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Abstract

The main aim of present work is to investigate the dynamics of the chaotic nonlinear distributed order Lü

model (DOLM). The distributed order (DO) derivative is used for describing the viscoelasticity of various tech-

nical models and materials. The modified spectral numerical method is used to evaluate the numerical solutions

for DOLM. Using nonlinear feedback control and the Lyapunov direct approach, the adaptive synchronization

of two chaotic distributed order models (DOMs) is presented. We state a theorem to drive analytical controllers

which are used to achieve our synchronization. The DOLM is introduced as an example of DOMs to verify the

validity of our analytical results. Numerical computations are displayed to show the agreement between both

analytical and numerical results. The DOMs appear in many applications in engineering and physics, e.g., image

encryption and electronic circuits (ECs). Based on our proposed synchronization, the encryption and decryption

of color images are studied. Information entropy, visual analysis and histograms are calculated, together with

the experimental results of image encryption and decryption. We design the EC of the DOLM using the Mul-

tisim circuit simulator for the first time to our knowledge. Using electronic circuit simulation, we achieved the

same results for the numerical treatment of our synchronization. Other ECs can be similarly designed for other

DOMs. Keywords: Distributed order; Adaptive synchronization; Nonlinear feedback control; Image encryption;

Lyapunov direct method; Circuit implementation

1. Introduction

Distributed order fractional calculus was first proposed by Caputo in 1969 [1]. The DO derivative was

considered as a generalization of integer- and fractional-order derivatives. The DO calculus was developed by

Caputo and other researchers [2, 3, 4, 5, 6, 7]. An asymptotic stability theorem for DO time-varying models
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was presented in [4]. The generalized Wright stability of DO dynamical models was stated by Mahmoud et

al. [5]. A controller design that ensures the DOM’s solution converges at a predefined time was proposed [6].

Muñoz-Vázquez et al. [7] examined how a class of distributed-order models can be stabilized robustly. There are

numerous applications for DO differential equations in physics, engineering, and neural networks [8, 9, 10, 11].

The DO Lorenz model was employed by the authors in [9] for secure communication. Hyperchaotic masking for

a text was proposed and studied by DO hyperchaotic van der Pol oscillators [10]. Mahmoud et al. presented

DO neural networks [11] and Zang et al. [12] investigated a technique for image encryption based on DOCM.

Due to its potential uses in signal processing, secure communication, etc., the chaos synchronization problem has

received a lot of attention. Because it has strong robustness, adaptive control is appealing in several controllers

[13, 14, 15]. The adaptive control model offers numerous benefits, including the need for continuous model

information extraction during model operation and the ability to adapt to varied update laws. The input and

output data of the item can be used to continuously identify the model parameters, which increases the model’s

accuracy, and it can be applied in many different fields: secure communication, biological technology, image

process and information science [16, 17, 18, 19]. On the other hand, chaos synchronization in DO nonlinear

dynamical models is a hot topic. The synchronization for chaotic DO Lorenz model was achieved by active control

[9]. Based on linear feedback control, the synchronization for chaotic complex DO Lü and Chen was presented [5].

Using direct Lyapunov function and nonlinear feedback control, the synchronization for hyperchaotic complex

DO van der Pol was investigated [10]. Chaos synchronization is used in many schemes of image encryption

which have been presented with different properties in many applications (e.g. see [20, 21, 22, 23] and references

therein).

The modelling and applications in ECs of chaotic dynamical models have received a lot of research attention

in recent years. Many researchers designed ECs to simulate the integer-order dynamical models [24, 25, 26].

Wang et al. [24] proposed the EC of a four-wing memristive chaotic model. Based on self-directed channel

memristors, a fully autonomous chaotic oscillator circuit was realized [25]. By using numerical simulations and

circuit implementation, the basic properties of a no-equilibrium chaotic model were studied [26]. On the other

hand, the fractional-order chaotic and hyperchaotic models were used to construct ECs [27, 28, 29].

In this paper, we introduce the chaotic nonlinear distributed order Lü model (DOLM) as:

Dψ(β)x1 =a(x2 − x1),

Dψ(β)x2 =cx2 − x1x3,

Dψ(β)x3 =− bx3 + x1x2,

(1.1)

where a, b, c are constant parameters and Dψ(β) is the DO derivative [30].

The nonlinear feedback control and the Lyapunov direct approach are applied to investigate the adaptive syn-

chronization of two DOMs. We study numerically the behavoir of the DOLM through the modified spectral

numerical method [5]. A theorem to achieve our synchronization is presented and proofed. The model (1.1) is
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used as an example to achieve this kind of synchronization. We note that, the numerical simulation shows an

agreement between analytical and numerical results. Using the adaptive synchronization, the encryption and

decryption of color Peppers image are investigated. We calculate the information entropy, visual analysis and

histograms for this image. A circuit diagram is designed for DOLM (1.1) for the first time by Multisim circuit

simulator. The electronic circuit results of the adaptive synchronization of the DOLM (1.1) have an agreement

with numerical calculations.

The rest of this paper is given as. In section 2, a few theorems, definitions and lemmas are utilised in this work.

The basic properties and dynamics of the DOLM (1.1) are investigated in section 3. In section 4, we propose

a theorem to achieve the adaptive synchronization between two DOMs. We derive the analytical controllers

and the estimated parameters updating law which used to achieve the proposed synchronization. In order to

validate our suggested theorem, the numerical simulation is shown. Section 5 contains an application of adaptive

synchronization in color image encryption. The information entropy, visual analysis and histograms for color

Peppers image are given. Section 6 contains the EC which created for DOLM (1.1). We present the conclusion

of our work in section 7.

2. Basic concepts

We stated a few lemmas, theorems and definitions of DO derivative [1, 4, 5, 30], in this section.

Definition 2.1. [1] The Caputo FO derivative of a continuous function y(t) is:

CDβy(t) =
1

Γ(γ − β)

∫ t

0

y(γ)(v)

(t− v)β−γ+1
dv, (2.1)

where γ ∈ N+, (γ − 1 < β < γ).

Definition 2.2. [30] The DO derivative of y(t) is:

Dψ(β)y(t) =

∫ γ

γ−1

ψ(β)CDβy(t)dβ, (2.2)

where γ− 1 = τ0 < τ1 < ...τm = γ,∆τj = τj − τj−1 = 1
m , γ− 1 < β < γ, βj =

τj+τj−1

2 = 2j−1
2m , j = 1, 2, ...,m,m ∈

N.

We choose the grid 0 = τ0 < τ1 < ... < τm = 1, to discretize the integral interval (0, 1].

and take ∆τj = τj − τj−1 = 1
m , βj =

τj+τj−1

2 = 2j−1
2m , j = 1, 2, ...,m, m ∈ N. Using the mid-point quadrature

method, one has:

Dψ(β)x(t) =

∫ 1

0

ψ(β)CDβx(t)dβ ≈
m∑
j=1

ψ(βj)
CDβjx(t)∆τj . (2.3)

We expressed the DOM as a multi term FO models as:

m∑
j=1

ψ(βj)
CDβjx(x)∆τj = F (x(t))A+ f(x(t)), (2.4)
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where x ∈ Rn.

Lemma 2.1. [4] Suppose that a Lyapunov function V (t, x(t)) exists that is sufficient

γ1∥x∥a ≤ V (t, x(t)) ≤ γ2∥x∥ab, (2.5)

Dψ(β)V (t, x(t)) ≤ −γ3∥x∥ab, (2.6)

where β ∈ (0, 1], and a, b, γi > 0, i = 1, 2, 3. Therefore x̄ = 0 is Mittag-Leffler stable, where x̄ = 0 is a fixed point

for DOM (2.4). The x̄ = 0 is globally Mittag-Leffler stable, if the assumptions hold globally on Rn.

Theorem 2.1. [5] The zero solution of (2.4) is asymptotically stable, if

1. lim
∥x(t)∥→0

∥f(x(t))∥
∥x(t)∥ = 0;

2. |argλi(− θk−1

θk
)| > πµk

2 ; k=1, 2, ...,m, i=1,2, ...,n,

where µm = βm − βm−1 and (m + 1) is the number of steps for β ∈ (0, 1], θk ∈ Rn×n, θ0 = −A, θk =

I∆τkψ(βk), and λi(
θk−1

θk
) is the eigenvalues of the matrix θk−1

θk
.

Lemma 2.2. [4] Suppose y(t) ∈ Rn is differentiable function, then

1

2
Dψ(β)yT (t)y(t) ≤ yT (t)Dψ(β)y(t). (2.7)

3. Dynamics of chaotic distributed order Lü model (1.1)

In this section we study the dynamics of the DOLM (1.1).

3.1. Properties and stability for model (1.1)

By solving model (1.1), the fixed points are: E0 = (0, 0, 0, 0)T , E1 = (
√
bc,
√
bc, c)T and E2 = (−

√
bc,−

√
bc, c)T .

Using Theorem 2.1, we study the stability of E0 of model (1.1). The first part of Theorem 2.1 is tested as:

lim
∥x(t)∥→0

∥f(x(t))∥
∥x(t)∥

= lim
∥x(t)∥→0

√
(x1x3)2 + (x1x2)2√
x21 + x22 + x23

= lim
∥x(t)∥→0

√
x21(x

2
2 + x23)√

x21 + x22 + x23

≤ lim
∥x(t)∥→0

∥x(t)∥ = 0.

(3.1)

For the choice m = 50, ψ(β) = β2

103(1−β)2 , k = 1 and ∆τm = 1
m , we can test the second part in Theorem 2.1.

Then θ0
θ1

= 4× 109


−a a 0

0 c 0

0 0 −b

,

then, the corresponding eigenvalues can be written as: λ1 = −a, λ2 = −b and λ3 = c.
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If we choose the parameters a, b and c such that | arg(λi(− θ0θ1 ))| >
π

100 , i = 1, 2, 3, the zero solution of model

(1.1) is stable. For k = 2, 3, ...,m, the pervious condition is given as:

| arg(λi(−
θk−1

θk
))| = π >

µmπ

2
=

π

100
, i = 1, 2, 3; (3.2)

Therefore the zero solution of model (1.1) is asymptotically stable.

4. Adaptive synchronization for DOMs with uncertain parameters

To achieve adaptive synchronization between two DOMs, we use the Lyapunov direct method and nonlinear

feedback control method

We consider the drive DOMs as:

Dψ(β)x = F (x(t))A+ f(x(t)), (4.1)

where x ∈ Rn, the matrix F ∈ Rn×p, the vector A ∈ Rp, and f(x) ∈ Rn. Let the response DOM is:

Dψ(β)y = F (y(t))Â+ f(y(t)) + u(t), (4.2)

where y ∈ Rn, Â is the estimate vector of A and u(t) ∈ Rn is a suitable controller which will be given later.

Definition 4.1. The drive model (4.1) is adaptive synchronization with the response model (4.2), if

lim
t→∞

∥e∥ = lim
t→∞

∥y(t)− x(t)∥ = 0. (4.3)

From models (4.1) and (4.2), we can write the model of errors as:

Dψ(β)e = (F (y)− F (x))A+ f(y)− f(x) + F (y)eA + u(t), (4.4)

where eA = Â−A.

Remark 4.1. If the distribution function is chosen as ψ(β) = δ(β − β), then the fractional results with order

β that inspired this work are recovered, while one can get the adaptive synchronization between integer models if

β = 1, where δ(.) is the Dirac delta function.

Theorem 4.1. The response model (4.2) is synchronized to the drive model (4.1) as adaptive synchronization

if:

u(t) = (F (x)− F (y))A+ f(x)− f(y)−Ke, (4.5)
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Dψ(β)eA = Dψ(β)Â = −(F (y))T e, (4.6)

where u(t) is the controller, Eq. (4.6) gives the estimated parameters updating law, and K ∈ Rn×n is the gain

matrix.

Proof. Suppose the Lyapunov direct function as V (e(t)) = 1
2e
T
A(t)eA(t) +

1
2e
T (t)e(t), then

Dψ(β)V (e(t)) = Dψ(β){1
2
eTA(t)eA(t) +

1

2
eT (t)e(t)}. (4.7)

Using lemma 2.2 and Eqs. (4.4-4.6), we have

Dψ(β)V (e(t)) ≤ eTA(t)Dψ(β)eA(t) + eT (t)Dψ(β)e(t)

= eTA(t)(−FT (y)e(t)) + eT (t)(F (y)eA(t)−Ke(t))

= −eT (t)Ke(t)

≤ −µminV (e(t)).

(4.8)

According to Lemma 2.1, therefore lim
t→∞

∥e(t)∥ = 0, where µmin is the smallest value of the eigenvalues of K.

4.1. Numerical simulations

In this subsection, we will give the DOLM as an example of DOMs (4.1) to confirm the validity of the

theorem’s analytical results 4.1.

Dψ(β)x1 =a(x2 − x1),

Dψ(β)x2 =cx2 − x1x3,

Dψ(β)x3 =− bx3 + x1x2.

(4.9)

We use Matlab software to evaluate the Lyapunov exponents for the model (4.9), we choose ψ(β) = β2

103(1−β)2 ,

a = 36, b = 3, c = 20 and the initial values (5.706, 6.3379, 17.0355)T . These Lyapunov exponents are λ1 = 8.6868,

λ2 = −12.1279, λ3 = −69.1089. So that this model has chaotic behaviour as depicted in Fig. 1.

Model (4.9) can be written in form (4.1), where A = (a, b, c)T , f(x) = (0,−x1x3, x1x2)T and F (x) =
(x2 − x1) 0 0

0 0 x2

0 −x3 0

.

We consider model (4.9) is the drive model and the response model can be written in the form (4.2) as:

Dψ(β)y1 =â(y2 − y1) + u1,

Dψ(β)y2 =ĉy2 − y1y3 + u2,

Dψ(β)y3 =− b̂y3 + y1y2 + u3,

(4.10)
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Figure 1: Chaotic solution of model (4.9) for a = 36, b = 3 and c = 20: (a) x2, x3, x1 space, (b) x1, x2 space, (c) x1, x3 space, (d)

x2, x3 space.
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Figure 2: The state variables of adaptive synchronization of the drive model (4.9) and the response model (4.10): (a) x1 and y1 vs

t, (b) x2 and y2 vs t, (c) x3 and y3 vs t.

where Â = (â, â, ĉ)T and u = (u1, u2, u3)
T .

The response model (4.10) is synchronized to the drive model (4.9) by theorem 4.1, if u(t) takes:

u(t) =


a(x2 − x1 − y2 + y1)− k1e1

c(x2 − y2)− x1x3 + y1y3 − k2e2
b(−x3 + y3) + x1x2 − y1y2 − k3e3

 , (4.11)

where K = diag(k1, k2, k3) is the gain matrix, ei = yi − xi, i = 1, 2, 3 are the errors of the synchronization.

In numerical simulations, for K = diag(0.2, 2, 3), and the initial values of the drive model (4.9) and the

response model (4.10) are, respectively, x0 = (5.706, 6.3379, 17.0355)T , y0 = (2, 3, 4)T , Â0 = (37, 2, 21)T , the

adaptive synchronization is achieved as shown in Figs. 2-4. Fig. 2 depicts the the state variables of adaptive

synchronization between the models (4.9-4.10). As seen in Fig. 3, the synchronization errors approach zero.

While the estimate of unknown parameters Â = (â, b̂, ĉ)T converge to A = (a, b, c)T in Fig. 4. In order to

establish synchronization, the analytical expansion of the controllers (4.11), which is derived from the theorem

4.1, is used.

5. Application of adaptive synchronization in image encryption

In this section, using the adaptive synchronization between DOLMs, we stated the application of image

encryption. In the sender, we consider the model (4.9) as the drive model which generates chaotic signals. These

signals of (4.9) drive the response model (4.10) to achieve our synchronization.
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5.1. Encryption process

The encryption process for color images involves several steps. First, we take the plain image I with a size of

M ×N × 3, which is made up of three image components: red (R), green (G), and blue (B). Each component

has a size of M × N , and we encrypt each channel separately. We represent the image I as [IR, IG, IB ]. Next,

each channel of the color image I, which has a size of M ×N pixels, is initially represented as an M ×N matrix

of pixels. For example, the red channel (IR) can be represented as a matrix of pixels:

IR =


IR11 IR12 . . . IR1N

...
...

. . .
...

IRM1 IRM2 . . . IRMN

 . (5.1)

We then transform the 2D matrices of IR, IG, and IB into 1D vectors, PR, PG, and PB , respectively, with a

length of MN as:

PR = [IR11, IR12, ..., IR1N , IR21, IR22, ..., IR2N , IRM1, IRM2, ..., IRMN ] = [ER1, ER2, ..., ERMN ]. (5.2)

where, each element in the vectors is a pixel’s gray value in the range of 0-255. We utilize the synchronization

between the drive model (4.9) and response model (4.10) to generate a chaotic sequence K. The models are

iterated for N0 +M × N times, and the former N0 values are discarded. The chaotic sequence K is an MN -

dimensional vector as:

K = [K1,K2, ...,KMN ]. (5.3)

We sort the chaotic sequence K in ascending order and calculate decimal values M using the sorted sequence.

M = mod(floor(K)× 1014, 256), (5.4)

We perform an exclusive XOR operation between M and PR to generate the encrypted vector HR.

HR =M ⊕ PR. (5.5)

We repeat the same process for PG and PB to generate HG and HB , respectively. Finally, we convert the vectors

HR, HG, and HB to 2D matrices to generate the encrypted color image of size M ×N .

5.2. Decryption process

As we know the decryption is the reverse process of encryption and the key used for encryption and decryption

are the same. The generated chaotic sequence is consistent for the encryption and decryption process. Therefore,

the encryption application is symmetric and reversible, and we can easily decrypt the encrypted image with the

inverse steps of encryption process.
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Image Red Green Blue

Original Peppers 7.3564 7.6187 7.1658

Encrypted Peppers 7.3563 7.6187 7.1663

Table 1: The information entropy of original and decrypted Peppers images.

5.3. Experimental results

It seems that in this subsection, the effectiveness of encrypting and decrypting color images is being assessed.

The performance of the application is being evaluated using various methods such as visual analysis, information

entropy, and histogram analysis. The test images used for this evaluation is Peppers, which is 512× 512 in size

and can be seen in Figure 5(a).

5.3.1. Visual analysis

This subsubsection uses visual analysis to evaluate the similarity and dissimilarity of original, and decrypted

images. Figure 5 displays the simulation results, with original image in Figure 5(a), and decrypted image in

Figure 5(b). The encrypted image is noise-like, and the decrypted image is identical to the original one. This

demonstrates the success of our image encryption algorithm in encrypting and decrypting color images.

5.3.2. Information Entropy

Information entropy is used to measure the randomness of an image, which is calculated as follows:

H(I) =

N∑
i=1

P (i) log2
1

P (i)
, (5.6)

where N is the maximum possible intensity value, and P (i) denotes the probability of intensity value i in image

I.

The information entropy values of encrypted and original images in RGB color images generated by the

encryption algorithm in the Table 1, respectively. The proposed approach has an information entropy of almost

8, which means that there is a significant amount of randomness and it is close to the ideal value. This indicates

that there is very little chance of information leakage in the proposed algorithm.

5.3.3. Histogram analysis

The histogram h(i) for an image with intensity values between 0 and L gives the total number of pixels with

intensity i. This histogram can be used to analyze the frequency of encrypted and decrypted images. However,

it is important to note that the histogram of an encrypted image should not be similar to the histogram of the

image before encryption. Fig. 6 shows the histograms of the B channel of original Peppers, and decrypted images

respectively.
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Figure 5: Original and decrypted Peppers images.
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Figure 6: Analysis of histogram of B component of original image Peppers and its decrypted image.

The histogram of a color image component is not uniformly distributed. Therefore, the proposed encryption

algorithm can hide statistical information of the plain image component by evenly distributing pixels in the

encrypted image.

6. Electronic Circuit

In this section, we want to design an EC to simulate both our chaotic drive and response models. This requires

a circuit that is able to simulate the frequency response of the DO operator. In [31], the authors proposed a

method that uses successive pole-zero pairs that form a zig-zag pattern to approximate the frequency response of

a single fractional order operator in a specific frequency range and for a particular maximum discrepancy value.

The authors formulated a set of equations where the fractional order value, the frequency range, and the required
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discrepancy are given and the values of the poles and zeros of the approximating transfer function are returned.

However, this method is viable in the single fractional order case because the slope of the frequency response of

the transfer function is constant which is not the same for the DO operator.

We propose a similar method where instead of using a set of equations to find the location of the pole-zeros

pairs of the approximating transfer function, we implement an algorithm that uses an iterative method to achieve

the same goal. This way even though the frequency response of the fractional order operator does not have a

constant slope we are able to find an approximating function in a specific range of frequencies for a particular

maximum discrepancy. In fact, our proposed method has the flexibility to be generalized for any transfer function

with a low-pass frequency response which is monotonically decreasing beyond the corner frequency. The pseudo-

code of this method is shown in Algorithm 1 whereas the Bisection method, in Algorithm 2, is used as the

iterative method to find the exact locations of the poles and zeros of the approximate transfer function.

Algorithm 1 Algorithm for finding approximate function to the distributed fractional order operator

a← ωmin

b← ωmax

flag ← false ▷ flag for pole/zero

Fapprox ← F (ωmin)

array[1]← bisection(a, b, F, Fapprox)

const← F (ωmin) + 20log(array[1])

Fapprox(ω)← const− 20log(ω)

while abs(F (ωmax)− Fapprox(ωmax)) > δ do ▷ δ = required discrepancy

a← array[end]

array[end+ 1]← bisection(a, b, F, Fapprox)

if flag is false then

Fapprox(ω)← Fapprox(array[end])

flag ← true

else

const← F (ωmin) + 20log(array[end])

Fapprox(ω)← const− 20log(ω)

flag ← false

end if

end while

Recalling the definition of the proposed distributed fractional order derivative operator in (2.3). by taking
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Algorithm 2 Algorithm of Bisection method

c← (a+ b)/2

while abs(abs(F (c)− Fapprox(c))− δ) > 10−6 do

if sign(abs(F (c)− Fapprox(c))− δ) = sign(abs(F (ωmax)− Fapprox(ωmax))− δ) then

b← c

else

a← c

end if

c← (a+ b)/2

end while

return c

the Laplace transform for both sides

L {Dψ(β)x(t)} ≈
m∑
j=1

ψ(βj)∆τjs
βjL {x (t)}, (6.1)

where m = 50, βj =
2j−1
2m , ψ(β) = β2

103(1−β)2 and ∆τm = 1
m , thus the integral operator can be written as:

F (s) =
1∑m

j=1 ψ(βj)∆τjs
βj

(6.2)

Algorithm 1 is implemented in Matlab to find the approximate transfer function of (6.2). Since the frequency

response of the integral operator in (6.2) tends to infinity at low frequency, a constant value of 0.001 is added

to the denominator to obtain a finite value which is required for any practical application. Setting the value

of ωmin = 10−5 rad/s, ωmax = 10 rad/s and δ = 1 dB, the frequency response of the integral operator and

the zig-zag pattern is shown in Fig. 7 while the frequency responses of the integral operator with the resulting

approximating function are presented in Fig. 8. The equation of the transfer function of the approximating

function can be shown as:

F (s) ≈ 3.9827(s+ 0.002159)(s+ 0.007596)

(s+ 0.001615)(s+ 0.003995)(s+ 0.01013)
(6.3)

A tree-shaped model (TSM), shown in Fig. 9, was presented in [32] which uses resistors and capacitors in a

configuration that has a transfer function of successive poles and zeros as the one represented in (6.3). The

transfer function of the TSM can be written as:

−F (s) = −R
C0

(C0

C1
+ C0

C3
)(s+ Ra+Rb

RaC2Rc
)(s+ 1

C1Rc+C3Rc
)

s3 + ( Ra+Rb

RaC2RB
+ 1

C3Rc
+ C1+C3

C1RaC3
)s2 + ( Ra+Rb

RaC2RbC3Rc
+ 1

C1RaC3Rc
+ C1+C3

C1RaC2RbC3
)s+ 1

C1RaC2RbC3Rc

,

(6.4)

where C0 is a unit parameter used to adjust the resistors and capacitors to values practical for ECs. Choosing

R = 1MΩ, C0 = 1µF , Ra = 854.389MΩ, Rb = 145.611MΩ, Rc = 66.151MΩ, C1 = 294.732nF , C2 = 3.722µF
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Figure 7: The frequency response of the integral operator and the zig-zag pattern: (a) over the complete range and (b) magnified

area for more detail.

Figure 8: The frequency response of the integral operator and the approximating function.
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Figure 9: Tree-shaped model.

and C3 = 1.695µF , the transfer function becomes equal to (6.3) with a negative sign due to inverting amplifier

which can be accounted for in the completed circuit.

The drive model in (4.9) can be implemented as an EC using the TSM model where the schematic diagrams

of x1, x2 and x3 equations are shown in Fig. 10, Fig. 11 and Fig. 12 respectively. The equations obtained from

schematic diagrams for the drive model in the Laplace domain are derived as:

X1(s)

F (s)
=
R1

R
(X2(s)−X1(s)),

X2(s)

F (s)
=
R2

R
X2(s)−L {x1(t)x3(t)},

X3(s)

F (s)
=L {x1(t)x2(t)} −

R3

R
X3(s),

(6.5)

where R = 1MΩ, R1 = 36MΩ, R2 = 20MΩ and R3 = 3MΩ. The schematic diagram is implemented with ideal

components in the Multisim schematic solver tool and the simulation results of the drive model circuit are shown

in Fig. 13

Applying the same procedure for the estimated parameters updating equation in (4.6), the schematic diagrams

for â, b̂ and ĉ are shown in Fig. 14, Fig. 15 and Fig. 16 respectively. The equations derived from the schematic

diagrams in the Laplace domain can be written as:

Â(s)

F (s)
=L {−(y2(t)− y1(t))(y1(t)− x1(t))},

B̂(s)

F (s)
=L {y3(t)(y3(t)− x3(t))},

Ĉ(s)

F (s)
=L {−y2(t)(y2(t)− x2(t))},

(6.6)

16



Figure 10: Schematic diagram of equation for x1 of model (6.5).

Figure 11: Schematic diagram of equation for x2 of model (6.5).

Figure 12: Schematic diagram of equation for x3 of model (6.5).
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Figure 13: The simulation results of the drive model circuit: (a)x1, x2 space, (b)x1, x3 space and (c)x2, x3 space.

Figure 14: Schematic diagram of equation for â of model (6.6).

Similarly, we can design the EC for the response model in (4.10), the schematic diagrams for y1, y2 and y3

are shown in Fig. 17, Fig. 18 and Fig. 19 respectively. The equations derived from the schematic diagrams in

the Laplace domain can be written as:

Y1(s)

F (s)
=L {â(t)(y2(t)− y1(t))}+

R1

R
(X2(s)−X1(s)) +

R1

R
(Y1(s)− Y2(s)) +

R4

R
(X1(s)− Y1(s)),

Y1(s)

F (s)
=Ĉ(s)Y2(s) +

R

R6
X2(s)−L {x1(t)x3(t))} −

R

R6
Y2(s) +

R5

R
(X2(s)− Y2(s)),

Y1(s)

F (s)
=−L {b̂(t)y3(t))}+ L {x1(t)x2(t)},

(6.7)

where R = 1MΩ, R1 = 36MΩ, R4 = 200kΩ, R5 = 2MΩ and R6 = 50kΩ. The simulation results of synchro-

nization errors between the drive and response models are shown in Fig. 20 while the values of the estimated

parameters are presented in Fig. 21.
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Figure 15: Schematic diagram of equation for b̂ of model (6.6).

Figure 16: Schematic diagram of equation for ĉ of model (6.6).

19



Figure 17: Schematic diagram of equation for y1 of model (6.7).
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Figure 18: Schematic diagram of equation for y2 of model (6.7).

Figure 19: Schematic diagram of equation for y3 of model (6.7).
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Figure 20: Synchronization errors of circuit simulation.

Figure 21: Estimated parameters of circuit simulation.
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7. Conclusion

The dynamics of the proposed chaotic distributed order Lü model (DOLM) is examined, and its chaotic

solution is demonstrated in Fig. 1. The Lyapunov direct approach and nonlinear feedback control are used

to achieve the adaptive synchronization between two DOMs. We presented theorem 4.1 to drive the analytical

controllers (4.5) and the estimated parameters updating law (4.6). In order to verify the accuracy of the analytical

results obtained by Theorem 4.1, we used the DOLM as an example. The numerical results are calculated to

show the effectiveness of our synchronization technique, see Figs. 2-4.

A color image encryption scheme is provided using the adaptive synchronization. The simulation results for

original and decrypted images are shown in Fig. 5. In Table 1, we calculated and analysed the information

entropy of encrypted and plain images. They are clearly approaching the ideal value of 8. The ciphered image

histograms are almost flat and the encrypted image distributions are really uniform as shown in Fig. 6. The

results of encryption and decryption for color images were presented using Matlab programme. A novel approach

for approximating the distributed order operator is proposed. This approach uses an iterative method to find

the location of the poles and zeros of the approximating transfer function. Our proposed approach can be

implemented to approximate any distributed order operator with the desired level of accuracy. The ECs for the

DOLM (1.1) are given in Figs. 10-19. The results of the adaptive synchronization of the ECs as shown in Figs.

20-21 agree with the numerical results of Figs. 3-4.
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