(y)













∧













∧

y∈U

((1 − R2(x, y)) ∨ (λ)(y)







∧







∧

y∈U

((1 − R2(x, y)) ∨ (µ)(y)













=
{

(RR1
λ)(x) ∧ (RR1

µ)(x)
}

∧
{

(RR2
λ)(x) ∧ (RR2

µ)(x)
}

=
{

(RR1
λ)(x) ∧ (RR2

λ)(x)
}

∧
{

(RR1
µ)(x) ∧ (RR2

µ)(x)
}

= (PRR1+R2
λ)(x) ∧ (PRR1+R2

µ)(x).

Also, for each x ∈ U,

(PR∗
R∗

1+R∗
2
(λ ∧ µ))(x)

=







∨

y∈U

((1 − R∗
1(x, y)) ∧ 1 − (λ ∧ µ)(y))







∨







∨

y∈U

((1 − R∗
2(x, y)) ∧ 1 − (λ ∧ µ)(y))







=







∨

y∈U

((1 − R∗
1(x, y)) ∧ (1 − λ(y) ∨ 1 − µ(y))







∨







∨

y∈U

((1 − R∗
2(x, y)) ∧ (1 − λ(y) ∨ 1 − µ(y))







=













∨

y∈U

((1 − R∗
1(x, y)) ∧ (1 − λ(y)







∨







∨

y∈U

((1 − R∗
1(x, y)) ∧ (1 − µ(y)













∨













∨

y∈U

((1 − R∗
2(x, y)) ∧ (1 − λ(y)







∨







∨

y∈U

((1 − R∗
2(x, y)) ∧ (1 − µ(y)













=

{

(R∗
R∗

1
λ)(x) ∨ (R∗

R∗
1
µ)(x)

}

∨

{

(R∗
R∗

2
λ)(x) ∨ (R∗

R∗
2
µ)(x)

}

=

{

(R∗
R∗

1
λ)(x) ∨ (R∗

R∗
2
λ)(x)

}

∨

{

(R∗
R∗

1
µ)(x) ∨ (R∗

R∗
2
µ)(x)

}

= (PR∗
R∗

1+R∗
2
λ)(x) ∨ (PR∗

R∗
1+R∗

2
µ)(x)

(2) The proof follows steps similar to those of the proof of (1).
(3) If λ ≤ µ, then for all y ∈ U, λ(y) ≤ µ(y). Therefore, we have

∧

y∈U

(1 − R1(x, y) ∨ λ(y)) ≤
∧

y∈U

(1 − R1(x, y) ∨ µ(y)) (5)

and

∧

y∈U

(1 − R2(x, y) ∨ λ(y)) ≤
∧

y∈U

(1 − R2(x, y) ∨ µ(y)). (6)
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From Equations (5) and (6), we have







∧

y∈U

(1 − R1(x, y) ∨ λ(y))







∧







∧

y∈U

(1 − R2(x, y) ∨ λ(y))







≤







∧

y∈U

(1 − R1(x, y) ∨ µ(y))







∧







∧

y∈U

(1 − R2(x, y) ∨ µ(y))







Thus, PRR1+R2
λ ≤ PRR1+R2

µ, also,

∨

y∈U

(1 − R∗
1(x, y) ∧ 1 − λ(y)) ≥

∨

y∈U

(1 − R∗
1(x, y) ∧ 1 − µ(y)) (7)

and

∨

y∈U

(1 − R∗
2(x, y) ∧ 1 − λ(y)) ≥

∨

y∈U

(1 − R∗
2(x, y) ∧ 1 − µ(y)). (8)

From Equations (7) and (8), we have







∨

y∈U

(1 − R∗
1(x, y) ∧ 1 − λ(y))







∨







∨

y∈U

(1 − R∗
2(x, y) ∧ 1 − λ(y))







≥







∨

y∈U

(1 − R∗
1(x, y) ∧ 1 − µ(y))







∨







∨

y∈U

(1 − R∗
2(x, y) ∧ 1 − µ(y))







Thus, PR∗
R∗

1+R∗
2
λ ≥ PR∗

R∗
1+R∗

2
µ.

(4) The proof follows steps similar to those of the proof of (3).
(5) Since λ ≤ λ ∨ µ and µ ≤ λ ∨ µ, by (3), we have

PRR1+R2
λ ≤ PRR1+R2

(λ ∨ µ) and PRR1+R2
µ ≤ PRR1+R2

(λ ∨ µ).

Therefore, PRR1+R2
λ ∨ PRR1+R2

µ ≤ PRR1+R2
(λ ∨ µ). Also, we have

PR∗
R∗

1+R∗
2
λ ≥ PR∗

R∗
1+R∗

2
(λ ∨ µ) and PR∗

R∗
1+R∗

2
µ ≥ PR∗

R∗
1+R∗

2
(λ ∨ µ).

This implies that PR∗
R∗

1+R∗
2
λ ∧ PR∗

R∗
1+R∗

2
µ ≥ PR∗

R∗
1+R∗

2
(λ ∨ µ).

(6) The proof follows steps similar to those of the proof of (5).

In the following example, we show that the converse of Theorem 8 (5) does not hold
true.

Example 2. Let U = {x, y, z}. Define R1, R∗
1 , R2, R∗

2 : U × U → I as in Example 1 and
λ, µ ∈ IU as in Example 1. Then,

(PRR1+R2
λ)(x) = 0.3, (PRR1+R2

λ)(y) = 0.2, (PRR1+R2
λ)(z) = 0.5,

(PRR1+R2
µ)(x) = 0.5, (PRR1+R2

µ)(y) = 0.4, (PRR1+R2
µ)(z) = 0.4,

(PRR1+R2
(λ ∨ µ))(x) = 0.7, (PRR1+R2

(λ ∨ µ))(y) = 0.5, (PRR1+R2
(λ ∨ µ))(z) = 0.5,

Therefore, PRR1+R2
(λ ∨ µ) � PRR1+R2

λ ∨ PRR1+R2
µ.

(PR∗
R∗

1+R∗
2
λ)(x) = 0.8, (PR∗

R∗
1+R∗

2
λ)(y) = 0.9, (PR∗

R∗
1+R∗

2
λ)(z) = 0.5,
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(PR∗
R∗

1+R∗
2
µ)(x) = 0.7, (PR∗

R∗
1+R∗

2
µ)(y) = 0.6, (PR∗

R∗
1+R∗

2
µ)(z) = 0.8,

(PR∗
R∗

1+R∗
2
(λ ∨ µ))(x) = 0.5, (PR∗

R∗
1+R∗

2
(λ ∨ µ))(y) = 0.5, (PR∗

R∗
1+R∗

2
(λ ∨ µ))(z) = 0.5.

Therefore, PR∗
R∗

1+R∗
2
(λ ∨ µ) � PR∗

R∗
1+R∗

2
λ ∧ PR∗

R∗
1+R∗

2
µ.

We are now extending the pessimistic two-granulation double fuzzy rough set. We
present the pessimistic multi-granulation double fuzzy rough set (in short, PMGDFRS) and
its properties.

Definition 8. Let (U,R,R∗) be an MGDFAS such that 1 ≤ i ≤ m. Then, for each fuzzy set λ on

U, the pairs (PR m
Σ

i=1
Ri

λ,PR∗
m
Σ

i=1
R∗

i

λ) and (PR m
Σ

i=1
Ri

λ,PR∗
m
Σ

i=1
R∗

i

λ) of maps PR m
Σ

i=1
Ri

λ,PR∗
m
Σ

i=1
R∗

i

λ,

PR m
Σ

i=1
Ri

λ,PR∗
m
Σ

i=1
R∗

i

λ : U → I are called pessimistic multi-granulation double fuzzy lower ap-

proximation and pessimistic multi-granulation double fuzzy upper approximation of a fuzzy set λ,
respectively, and are defined as follows: For all x ∈ U,

(PR m
Σ

i=1
Ri

λ)(x) =
m
∧

i=1

∧

y∈U

((1 − Ri(x, y)) ∨ λ(y))

(PR∗
m
Σ

i=1
R∗

i

λ)(x) =
m
∨

i=1

∨

y∈U

((1 − R∗
i (x, y)) ∧ 1 − λ(y))

(PR m
Σ

i=1
Ri

λ)(x) =
m
∨

i=1

∨

y∈U

(Ri(x, y) ∧ λ(y))

(PR∗
m
Σ

i=1
R∗

i

λ)(x) =
m
∧

i=1

∧

y∈U

(R∗
i (x, y) ∨ 1 − λ(y)).

The quaternary (PR m
Σ

i=1
Ri

λ,PR∗
m
Σ

i=1
R∗

i

λ,PR m
Σ

i=1
Ri

λ,PR∗
m
Σ

i=1
R∗

i

λ) is called pessimistic multi-

granulation double fuzzy rough set of λ (in short, PMGDFRS).

The pairs (PR m
Σ

i=1
Ri

,PR∗
m
Σ

i=1
R∗

i

) and (PR m
Σ

i=1
Ri

,PR∗
m
Σ

i=1
R∗

i

) of operators PR m
Σ

i=1
Ri

,PR∗
m
Σ

i=1
R∗

i

,

PR m
Σ

i=1
Ri

,PR∗
m
Σ

i=1
R∗

i

: IU → IU are called pessimistic multi-granulation double fuzzy lower approxi-

mation and pessimistic multi-granulation double fuzzy upper approximation operators, respectively.

Proposition 4. Let (U,R,R∗) be an MGDFAS. For each λ ∈ IU , the following hold:

(1) PR m
Σ

i=1
Ri

λ =
m
∧

i=1
RRi

λ, and PR∗
m
Σ

i=1
R∗

i

λ =
m
∨

i=1
R∗

R∗
i
λ.

(2) PR m
Σ

i=1
Ri

λ =
m
∨

i=1
RRi

λ, and PR∗
m
Σ

i=1
R∗

i

λ =
m
∧

i=1
R∗

R∗
i
λ.

Proof. The proof follows steps similar to those of the proof of Proposition 3.

Theorem 9. Let (U,R,R∗) be an MGDFAS. For each λ ∈ IU , the following apply:

(1) PR m
Σ

i=1
Ri

λ ≤ 1̃ −PR∗
m
Σ

i=1
R∗

i

λ, and PR m
Σ

i=1
Ri

λ ≥ 1̃ −PR∗
m
Σ

i=1
R∗

i

λ.
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(2) PR m
Σ

i=1
Ri

1̃ = 1̃, and PR∗
m
Σ

i=1
R∗

i

1̃ = 0̃.

(3) PR m
Σ

i=1
Ri

0̃ = 0̃, and PR∗
m
Σ

i=1
R∗

i

0̃ = 1̃.

(4) PR m
Σ

i=1
Ri

(1̃ − λ) = 1̃ −PR m
Σ

i=1
Ri

λ, and PR∗
m
Σ

i=1
R∗

i

(1̃ − λ) = 1̃ −PR∗
m
Σ

i=1
R∗

i

λ.

(5) PR m
Σ

i=1
Ri

(1̃ − λ) = 1̃ −PR m
Σ

i=1
Ri

λ, and PR∗
m
Σ

i=1
R∗

i

(1̃ − λ) = 1̃ −PR∗
m
Σ

i=1
R∗

i

λ.

Proof. The proof follows steps similar to those of the proof of Theorem 7.

Theorem 10. Let (U,R,R∗) be an MGDFAS. For each λ, µ ∈ IU , the following apply:

(1) PR m
Σ

i=1
Ri

(λ ∧ µ) = PR m
Σ

i=1
Ri

λ ∧ PR m
Σ

i=1
Ri

µ, and

PR∗
m
Σ

i=1
R∗

i

(λ ∧ µ) = PR∗
m
Σ

i=1
R∗

i

λ ∨ PR∗
m
Σ

i=1
R∗

i

µ.

(2) PR m
Σ

i=1
Ri

(λ ∨ µ) = PR m
Σ

i=1
Ri

λ ∨ PR m
Σ

i=1
Ri

µ, and

PR∗
m
Σ

i=1
R∗

i

(λ ∨ µ) = PR∗
m
Σ

i=1
R∗

i

λ ∧ PR∗
m
Σ

i=1
R∗

i

µ.

(3) If λ ≤ µ, then PR m
Σ

i=1
Ri

λ ≤ PR m
Σ

i=1
Ri

µ, and PR∗
m
Σ

i=1
R∗

i

λ ≥ PR∗
m
Σ

i=1
R∗

i

µ.

(4) If λ ≤ µ, then PR m
Σ

i=1
Ri

λ ≤ PR m
Σ

i=1
Ri

µ, and PR∗
m
Σ

i=1
R∗

i

λ ≥ PR∗
m
Σ

i=1
R∗

i

µ.

(5) PR m
Σ

i=1
Ri

(λ ∨ µ) ≥ PR m
Σ

i=1
Ri

λ ∨ PR m
Σ

i=1
Ri

µ, and

PR∗
m
Σ

i=1
R∗

i

(λ ∨ µ) ≤ PR∗
m
Σ

i=1
R∗

i

λ ∧ PR∗
m
Σ

i=1
R∗

i

µ.

(6) PR m
Σ

i=1
Ri

(λ ∧ µ) ≤ PR m
Σ

i=1
Ri

λ ∧ PR m
Σ

i=1
Ri

µ, and

PR∗
m
Σ

i=1
R∗

i

(λ ∧ µ) ≥ PR∗
m
Σ

i=1
R∗

i

λ ∨ PR∗
m
Σ

i=1
R∗

i

µ.

Proof. The proof follows steps similar to those of the proof of Theorem 8.

The following propositions show the relationship between optimistic multi-granulation
double fuzzy rough sets and pessimistic multi-granulation double fuzzy rough sets.

Proposition 5. Let U be an arbitrary universal set, and (R1, R∗
1) and (R2, R∗

2) be double fuzzy
relations on U. For each i ∈ {1, 2} and λ ∈ IU , the following hold:

(1) PRR1+R2
λ ≤ RRi

λ ≤ ORR1+R2
λ, and PR∗

R∗
1+R∗

2
λ ≥ R∗

R∗
i
λ ≥ OR∗

R∗
1+R∗

2
λ.

(2) PRR1+R2
λ ≥ RRi

λ ≥ ORR1+R2
λ, and PR∗

R∗
1+R∗

2
λ ≤ R∗

R∗
i
λ ≤ OR∗

R∗
1+R∗

2
λ.

Proof. Based on Proposition 1 and Proposition 3, we can prove this.

Proposition 6. Let (U,R,R∗) be an MGDFAS. For each λ ∈ IU and 1 ≤ i ≤ m, the following
apply:

(1) PR m
Σ

i=1
Ri

λ ≤ RRi
λ ≤ OR m

Σ
i=1

Ri

λ, and PR∗
m
Σ

i=1
R∗

i

λ ≥ R∗
R∗

i
λ ≥ OR∗

m
Σ

i=1
R∗

i

λ.

(2) PR m
Σ

i=1
Ri

λ ≥ RRi
λ ≥ PR m

Σ
i=1

Ri

λ, and PR∗
m
Σ

i=1
R∗

i

λ ≤ R∗
R∗

i
λ ≤ OR∗

m
Σ

i=1
R∗

i

λ.
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Proof. Based on Proposition 2 and Proposition 4, we can prove this.

4. Conclusions

In this article, we discover that rough set theory is a potent theory with numerous
applications in the artificial intelligence fields of pattern recognition, machine learning,
and automated knowledge acquisition. In this study, the idea of double fuzzy rough sets,
which are seen as a generalization of fuzzy rough sets, is introduced. The contribution of
this paper is that it has constructed two different types of multi-granulation double fuzzy
rough sets associated with granular computing, in which double approximation operators
are based on multiple double fuzzy relations.
Additionally, we draw the conclusion that rough sets, multi-granulation fuzzy rough sets
models, double fuzzy rough sets models, and multi-granulation rough set models are
special cases of the two types of multi-granulation double fuzzy rough sets by analyzing
their definitions.

The conclusion of the construction of the new types of multi-granulation double fuzzy
rough set models is an extension of granular computing and is meaningful compared with
the generalization of rough set theory.
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