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In this paper, we investigate the existence of a unique coupled fixed point for α−admissible mapping which is of F(ψ1,ψ2)−contraction in
the context ofM−metric space.We have also shown that the results presented in this paper would extendmany recent results appearing in
the literature. Furthermore, we apply our results to develop sufficient conditions for the existence and uniqueness of a solution for a coupled
system of fractional hybrid differential equations with linear perturbations of second type and with three-point boundary conditions.

1. Introduction

Fixed-point theory is an outstanding source which gives
responsible techniques for the existence of fixed points for
self-mappings under different conditions. One of the newest
branches of fixed-point theory concerned with the study of
coupled fixed points, brought by Guo and Lakshmikantham
[1]. In [2], Bhaskar and Lakshmikantham established some
fixed and coupled fixed-point theorems for contractions in
two variables defined on partially ordered metric spaces with
applications to ordinary differential equations. (ereafter,
these results were extended by several authors (see [3–6]).

Inspired by the notion of partial metric (or, p−metric)
which is one of the vital generalizations of the standard
metric, Asadi et al. [7] proposed the concept of M−metric
which refines the p−metric and produces useful basic to-
pological concepts. For some fixed-point results and various
contractive definitions that have been employed in
M−metric space, we refer the reader to [8–12].

In [13] (see also, [14–16]), Monfared et al. established
some fixed-point results for α−admissible mappings which
are F(ψ,φ)−contractions in complete M−metric spaces.
Now, we state one of their main results.

Theorem 1. Let (X, μ) be a complete M−metric space and
T: X⟶ X be an α−admissible mapping. Suppose that the
following condition is satisfied:

[ψ(μ(Tx, Ty)) + l]
α(x,Tx)α(y,Ty) ≤F(ψ(μ(x, y)),φ(μ(x, y))) + l,

(1)

for all x, y ∈ X and l≥ 1, where F ∈ C, ψ is an altering
distance function, and φ is an ultra-altering distance function.
Suppose that either

(a) T is continuous
(b) If xn􏼈 􏼉 is a sequence in X such that xn􏼈 􏼉⟶ x,

α(xn, xn+1)≥ 1, ∀n, then α(x, Tx)≥ 1
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If there exists x0 ∈ X such that α(x0, Tx0)≥ 1, then T has
a fixed point.

Hybrid differential equations have been of great interest
as they include several dynamic systems as special cases. (e
papers [17, 18] discussed the existence and uniqueness re-
sults and some fundamental differential inequalities for first-
order hybrid differential equations with perturbations of 1st
and 2nd type, respectively.

Fractional calculus is a field of mathematics that deals
with the derivatives and integrals of arbitrary order. Indeed,
it is found to be more realistic in describing and modeling
several natural phenomena than the classical one. In fact,
fractional differential equations (FDEs) play a major role in
modeling many real-life problems such as physical phe-
nomena, computer networking, medicine (the modeling of
human tissue), mechanics (theory of viscoelasticity), elec-
trical engineering (transmission of ultrasound waves) and
many others (see [19–21]).

Fractional hybrid differential equations (FHDEs) can be
employed in modeling and describing nonhomogenous
physical phenomena that take place in their form. FHDEs
have been studied using a Riemann–Liouville differential
operator of order α> 0 in many literature studies (see
[22–26]).

In [27], Shaob et al. used Bashiri fixed-point theorem
[22] to prove the existence only of a solution to a three-point
boundary value problem for a coupled system of FHDEs in
Banach spaces.

In line with the above studies, our purpose in this paper
is to introduce the notion of α−admissible mapping with two
variables and generalize (eorem 1 to coupled fixed-point
version. (en, we apply our main results to prove the ex-
istence and uniqueness of a solution to the following system
of FHDEs involving Riemann–Liouville fractional
derivative:

D
α
[x(t) − f(t, x(t))] � g t, y(t), I

β
y(t)􏼐 􏼑,

x
(i)

(0) �
zif(t, x(t))

zti

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0,

x(τ) � δx(η),

(2)

D
α
[y(t) − f(t, y(t))] � g t, x(t), I

β
x(t)􏼐 􏼑,

y
(i)

(0) �
zif(t, y(t))

zti

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0,

y(τ) � δy(η),

(3)

for all i � 0, 1, . . . , n − 2, t ∈ J � [o, τ], τ > 0, α ∈ (n − 1, n],
β> 0, 0< η< τ, δ ≠ (τ/η)α− 1, f ∈ C(J × R), and
g ∈ C(J × R2).

2. Preliminaries

In 1994, Matthews [28] introduced the notion of a p−metric
space as a part of the study of denotational semantics of

dataflow networks. In p−metric spaces, self-distance of an
arbitrary point need not be equal to zero.

Definition 1 (see [28]). A p−metric on a nonempty set X is a
mapping p: X × X⟶ [0,∞) such that, for all x, y, z ∈ X,

(p1) p(x, x) � p(y, y) � p(x, y)⇔x � y

(p2) p(x,x) ≤p(x, y)

(p3) p(x, y) � p(y, x)

(p4) p(x, y)≤p(x, z) + p(z, y) − p(z,z)

(en, (X, p) is called a p−metric space.
Notice that, every metric space can be defined to be

p−metric space with zero self-distance. After that, Asadi
et al. generalized the above definition by relaxing the axiom
(p2) as follows.

Definition 2 (see [7]). For a nonempty set X, a function
μ: X × X⟶ [0,∞) is called an M−metric if it fulfils the
following:

(m1) μ(x, x) � μ(y, y) � μ(x, y)⇔x � y

(m2) mxy ≤ μ(x, y), where mxy �min μ(x,x),􏼈 μ(y,y)}

(m3) μ(x, y) � μ(y, x)

(m4) (μ(x,y) − mxy)≤(μ(x,z) − mxz) + (μ(z,y)− mzy)

(en, the pair (X, μ) is called an M−metric space.

Lemma 1 (see [7]). Every p−metric is an M−metric.
Here, we give an example to show that the converse might

not be held.

Example 1 (see [7]). Let X � 1, 2, 3{ } and define

μ(1, 2) � μ(2, 1) � 10,

μ(1, 1) � 1,

μ(2, 2) � 9,

μ(1, 3) � μ(3, 1) � μ(3, 2) � μ(2, 3) � 7,

μ(3, 3) � 5.

(4)

So μ is M−metric but it is not p−metric for
μ(2, 2)≰ μ(2, 3). Also, μ is not metric for self-distances are
not zero.

(us, the class of M−metric spaces is effectively larger
than that of both ordinary metric and p−metric spaces.

Notation 1. Let (X, μ) be an M−metric space; then define

μw
(x, y) � μ(x, y) − 2mxy + Mxy,

whereMxy � max μ(x, x), μ(y, y)􏼈 􏼉.
(5)

Hence, μw is an ordinary metric induced by the
M−metric μ.

Each M−metric μ on X generates a T0 topology τμ on X

formed by the set

Bμ(x, ε): x ∈ X, ε> 0􏽮 􏽯, (6)

where
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Bμ(x, ε) � y ∈ X: μ(x, y)<mxy + ε􏽮 􏽯. (7)

(e notions of convergent sequence, Cauchy sequence,
and complete M−metric space (X, μ) are given as follows:

(1) A sequence xn􏼈 􏼉 in (X, μ) converges to a point x ∈ X

if

lim
n⟶∞

μ xn, x( 􏼁 − mxnx􏼐 􏼑 � 0. (8)

(2) A sequence xn􏼈 􏼉 in (X, μ) is called μ−Cauchy if

lim
n,m⟶∞

μ xn, xm( 􏼁 − mxnxm
􏼐 􏼑,

lim
n,m⟶∞

Mxnxm
− mxnxm

􏼐 􏼑
(9)

exist and are finite.
(3) (X, μ) is said to be complete if every μ−Cauchy

sequence xn􏼈 􏼉 in it converges, with respect to τμ, to a
point x ∈ X, and

lim
n,m⟶∞

μ xn, xm( 􏼁 − mxnxm
􏼐 􏼑 � lim

n,m⟶∞
Mxnxm

− mxnxm
􏼐 􏼑 � 0.

(10)

Lemma 2 (see [7]). Let (X, μ) be an M−metric space; then,

(1) xn􏼈 􏼉 is a μ−Cauchy sequence in (X, μ) if and only if it
is Cauchy sequence in the metric space (X, μw).

(2) (X, μ) is complete if and only if (X, μw) is complete.
Furthermore,

lim
n⟶∞

μw
xn, x( 􏼁 � 0⟺ lim

n⟶∞
μ xn, x( 􏼁 − mxnx􏼐 􏼑

� lim
n⟶∞

Mxnx − mxnx􏼐 􏼑 � 0.
(11)

Lemma 3 (see [7]). Assume that xn⟶ x and yn⟶ y in
an M−metric space (X, μ); then,

lim
n⟶∞

μ xn, yn( 􏼁 − mxnyn
􏼐 􏼑 � μ(x, y) − mxy􏼐 􏼑. (12)

As a consequence of Lemma 3, we have

xn⟶ x, in (X, μ)⟹ lim
n⟶∞

μ xn, y( 􏼁 − mxny􏼐 􏼑 � μ(x, y) − mxy􏼐 􏼑,

xn⟶ x andxn⟶ y, in (X, μ)⟹ lim
n⟶∞

μ xn, xn( 􏼁 − mxnxn
􏼐 􏼑 � μ(x, y) − mxy􏼐 􏼑.

(13)

Definition 3 (see [29]). A mapping F: [0,∞)2⟶ R is
called a C−class function if it is continuous and satisfies the
following axioms:

(1) F(s, t)≤ s

(2) F(s, t) � s implies that either s � 0 or t � 0 for all
t ∈ [0,∞)

Let C denote the C−class functions.

Definition 4 (see [20, 21]). (e fractional integral of order
α> 0 of a function x: [0,∞)⟶ R is given by

I
α
x(t) �

1
Γ(α)

􏽚
t

0
(t − s)

α− 1
x(s)ds, (14)

provided that the right side is pointwise defined on [0,∞).

Definition 5 (see [20, 21]). (e fractional derivative of order
α> 0 of a continuous function x: [0,∞)⟶ R is given by

D
α
x(t) �

1
Γ(n − α)

d
dt

􏼠 􏼡

n

􏽚
t

0

x(s)

(t − s)α−n+1 ds, (15)

where n � [α] + 1, provided that the right side is pointwise
defined on [0,∞).

Lemma 4 (see [30]). Riemann–Liouville fractional integral
and derivative have the following properties:

(1) IαIβx(t) � Iα+βx(t) andDαIβx(t) � Iβ− αx(t), for all
β≥ α> 0, x ∈ L[0, 1]

(2) IαDαx(t) � x(t) + c1t
α−1 + · · · + cntα−n, where n � [α]

+1 and x,Dαx ∈C[0,1]∩L[0,1]

(3) Iα: C[0, 1]⟶ C[0, 1], α> 0

3. Fixed-Point Results

First, we introduce the following concepts that generalize the
corresponding ones used in [13] and will be beneficial in the
sequel.

Definition 6 Let T: X × X⟶ X and α: X × X⟶ [0,∞);
then, T is called an α−admissible mapping if

α(x, u)≥ 1,

α(y, v)≥ 1⟹α(T(x, y), T(u, v))≥ 1, ∀(x, y), (u, v) ∈ X
2
.

(16)

Note that, if equation (16) holds, then we have
α(T(y, x), T(v, u))≥ 1 too. Consider the following classes of
functions:
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Ψ1 � ψ: [0,∞)
2⟶ [0,∞),ψ is continuous, strictly increasing andψ t1, t2( 􏼁 � 0⟹t1 � t2 � 0􏽮 􏽯,

Ψ2 � ψ: [0,∞) ×[0,∞)⟶ [0,∞),ψ is continuous andψ t1, t2( 􏼁 � 0⟹t1 � t2 � 0􏼈 􏼉,

Φ � φ: [0,∞)⟶ [0,∞),φ(s + t)≤φ(s) + φ(t) andφ
t

2
􏼒 􏼓≤

φ(t)

2
∀ s, t≥ 0􏼨 􏼩.

(17)

Theorem 2. Let (X, μ) be a complete M−metric space and
T: X × X⟶ X be an α−admissible mapping for which there
exist F ∈ C, ϕ ∈ Φ, ψ1 ∈ Ψ1, and ψ2 ∈ Ψ2 such that

ψ1(t.t)≤ ϕ(t) and for all (x, y), (u, v) ∈ X2 with
α(x, u)≥ 1, α(y, v)≥ 1; we have

[ϕ(μ(T(x, y), T(u, v))) + l]
max α(x,u),α(y,v){ } ≤F ψ1

K(x, u) + K(y, v)

2
􏼠 􏼡,ψ2

K(x, u) + K(y, v)

2
􏼠 􏼡􏼠 􏼡 + l, (18)

where

K(x, u) �
μ(u, T(u, v))[1 + μ(x, T(x, y))]

1 + μ(x, u)
, μ(x, u)􏼠 􏼡,

K(y, v) �
μ(v, T(v, u))[1 + μ(y, T(y, x))]

1 + μ(y, v)
, μ(y, v)􏼠 􏼡.

(19)

Suppose that either

(a) T is continuous.
(b) For a convergent sequence xn􏼈 􏼉 in (X, μ), we have

xn􏼈 􏼉⟶ x, α xn, xn+1( 􏼁≥ 1⟹α xn, x( 􏼁≥ 1, ∀n,

xn⟶ x, xn⟶ y⟹α(x, y)≥ 1.
(20)

If there exist x0, y0 ∈ X such that α(x0, T(x0, y0))≥ 1
and α(y0, T(y0, x0))≥ 1, then T has a coupled fixed point.

Proof. Starting with x0, y0 ∈ X, define the sequences
xn􏼈 􏼉, yn􏼈 􏼉 ⊂ X by

xn+1 � T xn, yn( 􏼁,

yn+1 � T yn, xn( 􏼁,

∀n ∈ N0.

(21)

By induction methodology for n ∈ N0, we shall prove
that

α xn, xn+1( 􏼁≥ 1,

α yn, yn+1( 􏼁≥ 1,∀n.
(22)

Indeed, we have α(x0, x1)≥ 1 and α(y0, y1)≥ 1. Suppose
that (22) holds for some n and we are going to prove it for
n + 1. Since T is α−admissible mapping, then by (21), we
obtain α(xn+1, xn+2)≥ 1 and α(yn+1, yn+2)≥ 1. (us, (22)
holds for all n. From (18)–(22), we have

ϕ μ xn, xn+1( 􏼁( 􏼁 + l≤ ϕ μ T xn− 1, yn− 1( 􏼁, T xn, yn( 􏼁( 􏼁( 􏼁 + l􏼂 􏼃
max α xn−1 ,xn( ),α yn−1,yn( ){ }

≤F ψ1
K xn−1, xn( 􏼁 + K yn−1, yn( 􏼁

2
􏼠 􏼡,ψ2

K xn−1, xn( 􏼁 + K yn−1, yn( 􏼁

2
􏼠 􏼡􏼠 􏼡 + l,

(23)

where

K xn−1, xn( 􏼁 �
μ xn, T xn, yn( 􏼁( 􏼁 1 + μ xn−1, T xn−1, yn−1( 􏼁( 􏼁􏼂 􏼃

1 + μ xn−1, xn( 􏼁
, μ xn−1, xn( 􏼁􏼠 􏼡

� μ xn, xn+1( 􏼁, μ xn−1, xn( 􏼁( 􏼁,

K yn−1, yn( 􏼁 � μ yn, yn+1( 􏼁, μ yn−1, yn( 􏼁( 􏼁.

(24)

4 Discrete Dynamics in Nature and Society



Hence,

ϕ μ xn, xn+1( 􏼁( 􏼁≤F ψ1
wn

2
,
wn−1

2
􏼒 􏼓,ψ2

wn

2
,
wn−1

2
􏼒 􏼓􏼒 􏼓, (25)

where wn � μ(xn, xn+1) + μ(yn, yn+1). Similarly, we have

ϕ μ yn, yn+1( 􏼁( 􏼁≤F ψ1
wn

2
,
wn−1

2
􏼒 􏼓,ψ2

wn

2
,
wn−1

2
􏼒 􏼓􏼒 􏼓. (26)

Adding (25) and (26) and using properties on F and ϕ,
we obtain

ψ1
wn

2
,
wn

2
􏼒 􏼓≤ ϕ

wn

2
􏼒 􏼓≤F ψ1

wn

2
,
wn−1

2
􏼒 􏼓,ψ2

wn

2
,
wn−1

2
􏼒 􏼓􏼒 􏼓

≤ψ1
wn

2
,
wn−1

2
􏼒 􏼓.

(27)

Since ψ1 is strictly increasing, then wn ≤wn−1, ∀n. Hence,
the sequence wn􏼈 􏼉 is monotone decreasing and bounded as
follows. (erefore, there exist some w≥ 0 such that

lim
n⟶∞

wn � w. (28)

Now, we shall prove that w � 0. Assume that w> 0.
Using the properties of ψ1,ψ2, andF and letting n⟶∞ in
(27) yield that

ψ1
w

2
,
w

2
􏼒 􏼓≤F ψ1

w

2
,
w

2
􏼒 􏼓,ψ2

w

2
,
w

2
􏼒 􏼓􏼒 􏼓<ψ1

w

2
,
w

2
􏼒 􏼓, (29)

which is contradiction. (us, w � 0 and

lim
n⟶∞

μ xn, xn+1( 􏼁 � lim
n⟶∞

μ yn, yn+1( 􏼁 � 0. (30)

In what follows, we prove that xn􏼈 􏼉 and yn􏼈 􏼉 are
μ−Cauchy sequences in (X, μ). Since we have

0≤mxn,xn+1
≤ μ xn, xn+1( 􏼁⟶ 0, as n⟶∞

⟹ lim
n⟶∞

mxn,xn+1
� min lim

n⟶∞
μ xn, xn( 􏼁, lim

n⟶∞
μ xn+1, xn+1( 􏼁􏼚 􏼛 � 0

⟹ lim
n⟶∞

μ xn, xn( 􏼁 � 0,

(31)

then

lim
n,m⟶∞

mxn,xm
� min lim

n⟶∞
μ xn, xn( 􏼁, lim

m⟶∞
μ xm, xm( 􏼁􏼚 􏼛 � 0,

lim
n,m⟶∞

Mxn,xm
� max lim

n⟶∞
μ xn, xn( 􏼁, lim

m⟶∞
μ xm, xm( 􏼁􏼚 􏼛 � 0.

(32)

(at is,

lim
n⟶∞

Mxn,xm
− mxn,xm

􏼐 􏼑 � 0. (33)

On the other hand, we have

μ xn, xm( 􏼁 − mxn,xm
≤ μ xn, xn+1( 􏼁 − mxn,xn+1

+ μ xn+1, xn+1( 􏼁 − mxn+1 ,xn+2
+ · · · + μ xm−1, xm( 􏼁 − mxm−1 ,xm

⟶ 0, as n, m⟶∞.

(34)

(erefore, (33) and (34) imply that xn􏼈 􏼉 is an μ−Cauchy
sequence. In a similar way, we can show that yn􏼈 􏼉 is also a
μ−Cauchy sequence. By the completeness of the space
(X, μ), there exist x, y ∈ X such that

lim
n⟶∞

μ xn, x( 􏼁 − mxn,x􏼐 􏼑 � lim
n⟶∞

μ yn, y( 􏼁 − myn,y􏼐 􏼑 � 0,

lim
n⟶∞

Mxn,x − mxn,x􏼐 􏼑 � lim
n⟶∞

Myn,y − myn,y􏼐 􏼑 � 0.

(35)

With respect to the sequence xn􏼈 􏼉, we obtain

μ xn, xn( 􏼁⟶ 0⟹mxn,x⟶ 0⟹μ xn, x( 􏼁,

Mxn,x⟶ 0, as n⟶∞,
(36)

but

Mxn,x � max μ xn, xn( 􏼁, μ(x, x)􏼈 􏼉⟶ μ(x, x). (37)

(us, the uniqueness of the limit implies that

μ(x, x) � 0. (38)

Now, suppose that (a) holds. According to Lemma 2,
since xn􏼈 􏼉 and yn􏼈 􏼉 are Cauchy sequences in a complete
M−metric space (X, μ), then they converge to some x, y in
the metric space (X, μw). Also, as F is continuous, F(xn, yn)

converges to F(x, y) in (X, μw), that is,
limn⟶∞μw(F(xn, yn), F(x, y)) � 0 which is equivalent to
μ F xn, yn( 􏼁, F(x, y)( 􏼁 − mF xn,yn( ),F(x,y)⟶ 0,

MF xn,yn( ),F(x,y) − mF xn,yn( ),F(x,y)⟶ 0, as n⟶∞.

(39)

Also, we have
μ xn+1, xn+1( 􏼁⟶ 0⟹mF xn,yn( ),F(x,y)

⟶ 0⟹MF xn,yn( ),F(x,y)⟶ 0, as n⟶∞,

(40)
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but

MF xn,yn( ),F(x,y) � max μ xn+1, xn+1( 􏼁, μ(F(x, y), F(x, y))􏼈 􏼉

⟶ μ(F(x, y), F(x, y)).

(41)

(us, the uniqueness of the limit implies that

μ(F(x, y), F(x, y)) � 0. (42)

By Lemma 3, we obtain

μ xn+1, F(x, y)( 􏼁 − mxn+1 ,F(x,y)⟶ μ(x, F(x, y)) − mx,F(x,y)

� μ(x, F(x, y)).

(43)

Compared with (39), we obtain

μ(x, F(x, y)) � 0. (44)

From (38), (42), and (44), we obtain

x � F(x, y). (45)

Proceeding as above, one can obtain

y � F(y, x). (46)

Suppose that (b) holds, then α(xn, x)≥ 1 and
α(yn, y)≥ 1. Setting (x, y) � (xn, yn) and (u, v) � (x, y) in
(18), we obtain

ϕ μ T xn, yn( 􏼁, T(x, y)( 􏼁( 􏼁 + l􏼂 􏼃
max α xn,x( ),α yn,y( ){ } ≤F ψ1

K xn, x( 􏼁 + K yn, y( 􏼁

2
􏼠 􏼡,ψ2

K xn, x( 􏼁 + K yn, y( 􏼁

2
􏼠 􏼡􏼠 􏼡 + l, (47)

where

K xn, x( 􏼁 �
μ(x, T(x, y)) 1 + μ xn, xn+1( 􏼁􏼂 􏼃

1 + μ xn, x( 􏼁
, μ xn, x( 􏼁􏼠 􏼡⟶ (μ(x, T(x, y)), 0),

K yn, y( 􏼁 �
μ(y, T(y, x)) 1 + μ yn, yn+1( 􏼁􏼂 􏼃

1 + μ yn, y( 􏼁
, μ yn, y( 􏼁􏼠 􏼡⟶ (μ(y, T(y, x)), 0), as n⟶∞.

(48)

(at is,

ϕ μ xn+1, T(x, y)( 􏼁( 􏼁≤F ψ1
K xn, x( 􏼁 + K yn, y( 􏼁

2
􏼠 􏼡,ψ2

K xn, x( 􏼁 + K yn, y( 􏼁

2
􏼠 􏼡􏼠 􏼡. (49)

In a similar way, one can obtain

ϕ μ yn+1, T(y, x)( 􏼁( 􏼁≤F ψ1
K xn, x( 􏼁 + K yn, y( 􏼁

2
􏼠 􏼡,ψ2

K xn, x( 􏼁 + K yn, y( 􏼁

2
􏼠 􏼡􏼠 􏼡. (50)

Adding (49) and (50) and using properties on F and ϕ,
we obtain

ψ1
μ xn+1, T(x, y)( 􏼁 + μ yn+1, T(y, x)( 􏼁

2
,
μ xn+1, T(x, y)( 􏼁 + μ yn+1, T(y, x)( 􏼁

2
􏼠 􏼡≤ψ1

K xn, x( 􏼁 + K yn, y( 􏼁

2
􏼠 􏼡. (51)

Taking limits at n⟶∞ yields

ψ1
μ(x, T(x, y)) + μ(y, T(y, x))

2
,
μ(x, T(x, y)) + μ(y, T(y, x))

2
􏼠 􏼡≤ψ1

μ(x, T(x, y)) + μ(y, T(y, x))

2
, 0􏼠 􏼡. (52)
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(erefore, we have μ(x, T(x, y)) + μ(y, T(y, x)) � 0.
Again from (18) and taking into account that
α(x, x), α(y, y)≥ 1, we obtain that μ(T(x, y), T(x, y)) �

μ(T(y, x), T(y, x)) � 0. Consequently, x � T(x, y) and
y � T(y, x).

For the uniqueness of the coupled fixed point in (e-
orem 2, we consider the following condition:

if (x, y)and(u, v)are two coupled fixed points of T,

then α(x, u)≥ 1,

or α(y, v)≥ 1.

(53)

□

Theorem 3. Adding condition (53) to the hypotheses of
Neorem 2, we obtain that T has a unique coupled fixed point.

Proof. (eorem 2 asserts that T has at least one coupled
fixed point. Assume that (x, y) and (u, v) are two coupled
fixed points of T, then α(x, u)≥ 1 or α(y, v)≥ 1. Now, we
apply (18) and use the properties of ϕ,ψ1,ψ2, andF to obtain

ψ1
μ(x, x) + μ(y, y)

2
,
μ(x, x) + μ(y, y)

2
􏼠 􏼡≤ϕ

μ(x, x) + μ(y, y)

2
􏼠 􏼡

≤F ψ1
μ(x, x) + μ(y, y)

2
,
μ(x, x) + μ(y, y)

2
􏼠 􏼡,ψ2

μ(x, x) + μ(y, y)

2
,
μ(x, x) + μ(y, y)

2
􏼠 􏼡􏼠 􏼡

≤ψ1
μ(x, x) + μ(y, y)

2
,
μ(x, x) + μ(y, y)

2
􏼠 􏼡.

(54)

Hence, we have

F ψ1
μ(x, x) + μ(y, y)

2
,
μ(x, x) + μ(y, y)

2
􏼠 􏼡,ψ2

μ(x, x) + μ(y, y)

2
,
μ(x, x) + μ(y, y)

2
􏼠 􏼡􏼠 􏼡

� ψ1
μ(x, x) + μ(y, y)

2
,
μ(x, x) + μ(y, y)

2
􏼠 􏼡⟹μ(x, x) � μ(y, y) � 0.

(55)

Similarly, we have

μ(u, u) � μ(v, v) � 0,

μ(x, u) � μ(y, v) � 0.
(56)

Hence, by (m1) x � u andy � v, i.e., (x, y) is the unique
coupled fixed point of T.

If we define F(s, t) � s − t and

α(x, y) �
1, x≺y;

0, otherwise,
􏼨 (57)

then we get the following corollary which is a generalization
of the main results in [31]. □

Corollary 1. Let (X, μ) be an ordered complete M−metric
space and T: X × X⟶ X be an increasing mapping for
which there exist ϕ ∈ Φ, ψ1 ∈ Ψ1, and ψ2 ∈ Ψ2 such that
ψ1(t, t)≤ ϕ(t) and for all (x, y), (u, v) ∈ X2 with x≺ u and
y≺ v; we have

ϕ(μ(T(x, y), T(u, v)))≤ψ1
K(x, u) + K(y, v)

2
􏼠 􏼡

− ψ2
K(x, u) + K(y, v)

2
􏼠 􏼡,

(58)

where

K(x, u) �
μ(u, T(u, v))[1 + μ(x, T(x, y))]

1 + μ(x, u)
, μ(x, u)􏼠 􏼡,

K(y, v) �
μ(v, T(v, u))[1 + μ(y, T(y, x))]

1 + μ(y, v)
, μ(y, v)􏼠 􏼡.

(59)

Suppose that either

(a) T is continuous.
(b) For a convergent sequence xn􏼈 􏼉 in (X, μ), we have

Discrete Dynamics in Nature and Society 7



xn􏼈 􏼉⟶ x,

xn ≺ xn+1⟹xn ≺ x, ∀n,

xn⟶ x,

xn⟶ y⟹x≺y.

(60)

If there exist x0, y0 ∈ X such that x0 ≺T(x0, y0) and
y0 ≺T(y0, x0), then T has a coupled fixed point.

Now, we introduce the following classes of functionsΨ and
Φ by

Ψ � ψ: [0,∞)⟶ [0,∞),ψ is continuous, strictly increasing andψ(t)> 0 for t> 0􏼈 􏼉,

Φ � φ: [0,∞)⟶ [0,∞),φ is continuous andφ(t)> 0 for t> 0􏼈 􏼉.
(61)

If we consider ϕ(t) � ψ(t), ψ1(s, t) � ψ(t) for some
ψ ∈ Ψ and ψ2(s, t) � φ(t) for some φ ∈ Φ, then we obtain an
extension of the main result in [13].

Corollary 2. Let (X, μ) be a complete M−metric space and
T: X × X⟶ X be an α−admissible mapping such that

[ψ(μ(T(x, y), T(u, v))) + l]
max α(x,u),α(y,v){ } ≤F ψ

μ(x, u) + μ(y, v)

2
􏼠 􏼡,φ

μ(x, u) + μ(y, v)

2
􏼠 􏼡􏼠 􏼡 + l, (62)

for all (x, y), (u, v) ∈ X2 with α(x, u)≥ 1, α(y, v)≥ 1, where
F ∈ C, ψ ∈ Ψ, and φ ∈ Φ. Suppose that either

(a) T is continuous.
(b) For a convergent sequence xn􏼈 􏼉 in (X, μ), we have

xn􏼈 􏼉⟶ x,

α xn, xn+1( 􏼁≥ 1⟹α xn, x( 􏼁≥ 1, ∀n,

xn⟶ x,

xn⟶ y⟹α(x, y)≥ 1.

(63)

If there exist x0, y0 ∈ X such that α(x0, T(x0, y0))≥ 1
and α(y0, T(y0, x0))≥ 1, then T has a coupled fixed point.

Remark 1. Notice that in [32, 33], it was shown that each
coupled fixed-point theorem can be observed from the
analogue of single/standard fixed-point theorems. On the
other hand, for the usage of it in application, the coupled

fixed-point theorem can be used to handle the problem.
(erefore, in this paper, we consider the coupled fixed-point
results, (eorem 2 and (eorem 3.

4. Fractional Differential Equations

In this section, we present sufficient conditions for the
existence and uniqueness of the solution of coupled systems
(2) and (3). Before starting and proving the main results, we
need to fix the analytical framework of our considered
problem.

Consider the complete M−metric space (X, μ), where
X � C(J,R) and μ is defined by

μ(x, y) � supt∈J|x(t) − y(t)|, ∀x, y ∈ X. (64)

In addition, define the operator T: X × X⟶ X as

T(x, y) � Ax(t) + By(t), (65)

where

Ax(t) � f(t, x(t)) + t
α− 1δf(η, x(η)) − f(τ, x(τ))

τα−1 − δηα−1 ,

By(t) � I
α
g t, y(t), I

β
y(t)􏼐 􏼑 + t

α− 1δIαg η, y(η), Iβy(η)( 􏼁 − Iαg τ, y(τ), Iβy(τ)( 􏼁

τα−1 − δηα−1 .

(66)

Now, we claim that whenever (x, y) ∈ X2 is a coupled
fixed point of the operator T, it follows that x(t) and y(t)

solve (2) and (3).

Lemma 5. Let n − 1< α≤ n, 0< η< τ, δ ≠ (τ/η)α− 1, and
h ∈ L(0, τ); then, the boundary value problem

D
α
[x(t) − f(t, x(t))] � h(t), ∀ t ∈ J,

x
(i)

(0) �
zif(t, x(t))

zti

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0, x(τ) � δx(η), ∀ i � 0, 1, . . . , n − 2,

(67)
has the integral representation of solution
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x(t) � f(t, x(t)) + t
α− 1δf(η, x(η)) − f(τ, x(τ))

τα−1 − δηα−1 + I
α
h(t) + t

α− 1δIαh(η) − Iαh(τ)

τα−1 − δηα−1 . (68)

Proof. Applying the operator Iα on both sides of (67) and
using Lemma 4, we obtain

x(t) − f(t, x(t)) + c1t
α− 1

+ c2t
α− 2

+ · · · + cnt
α− n

� I
α
h(t), at t � 0⟹x(0) � 0, f(0, 0) � 0⟹cn � 0. (69)

Also, we have

x
�
(t) −

df(t, x(t))

dt
+ c1(α − 1)t

α− 2
+ c2(α − 2)t

α− 3
+ · · · + cn−1(α − n + 1)t

α− n

� Iα− 1h(t), at t � 0⟹x
�
(0) � 0,

df(t,x(t))

dt

􏼌􏼌􏼌􏼌􏼌t�0
�

zf(t,x(t))

zt

􏼌􏼌􏼌􏼌􏼌t�0
� 0⟹cn−1 � 0,

⋮

x(n− 2)(t) −
dn− 2f(t, x(t))

dtn−2 + c1(α − 1) . . . (α − n + 2)t
α− n+1

+ c2(α − 2) . . . (α − n + 1)t
α− n

� Iα− n+2h(t), at t � 0⟹x(n− 2)(0) � 0,
dn− 2f(t, x(t))

dtn−2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
�

zn− 2f(t, x(t))

ztn−2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0⟹c2 � 0.

(70)

Hence, we obtain

x(t) − f(t, x(t)) + c1t
α− 1

� I
α
h(t). (71)

At t � τ and η, we have

x(τ) − f(τ, x(τ)) + c1τ
α− 1

� I
α
h(τ), (72)

δx(η) − δf(η, x(η)) + c1δη
α− 1

� δI
α
h(η). (73)

By subtracting (73) from (72), we obtain

c1 �
f(τ, x(τ)) + Iαh(τ) − δ f(η, x(η)) + Iαh(η)􏼂 􏼃

τα−1 − δηα−1 . (74)

Consequently, the general solution of (67) is

x(t) � f(t, x(t)) + t
α− 1δf(η, x(η)) − f(τ, x(τ))

τα−1 − δηα−1

+ I
α
h(t) + t

α− 1δIαh(η) − Iαh(τ)

τα−1 − δηα−1 .

(75)

Consider the following coupled system of fractional
hybrid integral equations (in short, FHIE):

x(t) � f(t, x(t)) + t
α− 1δf(η, x(η)) − f(τ, x(τ))

τα−1 − δηα−1 + I
α
g t, y(t), I

β
y(t)􏼐 􏼑 + t

α− 1δIαg η, y(η), Iβy(η)( 􏼁 − Iαg τ, y(τ), Iβy(τ)( 􏼁

τα−1 − δηα−1 ,

(76)

y(t) � f(t, y(t)) + t
α− 1δf(η, y(η)) − f(τ, y(τ))

τα−1 − δηα−1 + I
α
g t, x(t), I

β
x(t)􏼐 􏼑 + t

α− 1δIαg η, x(η), Iβx(η)( 􏼁 − Iαg τ, x(τ), Iβx(τ)( 􏼁

τα−1 − δηα−1 .

(77)

Lemma 6. Assume that the function ρ: J × R⟶ R defined
by ρ(t, x) � x(t) − f(t, x(t)) satisfies the following:

D
iρ(t, x)

􏼌􏼌􏼌􏼌􏼌t�0
� 0⟹x � 0, ∀ i � 0, 1, . . . , n − 2. (78)
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Nen, (x, y) ∈ C2(J,R) is a solution of FHDE systems (2)
and (3) if and only if (x, y) is a solution of FHIE systems (76)
and (77).

Proof. Let x andy be a solution of (2) and (3). (en, by
Lemma 5, we gain that the general solution of (2) has the
integral form presented in (76) and the solution of (3) has

the form presented in (77). (us, x andy satisfy (76) and
(77).

Conversely, let x andy fulfill (76) and (77). (en, ap-
plying Dα on both sides of (76) and using the relation
Dαtλ � ((Γ(λ + 1))/(Γ(λ − α + 1)))tλ− α if λ> − 1, λ≥ α> 0,
and Dαtλ � 0 if λ< α (Remark 2.1 in [34]) yield

D
α
[x(t) − f(t, x(t))] � D

α
t
α− 1δf(η, x(η)) − f(τ, x(τ))

τα−1 − δηα−1

+ D
α
I
α
g t, y(t), I

β
y(t)􏼐 􏼑 + D

α
t
α− 1δIαg η, y(η), Iβy(η)( 􏼁 − Iαg τ, y(τ), Iβy(τ)( 􏼁

τα−1 − δηα−1

⟹D
α
[x(t) − f(t, x(t))] � g t, y(t), I

α
y(t)( 􏼁.

(79)

So x(t) satisfies the differential equation in (2). To see
that it also satisfies the boundary conditions in the same
equation, fix i � 0, 1, . . . , n − 2 and apply Di in (76):

D
i
x(t) � D

i
f(t, x(t)) + I

α− i
g t, y(t), I

β
y(t)􏼐 􏼑 +

Γ(α)

Γ(α − i)
t
α− 1− i

·
δf(η, x(η)) − f(τ, x(τ))

τα−1 − δηα−1 +
δIαg η, y(η), Iβy(η)( 􏼁 − Iαg τ, y(τ), Iβy(τ)( 􏼁

τα−1 − δηα−1􏼢 􏼣.

(80)

Substituting t � 0 in (80) and taking into account that
α − 1 − i> 0 yield

x
(i)

(t)
􏼌􏼌􏼌􏼌􏼌t�0

−
dif(t, x(t))

dti

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0⟹x

(i)
(0) �

zif(t, x(t))

zti

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0.

(81)

Again, putting t � τ and t � η in (76) implies

x(τ) − δx(η) � 0. (82)

(us, x(t) satisfies (2). A completely dual calculation
reveals that y(t) also satisfies (3).

As a consequence of Lemma 6, the coupled fixed point of
the operator T coincides with the solution of (76) and (77)
and then with the solution of (2) and (3). □

Theorem 4. Assume that f: J × R⟶ R and
g: J × R2⟶ R are continuous functions and there exist two
functions φ0,φ1: J⟶ R with bounds ‖φ0‖ and ‖φ1‖, re-
spectively, such that

|f(t, x) − f(t, y)|≤φ0(t)|x − y|,

|g(t, x, u) − g(t, y, v)|≤φ1(t)(|x − y| +|u − v|).
(83)

Moreover, define these functions ϕ ∈ Φ, ψ1 ∈ Ψ1, ψ2 ∈ Ψ2,
F ∈ C, and α: X2⟶ [0,∞) as

ϕ(s) � s,

ψ1(s, t) � (ρ + 1)t,

ψ2(s, t) � t,

F(s, t) � s − t,

α(x, y) � 1,

∀ s, t ∈ [0,∞),

x, y ∈ X,

(84)

where

ρ � 2max φ0
����

���� 1 +
δ + 1

1 − δ(η/τ)α− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼢 􏼣,
φ1

����
����τα

Γ(α + 1)
1 +

τβ

Γ(β + 1)
􏼢 􏼣 1 +

δ + 1
1 − δ(η/τ)α− 1􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼢 􏼣􏼨 􏼩> 0. (85)

10 Discrete Dynamics in Nature and Society



Nen, problems (2) and (3) have a unique solution. Proof. We check that the hypothesis of (eorems 2 and
(eorem 3 is satisfied. For (x, y), (u, v) ∈ X2, we have

μ(T(x, y), T(u, v)) � supt∈J|T(x, y)(t) − T(u, v)(t)|

≤ supt∈J φ0(t) |x(t) − u(t)| +
tα− 1

τα−1 − δηα−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
[δ|x(η) − u(η)| +|u(τ) − x(τ)|]􏼠 􏼡􏼢

+ I
α φ1(t) |y(t) − v(t)| + I

β
y(t) − I

β
v(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼔 􏼕 +
tα− 1

τα−1 − δηα−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

· δI
α φ1(t) y(η) − v(η)| + |I

β
y(η) − I

β
v(η)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼔 􏼕 + I
α φ1(t) |y(τ) − v(τ)| + I

β
y(τ) − I

β
v(τ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼔 􏼕􏼔 􏼕􏼕

≤ φ0
����

���� μ(x, u) +
tα− 1

τα−1 − δηα−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
[δμ(x, u) + μ(x, u)]􏼠 􏼡 + φ1

����
����

tα

Γ(α + 1)
μ(y, v) +

tβ

Γ(β + 1)
μ(y, v)􏼢 􏼣􏼠

+
tα− 1

τα−1 − δηα−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
δ

ηα

Γ(α + 1)
μ(y, v) +

ηβ

Γ(β + 1)
μ(y, v)􏼢 􏼣 +

τα

Γ(α + 1)
μ(y, v) +

τβ

Γ(β + 1)
μ(y, v)􏼢 􏼣􏼢 􏼣􏼡

≤ φ0
����

���� 1 +
δ + 1

1 − δ(η/τ)α−1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼢 􏼣μ(x, u) +
φ1

����
����τα

Γ(α + 1)
1 +

τβ

Γ(β + 1)
􏼢 􏼣 1 +

δ + 1
1 − δ(η/τ)α−1􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼢 􏼣μ(y, v)

≤ (ρ + 1)
μ(x, u) + μ(y, v)

2
􏼢 􏼣 −

μ(x, u) + μ(y, v)

2
􏼢 􏼣.

(86)

(us, for any s≥ 0, we obtain

ϕ(μ(T(x, y), T(u, v)))≤F ψ1 s,
μ(x, u) + μ(y, v)

2
􏼠 􏼡,􏼠

· ψ2 s,
μ(x, u) + μ(y, v)

2
􏼠 􏼡􏼡.

(87)

(erefore, the operator T satisfies condition (18) of
(eorem 2. With simple calculations, we can derive that the
other hypothesis of(eorems 2 and(eorem 3 holds. So, the
operator T has a unique fixed point, or equivalently, systems
(2) and (3) have a unique solution in X2.

Now, we present an illustrated example to justify our
results. □

Example 2. Consider the following system of two FHDEs
with three-point boundary conditions:

D
α
[x(t) − f(t, x(t))] � g t, y(y), I

β
y(t)􏼐 􏼑,

x
(i)

(0) �
zif(t, x(t))

zti

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0,

x(τ) � δx(η),

(88)

D
α
[y(t) − f(t, y(t))] � g t, x(t), I

β
x(t)􏼐 􏼑,

y
(i)

(0) �
zif(t, y(t))

zti

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌t�0
� 0,

y(τ) � δy(η),

(89)

where

α �
5
2
,

β �
9
2
,

η �
1
2
,

τ � δ � 1,

f(t, x) � x +
�����
x2 + 1

√
− e

t|x|
,

g(t, x, u) � x + sin u.

(90)

By computation, we can show that

|f(t, x) − f(t, y)| � x +
�����
x2 + 1

√
− e

t|x |
􏼌􏼌􏼌􏼌􏼌

− x +
�����
x2 + 1

√
− e

t|x |
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

≤ |x − y| +
�����
x2 + 1

√
−

�����

y2 + 1
􏽱

− 1
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

≤ 2|x − y|,

|g(t, x, u) − g(t, y, v)| � |x + sin u − y + sin v|

≤ |x − y| +|u − v|.

(91)

Applying(eorem 4, we conclude that problem (89) has
one solution.
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5. Concluding Remarks

In this work, we proved some coupled fixed-point results for
α−admissible mappings which are F(ψ1,ψ2)-contractions in
a larger structure such as M−metric spaces. Furthermore, we
applied aforesaid fixed-point results to investigate the ex-
istence of a unique solution for a coupled system of higher-
order fractional hybrid differential equations which are
equipped with three-point boundary conditions. (e re-
spective results have been verified by providing a suitable
example.

In fact, the results dealing with solutions of the general
systems of fractional differential equations are useful in
applications to various problems which are simply modelled
by means of these systems.

It is believed that several recent studies (see, for example,
[35–42]) on fractional calculus and its widespread appli-
cations will possibly motivate further research studies on
mathematical modeling and analysis of applied problems
along the lines which we have developed in this article.
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