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Abstract
Bell’s inequalities are described by the sums of correlations including non-commuting observables in each of two systems. 
Bell’s inequalities violation is possible since the accuracy of any joint measurement of mentioned observables would be 
limited by quantum uncertainty relations. In this work, we investigate the generating and robustness of two-qubit informa-
tion resources including two-qubit Bell nonlocality, quantum entanglement, and entropic measurement uncertainty in a two 
neighboring spin-1/2 particles coupled via the Heisenberg XYZ interaction subjected to a transverse uniform magnetic field 
by applying Dzyaloshinskii–Moriya (DM) and Kaplan–Shekhtman–Entin–Wohlman–Aharony (KSEA) interactions under 
intrinsic decoherence. The influence of DM–KSEA interactions, external magnetic field, and intrinsic decoherence on the 
dynamics of quantum correlations in our mentioned model is analyzed. Interestingly, new dynamical features of Bell nonlo-
cality, entanglement, and entropic uncertainty are obtained by regulating the initial state, system parameters, and decoher-
ence. Therefore, our results provide a helpful understanding of such dynamics and might offer an insight into measurement 
estimating in open quantum systems.

1 Introduction

Numerous processes to generate the two-qubit information 
resources, namely, quantum correlations [1–3] and quantum 
coherence [4] have been exploited and used in several real 
physical systems. These significant concepts have tremen-
dous advantages in different aspects of modern physics from 
information science to condensed matter theory [5, 6]. The 
quantum entanglement [2, 7–11], a direct result of the super-
position principle, is considered at the forefront of resources 
which stimulates the advance of quantum technology. The 
occurrence of this purely quantum phenomenon manifests 
in an instantaneous disturbance of any part of a pair of spa-
tially separated particles immediately after the other part 
undergoes a local measurement [7, 8]. This is done as if a 
certain channel is configured to secure a nonlocal correlation 
between the entangled system components. Such nonlocality 
makes the involved system enjoys by its distinguishing fea-
ture of being able to be described only as a whole rather than 
in its parts. Therefore, the nonlocality concept is a quintes-
sential property of quantum entanglement. It is regarded as 
a fundamental resource for many quantum technology appli-
cations, such as quantum teleportation [12, 13], quantum 
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dense coding [14], quantum cryptography [15], quantum 
metrology [16] and so on. Besides its excellent technologi-
cal applications, nonlocality provides a new understanding 
of many conceptual issues in quantum physics. In terms of 
the Bell nonlocality concept [1, 8], the nonlocal character 
of a quantum state lies in the violation of the Bell inequali-
ties. Strictly speaking, the realization of violation of the Bell 
inequalities for a quantum system led to the conclusion that 
there is an entanglement phenomenon [17]. In this respect, 
Buscemi has been establish a closer relationship between 
entanglement and nonlocality and shown that all entangled 
states are necessarily nonlocal [18].

Whenever the multipartite system is correlated, any local 
measurement made on one of its constituents is necessarily 
accompanied by a degree of uncertainty. This uncertainty is 
regarded as a primary tool to characterize the nonlocal corre-
lation between the multipartite system parts. The uncertainty 
principle was recognized as one of the most striking fea-
tures of quantum mechanics that genuinely differentiates the 
classical world from the quantum one [19–22]. Specifically, 
the famous Heisenberg uncertainty principle states that the 
momentum p̂ and position x̂ of a physical system cannot be 
simultaneously and precisely assigned [19, 20]. Aside from 
momentum and position, Robertson [21] and Schrödinger 
[23] showed that such limitation can be generalized to any 
arbitrary two incompatible observables. To make a connec-
tion between the uncertainty relation and quantum informa-
tion theory, the entropic uncertainty relation was introduced 
[24, 25]. It is shown that this new version of uncertainty has 
attracted special attention in the literature (see for instance 
Refs. [26–42] and references therein). From an applicative 
point of view, the entropic uncertainty relation provides 
valuable physical resources for many quantum information 
tasks achievement; such as entanglement witnessing [43], 
quantum metrology [44], cryptographic security [45], quan-
tum randomness [46], probing quantum correlations [47, 48] 
and quantum key distribution [49].

Quantum correlations in finite-dimensional systems are 
broadly recognized as crucial resources to improve the per-
formance of quantum protocols in comparison to their classi-
cal analogue [50]. But the proper use of such quantum corre-
lations is often obstructed by the decoherence phenomenon. 
Among the decoherence process, we distinguish intrinsic 
decoherence which was initially addressed by Milburn [51] 
and after intensively studied in many seminal works [52–56]. 
The Milburn intrinsic decoherence was mainly introduced 
to modify the usual Schrödinger equation that governs the 
quantum system time evolution. In fact, Milburn approach 
is based on the assumption wherein over sufficiently short 
time steps, the system under consideration does not evolve 

continuously under the effect of a unitary evolution, but 
rather according to a stochastic sequence of identical unitary 
phase transformations. It is worth mentioning that the influ-
ence of intrinsic decoherence in quantum systems was inten-
sively addressed in many works (see, for instance, [57–72]).

In the present work, we shall explore the intrinsic deco-
herence approach for engendering pairwise information 
resources, such as the two-qubit Bell nonlocality, entropic 
uncertainty, and entanglement. In this context, we deal with 
a two neighboring spin-1/2 particles coupled via the Heisen-
berg XYZ interaction subjected to a transverse magnetic 
field and under the interplay z-components of DM (z–DM) 
along with KSEA (z–KSEA) interactions  controlled by 
the intrinsic decoherence effect. The characterization and 
quantification of quantum correlations as well as entropic 
uncertainty in this investigating model were recently studied 
[73, 74]. Usually, the choice of Heisenberg spin systems is 
motivated by the fact that such quantum systems are the 
potential candidate for implementing quantum communica-
tion and many other quantum information tasks.

This paper is outlined as follows. The Sect. 2 is devoted 
to reviewing some preliminaries about the quantum corre-
lations that can be employed in this work. In Sect. 3, we 
introduce the model describing the quantum system consist-
ing of a two-spin Heisenberg XYZ model under an exter-
nal transverse homogeneous magnetic field by considering 
also the effects of the spin–orbit coupling both antisymmet-
ric as well as symmetric contributions directed along the 
z-axis and studying its intrinsic evolution in the ambit of 
the Milburn master equation. The dynamical behaviors of 
the investigated quantum correlations in terms of the dif-
ferent parameters characterizing the considered system are 
examined and discussed through Sect. 4. Finally, our main 
results are summarized in Sect. 5.

2  Two‑qubit information resource 
quantifiers

• Bell nonlocality (BL) Here, let us use the maximal 
amounts of the two-qubit Bell function Bmax(t) as an indi-
cator of two-qubit nonlocality [75, 76]. This two-qubit 
nonlocality satisfies Bmax(t) > 2 , namely Bell-CHSH 
inequality is violated [77]. The analytical representation 
of the two-qubit Bell function Bmax(t) is given by [78] 

 in which �1 and �2 are the two largest eigenvalues of the 
matrix T†T  with T = [tij] which is the correlation matrix 

(1)Bmax(t) = 2
√
�1 + �2,
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[76] of a two-qubit state M̂AB , and its elements are given 
by 

 where �i,j ( i, j = x, y, z ) are the Pauli spin matrices. In our 
investigation, the BL is quantified by 

 This means that two-qubit state has BL when this func-
tion satisfies BL(M̂AB) > 1.

•  Concurrence (CE) The CE is one of the most common 
entanglement measures for a bipartite quantum system 
M̂AB . The CE is defined as [79, 80] 

 where �i ’s are the positive eigenvalues of the matrix 
R = M̂AB(𝜎

y ⊗ 𝜎y)M̂∗
AB
(𝜎y ⊗ 𝜎y) in decreasing order with 

M̂∗
AB

 which is the complex conjugate of density matrix 
M̂AB . In general, 0 ≤ CE(M̂AB) ≤ 1.

• Entropic uncertainty (EU) The concept of uncertainty 
was first proposed by Heisenberg [19] in 1927, and then 
it was formulated by Kennard [20] and Robertson [21] in 
terms of a standard deviation. After that, some research-
ers introduced new relations based on the Shannon and 
von Neumann entropies [81, 82]. Amongst them, let us 
use the relation provided by Berta et al. [83] for a two-
particle system with a quantum memory (B), which may 
be correlated with the measured particle (A). This sce-
nario can be run between two legitimate characters called 
Alice and Bob. The uncertainty of Bob about measure-
ment outcome of Alice is bounded by [83] 

 where S(A|B) = S(M̂AB) − S(M̂B) is the conditional von 
Neumann entropy of density operator M̂AB with 
S(M̂) = −tr(M̂ log2 M̂) (for a general density matrix M̂ ). 
And c = maxi,j{�⟨pi�qj⟩�2} where �pi⟩ and �qj⟩ are eigen-
states of the incompatible observables P and Q. In the 
le f t -hand  s ide ,  S(X|B ) = S(M̂XB) − S(M̂B) wi th 
X ∈ {P,Q} being the conditional von Neumann entropy 
o f  p o s t  m e a s u r e m e n t  s t a t e s 
M̂PB =

�
i
(�pi⟩A⟨pi�⊗ �B)M̂AB(�pi⟩A⟨pi�⊗ �B), 

M̂QB =
�

j
(�qj⟩A⟨qj�⊗ �B)M̂AB(�qj⟩A⟨qj�⊗ �B). Herein, 

M̂B = trA(M̂AB) and �B is the identity operator. According 
to Eq. (5), by resorting the incompatibility P and Q with 
the Pauli spin-1/2 operators �x and �z , respectively, the 
EU, left-hand side of Eq. (5), can be expressed as 

(2)tij = tr{M̂AB(𝜎
i ⊗ 𝜎j)},

(3)BL(M̂AB) = Bmax(t) − 1.

(4)CE(M̂AB) = max{0,
√
𝜇1 −

√
𝜇2 −

√
𝜇3 −

√
𝜇4 },

(5)S(P|B ) + S(Q|B ) ≥ S(A|B ) + log2
1

c
,

(6)EU(M̂AB) ≡ S(M̂𝜎xB) + S(M̂𝜎zB) − 2S(M̂B).

3  Physical model and its dynamics

This section considers a Heisenberg XYZ model consisting 
of two qubits, say A and B, under the external transverse 
uniform magnetic field with DM and KSEA (DM–KSEA) 
interactions governed along the z-axis as [73, 74]

where �x,y,z

A,B
 ’s denote the standard Pauli matrices which are 

spanned by the lower �0⟩k and upper �1⟩k(k = A,B) states. Bz

k
 

is the transverse homogeneous magnetic field in the z-direc-
tion at k-site. Dz

1
 is the strength of z–DM interaction result-

ing to orbit–spin coupling antisymmetric contribution, Dz

2
 

represents the symmetric orbit–spin coupling contribution of 
the z–KSEA interaction, and Ji is the symmetrical spin–spin 
exchange coupling constants. Note that the special case 
Dz

1
= Dz

2
 corresponds to a uniform spin-orbit interaction.

In the two-qubit standard computational  basis states 
{��1⟩ = �11⟩, ��2⟩ = �10⟩, ��3⟩ = �01⟩, ��4⟩ = �00⟩} , the 
Hamiltonian which represents that case is given by Eq. (7), 
and its the eigenstates �El⟩(l = 1, 2, 3, 4) and the eigenvalues 
El are

with

Here, Milburn model [51] is used to explore the dynamics 
of the two-qubit information resources. The Milburn equa-
tion is given by

where M̂AB is a general density matrix of the two-qubit and 
� is the decoherence parameter.

(7)

Ĥ =
∑

i=x,y,z

Ji𝜎
i
A
𝜎i
B

+
∑

j=1,2

{
Dz

j
(𝜎x

A
𝜎
y

B
+ (−1)j𝜎

y

A
𝜎x
B
)
}
+

∑

k=A,B

Bz

k
𝜎z

k
,

(8)

�E1⟩ =Λ+
�
(W+

�
��1⟩ + ��4⟩), E1 = Jz + �,

�E2⟩ =Λ+
�
(W+

�
��2⟩ + ��3⟩), E2 = −Jz + �,

�E3⟩ =Λ−
�
(W−

�
��2⟩ + ��3⟩), E3 = −Jz − �,

�E4⟩ =Λ−
�
(W−

�
��1⟩ + ��4⟩), E4 = Jz − �,

(9)

Λ±
�
=

√
1

2
±

1

2�
(Bz

A
+ Bz

B
), Λ±

�
=

√
1

2
±

1

2�
(Bz

A
− Bz

B
),

W±
�
= ±

Jx − Jy + 2iDz

2

� ± (Bz

A
+ Bz

B
)
, W±

�
= ±

Jx + Jy − 2iDz

1

� ± (Bz

A
− Bz

B
)
,

� =
√

(Bz

A
+ Bz

B
)2 + (Jx − Jy)

2 + 4(Dz

2
)2,

� =
√

(Bz

A
− Bz

B
)2 + (Jx + Jy)

2 + 4(Dz

1
)2.

(10)
d

dt
M̂AB = −i[Ĥ, M̂AB] −

𝛾

2
[Ĥ, [Ĥ, M̂AB]],
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Using the eigenvalues El and the eigenstates �El⟩ , the 
general solution for Eq. (10) is described by the following 
density matrix M̂AB(t) [57]

with the Schrödinger unitary interaction Λmn(t) and the 
intrinsic decoherence Imn(t) terms which are described by

To obtain a particular analytical solution for Eq. (11), we 
consider that the two qubits are initially started with two dif-
ferent initial states; the uncorrelated state M̂(0) = �𝜛1⟩⟨𝜛4� 
and the maximally correlated Bell state

In the following, let us use the case of the uncorrelated state 
to explore the generation of the the two-qubit information 

(11)M̂AB(t) =

4�

m,n=1

Λmn(t) Imn(t) ⟨Em�M̂(0)�En⟩ �Em⟩⟨En�,

(12)Λmn(t) = e−i(Em−En)t, Imn(t) = e
−

�

2
(Em−En)

2t.

(13)M̂(0) =
1

2

�
(�𝜛1⟩ + �𝜛4⟩)(⟨𝜛1� + ⟨𝜛4�)

�
.

resources via BL, CE, and EU. While the case of the maxi-
mally correlated Bell state will be used to investigate the 
robustness of the two-qubit information resources against 
the Schrödinger unitary interaction and the intrinsic 
decoherence.

4  Dynamics of two‑qubit information 
resources

4.1  For initial separable state

The dynamics of the BL, CE, and EU are depicted in 
Fig. 1 for specific values of Jx = −1 , Jy = −0.5 , Jz = 2 , 
and Dz

1
= Dz

2
= 1 for different values of transverse uni-

form magnetic field B = Bz

A
= Bz

B
 and in the absence of 

the intrinsic decoherence � = 0 when initial state is sepa-
rable M̂(0) = �𝜛1⟩⟨𝜛4� . As shown in this figure, all crite-
ria oscillate during the time and their frequencies increase 
with growing magnitude of B when B > 1∕2 . As mentioned 
before, the initial state is uncorrelated and hence, BL and 
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Fig. 1  The dynamics of the BL, CE, and EU are shown for Jx = −1 , 
Jy = −0.5 , Jz = 2 , and Dz

1
= Dz

2
= 1 when the two-qubit system is 

initially in the uncorrected state M̂(0) = �𝜛
1
⟩⟨𝜛

4
� in the absence of 

the intrinsic decoherence with different transverse uniform magnetic 
fields. B = 0 in a, B = 0.5 in b, B = 2 in c, and B = 5 in d 
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CE started from one and zero, respectively, and then they 
evolve between their minimal and maximal values within the 
time. Conversely, EU begins from its maximal value and it 
fluctuates in the opposite way of BL and CE.

In Fig. 2, all parameters are the same as in Fig. 1 but 
the system is affected by the intrinsic decoherence, that is 
� = 0.02 . It is obvious that BL, CE, and EU fluctuate but 
their amplitudes become less and finally, they reach steady 
values. According to this figure, they get the fixed values 
more quickly with increasing transverse homogeneous mag-
netic field B. One may conclude that the external magnetic 
field and intrinsic decoherence have a destructive effect 
on the quantum correlations when they affect the system 
simultaneously. Hence, Bob’s information about the results 
of Alice’s measurements in a decoherence environment 
decreases with increasing B during the time.

Figure 3 is devoted to study of the behavior of BL, CE, 
and EU in the absence and presence of decoherence for 
different values of the z–DM and z–KSEA interactions 
D = Dz

1
= Dz

2
 and the other parameters are the same in 

Fig. 1b. As displayed in this figure, all functions oscillate 
throughout the time and when DM and KSEA interactions 

are applied, their frequencies and sudden change points 
increase in the absence of decoherence [compare plots 
Fig. 3a and b]. In the presence of decoherence as well as 
DM–KSEA interactions, all quantities become fixed after 
some fluctuations (see Fig. 3d). However, there is no consid-
erable difference between absence and presence of decoher-
ence by comparing plots Fig. 3a and c, in the case that the 
DM–KSEA interactions are turned off.

4.2  For initial maximally correlated state

The time evolution of the robustness quantum information 
resources is shown in Fig. 4 for specific values of exchange 
couplings and D, and different values of transverse uni-
form magnetic field B with and without intrinsic deco-
herence when the two-qubit state is maximally entangled 
M̂(0) = [(�𝜛1⟩ + �𝜛4⟩)(⟨𝜛1� + ⟨𝜛4�)]∕2 at the beginning 
time. It is obvious that BL and CE begin from their maxi-
mal values (BL(t=0)=2

√
2 − 1 ≈ 1.8284 and CE(t=0)=1) as 

expected from the assumed initial state, and conversely, EU 
starts from zero. Therefore, Bob can correctly guess Alice’s 
results at the initial moment the system interacts with the 
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Fig. 2  The dynamics of the BL, CE, and EU are shown as in Fig. 1 but under the intrinsic decoherence effect, � = 0.02
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environment. By comparing plots Fig. 4a, b with c, d respec-
tively, one can find that they oscillate over time but in the case 
of the existence of decoherence, their vibrations and sudden 
change points become less and they can be vanish faster for 
larger amount of B.

Finally, in Fig. 5 the dynamics of BL, CE, and EU have 
been drawn for those parameters in Fig. 1b and different val-
ues of DM–KSEA interactions D = Dz

1
= Dz

2
 . This figure is 

similar to Fig. 3 except that the beginning state is a maximally 
entangled state and hence, there is no any uncertainty to meas-
ure incompatible observables at t = 0 . Thus, we can see the 
destructive effects of D and intrinsic decoherence when they 
are used simultaneously. It is worth nothing that in all cases, 

the behavior of EU is in opposite way of BL and CE during the 
time. In the other words, EU lessens with growing BL and CE.

5  Concluding remarks and outlook

In this work, we have studied the dynamics of Bell non-
locality, entanglement, and entropic uncertainty for a 
two-qubit Heisenberg XYZ model with DM–KSEA inter-
actions under intrinsic decoherence and different initial 
states. Specifically, we examined the time evolution of 
the BL, CE, and EU under the effect of DM–KSEA inter-
actions, transverse uniform magnetic field, and intrinsic 
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Fig. 3  The dynamics of BL, CE, and EU are shown as in Fig. 1b but for different strengths of z–DM and z–KSEA interactions. D = 0 in a and 
D = 2 in b. Graphs c and d as in a and b but under the intrinsic decoherence effect, � = 0.02
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decoherence. The results showed that the symmetric and 
antisymmetric orbit–spin couplings greatly affect the 
oscillations behaviors and sudden change points of quan-
tum correlations. It was also found that external magnetic 
field and intrinsic decoherence have a significant effect on 
the dynamical behavior of quantum quantifiers. More pre-
cisely, we observed that by tuning DM–KSEA interactions 
as well as magnetic field strength to appropriate values, 
one can reach maximal Bell nonlocality and entanglement, 

resulting in smaller measurement uncertainty even under 
intrinsic decoherence effects. Thereby, Bob would be 
able to guess Alice’s results with high precision, which is 
extremely required in realistic quantum information pro-
cessing. Thus, we think our investigations may be benefi-
cial to assist us to understand the behaviors of the quantum 
correlations and entropic measurement uncertainty in open 
quantum systems and their controlling.
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Fig. 4  The dynamics of the robustness quantum information 
resources are shown for Jx = −1 , Jy = −0.5 , Jz = 2 , and Dz

1
= Dz

2
= 1 

when the two-qubit system is initially in the maximally correlated 
state M̂(0) =

1

2
[(�𝜛

1
⟩ + �𝜛

4
⟩)(⟨𝜛

1
� + ⟨𝜛

4
�)] in the absence of the 

intrinsic decoherence with different transverse uniform magnetic 
fields. B = 0 in (a) and B = 1 in (b). Graphs c and d as in a and b but 
under the intrinsic decoherence effect, � = 0.02
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