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Abstract An analytical description for the dynamical evolution of a qubit interacting with
two nonlinear Kerr oscillators pumped by optical parametric process is derived through
Su(1, 1)-algebraic treatment. The role of intrinsic damping, detuning and Kerr-like Medium
on the squeezing phenomenon is elucidated via information entropy squeezing. The evo-
lutions of the interaction of the qubit with two-mode Kerr nonlinear coupler lead to the
appearance the regular squeezing phenomenon during the chosen time-interval. The pre-
serving and protecting of the qubit components from the squeezing can be controlled by the
intrinsic decoherence, detuning and the Kerr-like medium effects. Where the squeezing phe-
nomenon deteriorates with increasing the decoherence rate, whereas, the Kerr-like medium
can not protect some qubit components from the squeezing.

Keywords Intrinsic coherence · Kerr medium · Entropy squeezing

1 Introduction

The squeezing phenomenon of field and atom components is one of the nonclassical phe-
nomena. It has attracted considerable attention due to its potential application in optical
communications, [1] detections of weak signals, [2] the high precision atomic fountain
clock, [3]. The qubit entropy squeezing (QES) has applications in quantum optic, [4] quan-
tum information, [5] can effectively inhibit quantum noise, [6, 7] quantum optomechanical
system [8]. After defining the QES by using the quantum information theory [13] accord-
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ing to entropic uncertainty relation based on position and momentum, more investigations
of QES has appeared [14–19].

In the field of optical communication network, the co-directional and contra-directional
propagation of light through two adjacent parallel wave guides may produce switching
modulation and radiation frequency selection [20–22]. Among the different types of direc-
tional couplers, the directional Kerr nonlinear coupler which has received much attention in
quantum optics. Recently, it has been broadly explored [23–26]. The parametric amplifica-
tion interaction is considered as one of the most important nonlinear interactions. Where,
squeezed light can be produced through it [27, 28], which could be generated by a non-
degenerate parametric down-conversion for excitation of a 2-photon transition in atoms
[29].

In real physical models, the decoherence causes decreasing and disappearing of non-
classical phenomena as purity, and entanglement, and squeezing which may induce failure
of the algorithms and various protocols of quantum information.

In this paper, we explore the decoherence effect on the squeezing phenomenon in two-
mode Kerr nonlinear coupler interdicting with Su(2)-system in the physical system of a
qubit interacting with two nonlinear Kerr oscillators driven by optical parametric process.

This paper is divided as follow: in Section 2, the physical model and its solution are
presented. In Section 3, we recall the entropy squeezing definitions of a qubit. By numerical
calculations, we analyze the entropy squeezing under the intrinsic decoherence, detuning
and the Kerr-like medium effects. The conclusion is included in Section 4.

2 Hamiltonian and Dynamics

2.1 Hamiltonian

The physical which is formed from a two-level atom interacts with two nonlinear Kerr oscil-
lators mutually coupled by parametric pumping [30, 31]. The Hamiltonian that describes
this system is given by
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where ωi(i = 1, 2) are the frequencies of the ith-mode with the annihilation operators ψ̂i .
The χ̄1 and χ̄2 are the nonlinear couplings responsible for the self-action processes and
cross-action. The λ is the coupling parameter between the two-level atom and the two-
mode parametric process. Here the linear coupling between the two nonlinear oscillators is
neglected.

Here, we set χ̄1 = 2χ̄2 = 1
2χ and ω1 = ω2 = 1
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2 (R̂+R̂− + R̂−R̂+) = k(k − 1)Î with the Bargmann number k. Therefore, the Hamiltonian
is then given by
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The relations of the operators R̂+, R̂− and R̂0 of the Hamiltonian (2) are:

R̂−|n, k〉 = √
n(n + 2k − 1) |n − 1, k〉,

R̂+|n, k〉 = √
(n + 1)(n + 2k) |n + 1, k〉,

R̂0|n, k〉 = (n + k)|n, k〉, R̂2|n, k〉 = k(k − 1)|n, k〉, (3)

Here, the main purpose is, to study squeezing properties of the components of the qubit
in the presence of intrinsic decoherence. It is found that the dissipation and decoherence
[32–37] are the most critical obstacles for the non-classical phenomena as: purity, and entan-
glement, and squeezing. To derive the time-dependent density matrix form with the effect of
the dephasing, the pure phase decoherence mechanism is only taken into account. Therefore
the master equation of the systems is given by [38, 39]

d

dt
ρ(t) = −i[H, ρ] − γ [H, [H, ρ]], (4)

where γ is the phase decoherence rate.
It can be said that the two Su(2)-system is initially prepared in an upper state, i.e.,

ρA(0) = | ↑〉〈↑ |, while, the Su(1, 1)-system is initially in Barut-Girardello Su(1, 1)

coherent state [40], that is defined as:

|μ, k〉 =
∞∑

n=0

Pn|n, k〉, (5)

with

Pn =
√

|μ|2k−1

I2k−1(2|μ|)
μn

√
n!	(2k + n)

The state |μ, k〉 corresponds to the eigenstate of the generator R− given by: R−|μ, k〉 =
μ|μ, k〉. The function Iν(x) represents the first kind modified Bessel function.

Here, we use the method of the dressed-state representation to find the solution of
the system, where, we write the initial state ρ(0) = |1〉〈1| ⊗ |μ, k〉〈μ, k| of the entire
system in term the dressed state of the Hamiltonian (2). In the space state of the total,{|φn
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2 〉 = |g, n + 1〉}, the time-evolution of the entire density matrix is given

by
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ij = exp
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where δ = (ω0 − ω)/2 is the detuning and

ν = λ
√

(n + 1)(n + 2k), b = n + k + 0.5,

a = (n + k)2 + n + k + 0.5. (8)
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To investigate the entropy squeezing of the Su(2)-system, one has to trace out the states
of Su(1, 1)-system, |m〉, from final states of (6). Then, the final states of Su(2)-system are
given by

ρA(t) =
∞∑

m=0

〈m|ρ(t)|m〉. (9)

Therefore, we can quantify squeezing properties of the Su(2)-system by the entropy
squeezing function. In the next section, we study this function in details.

3 Information Entropy Squeezing

According to previous literatures, the squeezing of entropy squeezing is one of the nonclas-
sical phenomena in the field of quantum optics. Therefore, we investigate the information
entropy squeezing of a qubit interdicting with two-mode Kerr nonlinear coupler due to
intrinsic damping. According to investigations [9–13], the information entropy of a qubit
system is given by:

H (Sα) =
2∑

i=1

Pi (Sα) ln [Pi (Sα)] , α = x, y, z. (10)

Where Si (i = x;y; z) are the Pauli matrices, and Pi(Sα) is the probability distribution for
two possible outcomes of measurements of an operator Sα . Which are calculated by

P (Sk) = 1

2
(1 + ε〈Sk〉) , k = x, y, z, (11)

where ε takes the values ±1 for a Su(2)-system, while 〈Sk〉 is the expectation value of the
operators Sk . The information entropies verify [13]

δH(Sx)δH(Sy) ≥ 4

δH(Sz)
, (12)

Here δH(Sα) ≡ exp[H(Sα)]. The fluctuations in the Su(2)-system components Sα are said
to be ’squeezed in entropy’ if the functions H(Sα) satisfies the condition

E(Sα) = δH(Sα) − 2
√

δH(Sz)
< 0, α ≡ x or y. (13)

With this condition, we can say determine entropy of the qubit is squeezed.
In Fig. 1, we show the time evolution of the entropy squeezing functions E(Sx) (solid

plots) and E(Sy) (dashed plots). In Fig. 1a, the temporal evolution of the E(Sx) and E(Sy)

for with (k, μ) = (1/4, 5) for the values of (δ, χ, γ ) = (0, 0.08, 0). We observe that the
squeezing occurs only in E(Sy) while the E(Sx) do not satisfies the squeezing condition
in the chosen time-interval. Where, the function E(Sx) shows that there is no squeezing in
the variable Sx , but under the effect of the Kerr-like medium, the Sx can not protect from
the squeezing. The regular fluctuations of E(Sy) shows that the Sy can be preserved and
protected from the squeezing due to the evolutions of the interaction of the qubit with two-
mode Kerr nonlinear coupler. However, we can see that the squeezing periodically occurs
only in E(Sy) with period. In other words, when t > 0, one can see only nonclassical neg-
ative values for E(Sy), where the maximum magnitude of the squeezing is 
 −0.3 and the
minimum values of E(Sy) appears periodically with period π at 1

2 (2n = 1)(n = 0, 1, 2, ...).
The entropy squeezing has two types of regular fluctuations. The first is called secondary
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Fig. 1 The time evolution of E(Sx) (dashed plots) and E(Sy) (solid plots), with (k, μ) = (1/2, 5) for
(δ, χ, γ ) = (0, 0, 0) in (a), (δ, χ, γ ) = (0, 0, 0.005) in (a)
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fluctuations, where, E(Sy) oscillates is between the maximum-value 0.4 and zero-value.
But, the second type is is called primary fluctuations, The entropy squeezing oscillates reg-
ular between it extremes values and it leads to the appearance of the squeezing intervals
periodically or to the appearance of revivals and collapse of squeezing phenomenon.

From Fig. 1b and c, we find that the weak damping, γ = 0.05λ leads to: (1) the E(Sx)

reduces its oscillations, and after a short time, it reaches its maximum stationary value
E(Sx) 
 0.588. (2) The distance between the local maxima and minima decreases, and
the squeezing phenomenon deteriorates with increasing the time. However, the qubits lose
squeezing phenomenon than they gain due to the intrinsic damping, and finally they com-
pletely lose squeezing phenomenon and fall into a non squeezed state. The increase in the
intrinsic damping disappears the qubit squeezing phenomenon.
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Fig. 2 As Fig. 1a but for different values of χ : χ = 0.08 in (a), χ = 1 in (b)
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In order to show the strong dependence of the E(Sx) and E(Sy) on the Kerr-like medium
parameter, they are plotted for different values of χ : χ = 0.08 in Fig. 2a, χ = 1 in Fig. 2b.
From Fig. 1a, we observe that: (1) the function E(Sy) shows irregular fluctuations without
squeezing in the entropy due the effect of the Kerr-like medium parameter, i.e., the squeez-
ing phenomenon of the variable Sx disappears completely with weak Kerr-like medium. (2)
the function E(Sx) shows irregular oscillations and it satisfies the squeezing condition in
some time intervals, i. e., the Kerr-like medium parameter leads to appearance of squeezing
phenomenon in the entropy and the Sx can not protect from the squeezing. In Fig. 1b, we see
notable changes in the behavior of the functions E(Sx) and E(Sy) by increasing the Kerr-
like medium parameter, χ = 1. Where, the fluctuations in the Su(2)-system components Sα

may be present squeezed in their entropy.
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Fig. 3 As Fig. 1a but for different values of δ: δ = 1 in (a), δ = 5 in (b)
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In Fig. 3, the dependence of the the entropy squeezing function E(Sx) and E(Sy) on the
detuning parameter is showed in Fig. 1d, where E(Sx) and E(Sy) are depicted for different
values of δ: δ = 1 in (a), δ = 5 in (b). From Fig. 3a, we find that the weak off-resonant case,
δ = 1, leads to increasing the time intervals of squeezing phenomenon in the component
Sx . The secondary fluctuations disappearance and their positive values decrease and tend to
become negative values. As for large values of the detuning parameter δ = 5, the function
E(Sy) shows irregular fluctuations with squeezing in the entropy during small time intervals
comparing with the case of δ = 1 and resonance case δ = 0. The oscillatory behavior of
the functions E(Sx) and E(Sy) appears clearly by increasing the detuning parameter, see
Fig. 3b.
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Fig. 4 As Fig. 1a but for μ = 1 and different values of χ : χ = 0.0 in (a), χ = 0.3 in (b)
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In Fig. 4, the effect of the initial coherence intensities, μ, on the entropy squeezing func-
tions E(Sx) and E(Sy) are shown, where they plotted for small initial coherence intensity,
μ = 1 with different values of χ : χ = 0.0 in (a), χ = 0.3 in (b). From In Fig. 4a, we note
that the initial coherence intensity can be changing the behavior of the secondary and pri-
mary fluctuations of E(Sy). In Fig. 4b, the Kerr-like medium parameter, χ = 0.3, shows
that the Sy can protect and Sx can not protect from the squeezing.

4 Conclusions

In this paper, we have explored the intrinsic decoherence, detuning, and Kerr-like medium
effects on the squeezing phenomenon of Su(2)-system interdicting with a two-mode Kerr
nonlinear coupler Su(2)-system. In absence of the intrinsic decoherence, the evolutions
of the interaction of the qubit with two-mode Kerr nonlinear coupler leads to generation
of regular squeezing phenomenon during the chosen time-interval. The interaction of the
qubit with two-mode Kerr nonlinear coupler leads to appearance the regular squeezing phe-
nomenon during the chosen time-interval. The appearance and disappearance of the qubit
components from the squeezing can be controlled by the choice of the parameters. Where
the squeezing deteriorates with increasing the decoherence parameter, whereas, the Kerr-
like medium can not protect some qubit components from from the squeezing. The results
show that the squeezing depends, not only on the detuning and the Kerr-like medium, but
also on intrinsic decoherence and initial coherence-intensity parameters.
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