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Abstract The oxidation kinetics of isosorbide (S) by potassium permanganate in both

perchloric and sulfuric acid solutions was investigated spectrophotometrically at a constant

ionic strength of 2.0 mol�dm-3 and at 25 �C. In both acids, the oxidation reactions showed

a first-order dependence on ½MnO�
4 �, apparent a less than unit-order dependence with

respect to [S] and a fractional-second-order dependence with respect to [H?]. Variation of

either the ionic strength or dielectric constant of the reactions media did not significantly

affect the oxidation rates. In both acids, the final oxidation product of isosorbide was

identified by both spectroscopic and chemical tools as the corresponding monoketone

derivative, namely (1S,4S,5R)-4-hydroxy-2,6-dioxabicyclo[3.3.0] octan-8-one. Under

comparable experimental conditions, the oxidation rate of isosorbide in perchloric acid was

lower than that in sulfuric acid. The oxidation mechanism describing the kinetic results

was proposed and the rate law expression was derived. The activation parameters of the

second-order rate constants were computed and are discussed.
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1 Introduction

In recent years, the development of materials from renewable resources is a field that is

gaining increased interest due to factors such as environmental impact, sustainability and

production costs. Isosorbide is an attractive building block because it is easily accessible

from renewable resources in the form of its pure enantiomers. Isosorbide (1,4:3,6-dian-

hydro-D-glucitol) is easily produced on the industrial scale by double dehydratation of D-

glucose. It is thermally stable up to 280 �C, of low cost, and is available in large quantities.

Isosorbide is basically comprised of two fused tetrahydrofuran rings having the cis-ar-

rangement at the ring junction, giving a wedge-shaped molecule. The compound bears two

hydroxyl groups, one at C6 having the exo-orientation with respect to the wedge-shaped

molecule, and the other at C3 having the endo-orientation, which makes possible

intramolecular hydrogen bonding with the oxygen atom of the neighboring tetrahydrofuran

ring (Fig. 1).

Isosorbide is considered a versatile intermediate due to its chemical structure [1, 2],

particularly the two hydroxyl groups that are interesting for further transformations since

they possess different configurations and thus, different reactivities. The use of isosorbide

for synthesis and characterization has been reported [3–8]. Isosorbide is considered as a

versatile biogenic platform compound for the production of chemicals and has been widely

used for the synthesis of sophisticated molecules including chiral ionic liquids [9–11],

phase-transfer catalysts [12], and ligands (amino alcohols, amines, mono- and diphos-

phines, diphosphites, bis-diaminophosphites, etc.) [13, 14]. It is used as a starting material

for pharmaceutical applications as well as for organic solvents or fuels and as a building

block for biopolymers [15].

Oxidation reactions are very important in organic synthesis. Among the important

oxidizing agents, permanganate ion is widely used in the oxidation of various organic

compounds in neutral, alkaline and acidic media [16–29]. The mechanism of oxidation

reactions by permanganate ion is governed by the pH of the medium [30]. Although some

work on the oxidation of isosorbide diol by different techniques has been performed

[31–33], there is a lack of literature on the kinetics of oxidation of isosorbide by per-

manganate ion as the most efficient oxidant. This observation prompted us to investigate

the title reactions. The objectives of the present study are to check the reactivity of

isosorbide towards permanganate ion in different acidic media and to propose the oxidation

mechanism of such a diol.
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Fig. 1 Structure of isosorbide
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2 Experimental

2.1 Materials

The chemicals employed in the present work were of reagent grade and their solutions were

prepared by dissolving the samples in bidistilled water. The stock solution of isosorbide was

prepared by dissolving the sample in doubly distilled water. The potassium permanganate

solution was freshly prepared and standardized as reported earlier [34]. Sodium perchlorate and

sodium sulfate were used to attain the required ionic strength in perchloric and sulfuric acids,

respectively, and acetic acidwas also used to vary the dielectric constants of the reaction’smedia.

2.2 Kinetic Measurements

All kinetic measurements were followed under pseudo-first-order conditions where isosorbide

was present in a large excess over that of the oxidant permanganate ion. The course of the reaction

was followed bymonitoring the decay of the absorbance of permanganate as a function of time at

its absorption maximum (k = 525 nm); the other constituents of the reaction mixtures did not

absorb significantly at thiswavelength.Theabsorptionmeasurementsweredone ina temperature-

controlled Shimadzu UV–VIS-NIR-3600 double-beam spectrophotometer.

First-order plots of ln(absorbance) versus time were recorded to be straight lines up to at

least 70% of the completion of reaction. The observed first-order rate constants (kobs) were

calculated using non-linear least-squares fitting to the first-order dependence of the

absorbance versus time plots. The reported rate constants are the mean values of at least

three kinetic measurements. The rate constants were reproducible to within 3–4%.

Some kinetic runs were performed after bubbling purified nitrogen through the solution

and compared with those taken under air. The results were found to be the same, sug-

gesting that the dissolved oxygen did not have any effect on the oxidation rates.

3 Results

3.1 Stoichiometry and Product Identification

Reaction mixtures containing various amounts of permanganate ion and isosorbide at constant

[H?], ionic strength, and temperature were allowed to react for 24 h in closed vessels for com-

pletion of the oxidation reaction. The unconsumed [permanganate] was determined spec-

trophotometrically at 525 nm.The results indicate that twomoles of permanganate are consumed

by five moles of isosorbide to yield the oxidation products as shown in the following reaction:

OH

O

O

OH

+ 2MnO4
- + 6H+ + 2Mn2++ 8H2O

Isosorbide Monoketone derivative

55

O

O

O

OH
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The above stoichiometric equation is consistent with the results of product identifica-

tion. The oxidation product of isosorbide was identified by spectroscopic tools (mass

spectra and infra-red spectra) as the corresponding monoketone derivative, namely,

(1S,4S,5R)-4-hydroxy-2,6-dioxabicyclo[3.3.0]octan-8-one. Furthermore, the product was

detected via its 2,4-dinitrophenyl-hydrazone and dioxime derivatives [35–37]. A similar

oxidation product of isosorbide with different conditions was reported earlier [31–33].

3.2 Spectral Changes

The spectral scans during the oxidation of isosorbide by permanganate ion in perchloric

and sulfuric acids solutions are shown in Fig. 2a and b, respectively. It is seen that there is

a gradual disappearance of the permanganate band at its absorption maximum

(k = 525 nm) as a result of its reduction by the isosorbide substrate.
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Fig. 2 a, b Spectral changes during the oxidation of isosorbide by permanganate ion in: a perchloric,
and b sulfuric acid solutions; [S] = 8.0 9 10-3 mol�dm-3, ½MnO�

4 � = 4.0 9 10-4 mol�dm-3,

[H?] = 1.0 mol�dm-3 and I = 2.0 mol�dm-3 at 25 �C; scanning time intervals = 1.0 min
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3.3 Order of Reactions

The orders of the reactions with respect to the reactants were determined from the slopes of

log10 kobs versus log10 (concentration) plots by varying the concentrations of isosorbide and

the acids, in turn, while keeping the other conditions constant.

The oxidant, permanganate ion, was varied in the concentration range

(1.0–8.0) 9 10-4 mol�dm-3 while the rest of the reactants’ concentrations were kept

constant and both pH and temperature also remained constant. It was found that the plots of

ln(absorbance) versus time were linear up to about 70% completion of reactions. Fur-

thermore, an increase in the oxidant concentration did not significantly affect the oxidation

rates as listed in Table 1. These results confirm that the order of the reactions with respect

to the oxidant is one.

The observed first-order rate constants were measured at various concentrations of

isosorbide while keeping others constant. Plots of log10 kobs versus log10 [S] were found to

be linear with slopes of 0.5 and 0.84 in perchloric and sulfuric acids solutions, respectively,

as shown in Fig. 3, confirming the less than unit-order dependences with respect to the

isosorbide concentration.

Table 1 Effect of ½MnO�
4 �, [S], [H

?] and ionic strength I on the observed first-order rate constants (kobs) in

the oxidations of isosorbide by permanganate ion in perchloric and sulfuric acids solutions at 25 �C

104 ½MnO�
4 �

(mol�dm-3)

103

[S] (mol�dm-3)
[H?]
(mol�dm-3)

I (mol�dm-3) 105 kobs (s
-1)

Perchloric
acid

Sulfuric
acid

1.0 8.0 1.0 2.0 44.1 68.2

2.0 8.0 1.0 2.0 46.5 65.1

4.0 8.0 1.0 2.0 45.6 67.4

6.0 8.0 1.0 2.0 47.1 66.9

8.0 8.0 1.0 2.0 44.9 71.2

4.0 2.0 1.0 2.0 15.9 19.7

4.0 5.0 1.0 2.0 30.3 45.2

4.0 8.0 1.0 2.0 45.6 67.4

4.0 12.0 1.0 2.0 61.4 92.8

4.0 16.0 1.0 2.0 75.0 115.2

4.0 8.0 0.2 2.0 4.2 6.3

4.0 8.0 0.6 2.0 22.3 33.0

4.0 8.0 1.0 2.0 45.6 67.4

4.0 8.0 1.4 2.0 79.2 93.6

4.0 8.0 1.8 2.0 112.0 124.8

4.0 8.0 1.0 2.0 45.6 67.4

4.0 8.0 1.0 2.5 48.2 63.9

4.0 8.0 1.0 3.0 47.8 68.0

4.0 8.0 1.0 3.5 45.3 69.1

4.0 8.0 1.0 4.0 46.7 69.8

Experimental error ± 3%. The quantities being varied in each series of five experiments are given in bold
face font

J Solution Chem (2017) 46:613–625 617

123

Author's personal copy



The effect of hydrogen ion concentration on the oxidation rates for both perchloric and

sulfuric acids was investigated by varying [H?] in the range of 0.2–1.8 mol�dm-3, keeping

all other reactants concentrations constant. The rate constants increase with increasing acid

concentration as listed in Table 1. Plots of log10 kobs versus log10 [H
?] also are linear with

slopes of 1.76 and 1.71 in perchloric and sulfuric acids solutions, respectively, Fig. 4,

suggesting that the orders of the reactions with respect to [H?] are fractional second order.
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Fig. 3 Plots of log10 kobs versus log10 [S] in the oxidation of isosorbide by permanganate ion in perchloric
and sulfuric acids solutions: ½MnO�

4 � = 4.0 9 10-4 mol�dm-3, [H?] = 1.0 mol�dm-3 and

I = 2.0 mol�dm-3 at 25 �C
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Fig. 4 Plots of log10 kobs versus log10 [H?] in the oxidations of isosorbide by permanganate ion in
perchloric and sulfuric acid solutions: ½MnO�

4 � = 4.0 9 10-4 mol�dm-3, [S] = 8.0 9 10-3 mol�dm-3 and

I = 2.0 mol�dm-3 at 25 �C
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3.4 Effect of Ionic Strength and Dielectric Constant

The ionic strength effect was investigated by varying the concentrations of sodium

pechlorate in the case of perchloric acid and sodium sulfate in case of sulfuric acid, in the

reactions media at constant concentrations of permanganate, isosorbide and acid. It was

found that variations of the ionic strength did not affect the rates as observed from the data

listed in Table 1. Also, the effect dielectric constant (D) was studied by varying the acetic

acid–water content in the reaction mixtures with all other conditions being kept constant.

The data clearly reveal that the rate constants is not significantly affected by the decrease in

dielectric constant of the solvent mixture, i.e., the increase in acetic acid content.

3.5 Effect of Temperature

The oxidation rates were measured at five different temperatures between 288 and 318 K at

constant concentrations of the reactants with other conditions being constant. The results

indicate that the rate constant increases with rise in temperature. The activation parameters

of the rate constant k0 (k0 = kobs/[S]) were calculated using Eyring and Arrhenius plots and

are reported in Table 2.

3.6 Polymerization Study

To check the presence of free radicals in the reactions under investigations, the reactions

mixtures were mixed with specified quantities of acrylonitrile monomer and kept for 6 h

under nitrogen. On dilution with methanol, white precipitates were formed, indicating the

participation of free radicals in the oxidation reactions. The blank experiments, which were

carried out with either permanganate or isosorbide with acrylonitrile, did not induce

polymerization under the same experimental conditions.

4 Discussion

During oxidation by permanganate, it is evident that the Mn(VII) in permanganate is

reduced to various oxidation states in acidic, neutral and alkaline media. In acidic media,

permanganate ion ðMnO�
4 Þ can exist in several different forms, HMnO4, M2MnO4

?,

HMnO3, and Mn2O7, depending on the nature of the reductant. The oxidant has been

assigned with both inner-sphere and outer-sphere mechanism pathways in their redox

reactions [28, 29]. In general, reduction of permanganate ion in acidic medium goes either

to MnIV or MnII, where the reduction potential of the MnVII/MnIV couple is 1.695 V and

Table 2 Activation parameters of the rate constant k0 in the oxidation of isosorbide by permanganate ion in
perchloric and sulfuric acids solutions: ½MnO�

4 � = 4.0 9 10-4 mol�dm-3, [S] = 8.0 9 10-2 mol�dm-3,

[H?] = 1.0 mol�dm-3 and I = 2.0 mol�dm-3

Acid DS= (J�mol-1�K-1) DH= (kJ�mol-1) DG298
= (kJ�mol-1) Ea

= (kJ�mol-1)

Perchloric –112.27 37.85 71.30 40.02

Sulfuric –99.70 33.71 63.42 35.98

Experimental error ± 4%
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that of the MnVII/MnII couple is 1.51 V [30]. Also, permanganate ion in acidic media tends

to protonate to form a more powerful oxidant species, namely permanganic acid [38, 39].

The protonation of permanganate ion shifts the MnVII/MnVI couple to a more positive

value (?1.3 V), which makes HMnO4 a stronger oxidizing agent than MnO4
- [38, 39]. In

the present work, the increasing oxidation rates upon increasing the hydrogen ion con-

centration supports this suggestion as illustrated by step (I) in Scheme 1. Furthermore, the

fractional-second-order dependence with respect to [H?] also suggests protonation of the

MnO4
-                       HMnO4
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(I)
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+ HMnO4
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O

O
H2O

OH
O

O
H2O
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Scheme 1 Mechanism of oxidation of isosorbide by permanganate ion in acidic media
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isosorbide reductant, step (II) in Scheme 1, giving the protonated isosorbide (SH?) that

may be considered as more reactive species in the oxidation reactions.

On the other hand, most of the permanganate oxidation reactions are suggested [18–26]

to proceed through intermediate complex formation between the oxidant and substrate. The

kinetic evidence that supports complex formation in both acids is the linearity of the plots

between 1/kobs and 1/[S] with positive intercepts on 1/kobs axes, Fig. 5, in favor of possible

formation of a transient complex flanked by oxidant and substrate, comparable with the

well known Michaelis–Menten mechanism [40] for enzyme–substrate reactions. The

observed insignificant effect of either ionic strength or dielectric constant of the reaction

media on the oxidation rates implies association of two neutral molecules or a neutral

molecule with an ion [41, 42], i.e., between permanganic acid and positively charged

protonated isosorbide.

In view of the above arguments, the following reactions mechanism may be suggested.

The mechanism involves protonation of both permanganate and isosorbide, followed by

attack of the powerful oxidant, permanganate acid, on the protonated isosorbide, step (III),

leading to the formation of a complex (C) prior to the equilibrium step. Such a complex

decomposes to form a free radical intermediate derived from the isosorbide substrate and

Mn(VI) intermediate, step (IV). The latter attacks the isosorbide free radical to yield the

oxidation product of isosorbide (monoketone derivative) and Mn(V) intermediate, step (V).
In a further fast step, the intermediate Mn(V), being very active and unstable in acidic

medium, reacts with another molecule of protonated isosorbide to form again the oxidation

product of isosorbide, step (VI). This step is followed by other fast steps, including

reactions of two molecules of isosorbide with an acid permanganate species to form the

monoketone oxidation product and Mn(III) species, step (VII). The last step is the attack of

Mn(III) species on another protonated isosorbide to give the monoketone oxidation product

and Mn(II), step (VIII), satisfying the obtained stoichiometry as illustrated in Scheme 1.

Based on the proposed mechanistic Scheme 1, the oxidation rate can be expressed by

the following rate law:

Rate ¼ �d½MnO�
4 �

dt
¼ k1½C�: ð1Þ

The relationship between the oxidation rate and the oxidant, substrate and hydrogen ion

concentrations is deduced to give the following equation:

Rate ¼ k1K1K2K3½MnO�
4 �½S�½Hþ�2

1þ K1½Hþ� þ K1K2K3½S�½Hþ�2
: ð2Þ

Under pseudo-first-order condition, the rate law can be expressed by Eq. 3:

Rate ¼ �d½MnO�
4 �

dt
¼ kobs½MnO�

4 �: ð3Þ

Comparing Eqs. 2 and 3 and rearrangement, the following equation is obtained:

1

kobs
¼ 1þ K1½Hþ�

k1K1K2K3½Hþ�2

 !
1

½S� þ
1

k1
ð4Þ
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1

kobs
¼ 1

k1K1K2K3½S�

� �
1

½Hþ�2
þ 1

k1
þ K 0 ð5Þ

where K0 = 1/k1K2K3[H
?][S].

According to Eqs. 4 and 5, with other conditions being constant, plots of 1/kobs versus

1/[S] at constant [H?] and 1/kobs versus 1/[H?]2 at constant [S] should be linear with

positive intercepts on the 1/kobs axes and are found to be so as shown in Figs. 5 and 6,

respectively. These results support the proposed mechanism.
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Fig. 6 Verification of Eq. 5 for the oxidation of isosorbide by permanganate ion in perchloric and sulfuric
acids solutions: ½MnO�

4 � = 4.0 9 10-4 mol�dm-3, [S] = 8.0 9 10-3 mol�dm-3 and I = 2.0 mol�dm-3 at

25 �C
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Fig. 5 Verification of Eq. 4 for the oxidation of isosorbide by permanganate ion in perchloric and sulfuric
acids solutions: ½MnO�

4 � = 4.0 9 10-4 mol�dm-3, [H?] = 1.0 mol�dm-3 and I = 2.0 mol�dm-3 at 25 �C
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The activation parameters listed in Table 2 may be interpreted as follows. The obtained

large negative values of entropy of activation, DS=, suggest compactness of the formed

complexes and that such complexes are more ordered than the reactants due to loss of

degrees of freedom [43]. It was observed that the value of DS= for perchloric acid is larger

than that of sulfuric acid, suggesting that the formed intermediate complex in the case of

perchloric acid is more compact than that formed in sulfuric acid. Also, the obtained values

of DS= are within the range of free radical reactions. The positive values of both enthalpy

of activation, DH= confirms the endothermic formation of the intermediate complexes.

5 Conclusions

The kinetics of oxidation of isosorbide by potassium permanganate was investigated in

both perchloric and sulfuric acids solutions. In both acids, the final oxidation product of

isosorbide was identified as the corresponding monoketone derivative, namely (1S,4S,5R)-

4-hydroxy-2,6-dioxabicyclo[3.3.0]octan-8-one. Under comparable experimental condi-

tions, the oxidation rate of isosorbide in perchloric acid is slightly lower than that in

sulfuric acid. An oxidation mechanism was proposed and the activation parameters were

computed and discussed.
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