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Stationary discord and non-local correlations via qubit damping
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By using quantum discord (QD), measurement induced non-locality (MIN) and negativity (QE), quantum correlation
and entanglement are investigated for two qubits in two different cases for the initial two qubit Werner states, taking into
account the influence of qubit damping. It is shown that there is no asymptotic decay for MIN while asymptotic decay
exists for QD and QE. Quantum correlations cannot be strengthened by introducing the damping. The appearance time
of stationary correlations gets shorter with the increase in the damping parameter. Finally, a uniform damping qubit can
affect the stationary correlations when the qubits are initially in an entangled state.

Keywords: quantum discord; measurement induced non-locality; qubit damping

1. Introduction

Entanglement [1] as a kind of quantum correlation has been
extensively studied both theoretically and experimentally in
the past two decades because it is valuable for understanding
the fundamental concepts of quantum mechanics and clari-
fying the accountability of the orthodox interpretation pro-
posed in quantum mechanics [2]. In particular, concurrence
as a type of measurement of entanglement has been widely
studied since it was proposed [3,4]. Entanglement is stud-
ied under different conditions, such as taking into account
decoherence and dissipative effects.Although entanglement
is extremely important and even indispensible in the field
of quantum information processing [1], it does not contain
all of the quantum correlation and is not a unique measure
of quantum correlation; there are other quantum correla-
tions, such as quantum non-locality without entanglement
[5,6], which has been demonstrated by theoretical [7,8] and
experimental [9] results, and they have advantages in the
field of quantum information, such as improvement in the
efficiency of the Carnot engine.

The quantification of correlations in a bipartite quan-
tum state is a key issue in quantum information theory.
Talking about correlations, one usually distinguishes bet-
ween classical correlations and quantum correlations. The
former is related to classical mixing while the latter usu-
ally means entanglement. But the classical correlations and
quantum correlations are often intertwined in a quantity,
which represents the total correlations and it may be difficult
to separate them. Therefore, characterizing and qualifying
quantum correlations have received much attention. The

∗Corresponding author. Emails: abdelbastm@yahoo.com, a.mohamed@sau.edu.sa

quantum discord of a general bipartite state is not always
larger than the entanglement [10,11], which means that the
quantum discord is not simply the sum of entanglement
and some other non-classical correlation. The entanglement
of two-qubit states has been characterized and qualified
completely for any initial state, while the quantum dis-
cord has been identified only for particular cases [12–14].
Recently, some results on quantum discord have been
obtained for a certain set of a two-qubit X structure density
matrix [15,16], and it is an independent measurement of
quantum correlation. To further understand the relationships
of these correlations, we derive two explicit expressions for
quantum discord and classical correlation for any two-qubit
X state and generalize previous studies.

Recently, the dynamics of disentanglement of a bipar-
tite qubit system occurred due to spontaneous emission,
where the two-level qubits were coupled individually to
two cavities (environments). They found that the quan-
tum entanglement may vanish in a finite time, while local
decoherence takes an infinite time. They called this phe-
nomenon a Entanglement Sudden Death (ESD) [17]. ESD
is not unique to systems of independent atoms. It can also
occur for atoms coupled to a common reservoir, in which
case we also observe the effect of the revival of the entan-
glement that has already been destroyed [18]. The effect of
global noise on entanglement decay may depend on whether
the initial two-party state belongs to a decoherence free
subspace or not. As opposed to the ESD and against our
intuition, it has been shown that under certain conditions,
the process of spontaneous emission can entangle qubits

© 2015 Taylor & Francis
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that were initially unentangled [19], and in some cases the
creation of entanglement can occurs sometime after the
system–reservoir interaction has been turned on. The auth-
ors in Ref. [20] call this phenomenon a delayed sudden birth
of entanglement. Motivated by the above topics, quantum
discord and measurement-induced nonlocality are used to
investigate the quantum correlations for two qubits in two
different cases for the initial two-qubit Werner states.

The paper is organized as follows. In Section 2, we for-
mulate a master equation for a two-qubit density matrix
describing the processes of interest here. In Section 3, we
analyze the quantum correlations a quantum correlation
measures. In Section 4, we discuss numerical results. In
Section 5, we present conclusions.

2. Tow-qubit model system

Here, two-qubit field system is considered in the dispersive
regime with a reservoir. Two initially interacting qubits,
labeled by A and B, are chosen as the model. A two-level
atom with an excited state |1〉 and a ground state |0〉. The
standard formalism for the calculations of the time evolution
and correlation properties of a collective system of atoms is
the master equation method. Suppose, we have two qubits
interacting with a quantized field inside a damping cavity.
The master equation that governs the dynamics of the whole
system can be given as:

dρ

dt
= i[ρ, Ĥ ]

+ ξ1[2|0〉11〈1|ρ|1〉11〈0| − |1〉11〈1|ρ − ρ|1〉11〈1|]
+ ξ2[2|0〉22〈1|ρ|1〉22〈0| − |1〉22〈1|ρ − ρ|1〉22〈1|],

(1)

The Hamiltonian H of the two-qubit system interacting
with the field in the dispersive regime is given by [21]:

Ĥ = λ

[ ∑
i=A,B

{
|1〉i i 〈1|ââ† − |0〉i i 〈0|â†â

}

+
(

|1〉11〈0| ⊗ |0〉22〈1| + |0〉11〈1| ⊗ |1〉22〈0|
)]

,

(2)

where â† (â) is the creation (annihilation) operator and the
two eigenstates of the individual qubit (|0〉,|1〉) constitute
the qubit states and λ is the effective interaction constant.
Parameters ξ1 and ξ2 are the phase damping constants for
the two qubits, σ

(i)
z = |1〉i i 〈1| − |0〉i i 〈0|, i = A, B.

The master Equation (1) can be solved to obtain ρi j (τ ),
(i, j = 1, 2, 3, 4) (for simplicity we will take ξ1 = ξ2 = ξ ).
To do this, the qubits and field are initially in the form:

ρ(τ) =
∑

m,n=0

qnqm |m〉〈n| ⊗ ρ AB(0), (3)

where the field is initially in coherent state |α〉〈α| with qn =
e

−|α|2
2 αn√

n! and α is a complex number, and, the qubits are
initially in Werner states defined by [22]:

ρ AB(0) = μ|ϕ〉〈ϕ| + 1

4
(1 − μ)I (4)

where μ is a real number, which indicates the purity of initial
states, I is the identity matrix and |ϕ〉 is a two-qubit state.
The reduced density matrix ρ AB of two qubits is calculated
by tracing out the field variables in two cases.

Case 1 One considers |ϕ〉 = sin θ |11〉+cos θ |00〉, where
θ a parameter weight qubit states (the qubit distribution).
For this initial state of the qubits, the reduced density matrix
of the two qubits ρ AB(τ ) is given by:

ρ AB(τ ) = ρ11|11〉〈11| + ρ22|10〉〈10| + ρ33|01〉〈01|
+ ρ44|00〉〈00| + ρ14|11〉〈00| + ρ∗

14|11〉〈00|
(5)

where

ρ11(τ ) =
[

1

4
(1 − μ) + μ sin2 θ

]
e−4γ τ

ρ22(τ ) = ρ33(τ ) = 1

2

[
(1 − μ)

(
1 − 1

2
e−2γ τ

)

+ 2μ sin2 θ
(

1 − e−2γ τ
)]

e−2γ τ

ρ44(τ ) = 1 +
[
(1 − μ)

(
−1 + 1

4
e−2γ τ

)

+ μ sin2 θ
(
−2 + e−2γ τ

)]
e−2γ τ

ρ14(τ ) = ρ∗
41(τ ) = 1

2
μ sin 2θe−2iτ−|α|2(1−e−4iτ )

Case 2 Here we consider |ϕ〉 = sinθ |10〉+cosθ |01〉. The
reduced density matrix of the two qubits ρ AB(τ ) is given
by:

ρ AB(τ ) = ρ11|11〉〈11| + ρ22|10〉〈10| + ρ33|01〉〈01|
+ ρ44|00〉〈00| + ρ23|01〉〈10| + ρ∗

23|01〉〈10|
(6)

where,

ρ11(τ ) = 1

4
(1 − μ)e−4γ τ

ρ22(τ ) = 1

4
[(μ − 1)e−2γ τ − 2μ cos(2θ) cos(2τ) + 2]e−2γ τ

ρ33(τ ) = 1

4
[(μ − 1)e−2γ τ + 2μ cos(2θ) cos(2τ) + 2]e−2γ τ

ρ44(τ ) = 1 + [(1 − μ)e−2γ τ − 1]e−2γ τ

ρ23(τ ) = ρ∗
32(τ ) = 1

2
μ[i cos(2θ) sin(2τ) + sin(2θ)]e−2γ τ

with τ = λt and γ = ξ
λ

.
These elements are used to calculate negativity, quantum

discord, and Measurement-induced non-locality.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Su

ss
ex

 L
ib

ra
ry

] 
at

 1
1:

03
 0

4 
Ja

nu
ar

y 
20

16
 



920 A.-S.F. Obada et al.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ/π

γ=0.5

Negativity
Discord
MIN

(a) (b)

(c) (d)

Figure 1. QE, QD and MIN against τ and γ for two qubits prepared initially in Werner state, |ϕ〉 = sin θ |11〉 + cos θ |00〉 and the field in
a coherent state with initial mean photon number |α|2 = 4 , θ = π

4 and μ = 1. (The colour version of this figure is included in the online
version of the journal.)

3. Quantum correlation measures

3.1. Negativity (QE)

The entanglement of the system described by the density
operator ρ(t) can be measured by the negativity defined in
terms of the negative eigenvalues of the partial transposition
of ρ(t) [23,24]

E = max

(
0,−2

∑
i

μi

)
, (7)

where the sum is taken over the negative eigenvalues μi

of the partial transposition of the density matrix ρ(t) of the
system. The value E = 1 corresponds to maximum entan-
glement between the two qubits, while E = 0 indicates that
the two qubits are separable.

3.2. Quantum discord (QD)

In quantum information theory, quantum discord is a mea-
sure of non-classical correlations between two subsystems
of a quantum system. It includes correlations that are due

to quantum physical effects but do not necessarily involve
quantum entanglement.

The notion of quantum discord was introduced [25–27]
referred to it also as a measure of quantumness of correla-
tions [26]. From the work of these two research groups, it
follows that quantum correlations can be present in certain
mixed separable states [28]. In other words, separability
alone does not imply the absence of quantum effects. The
notion of quantum discord thus goes beyond the distinction
which had been made earlier between entangled versus
separable (non-entangled) quantum states.

In mathematical terms, quantum discord is defined in
terms of the quantum mutual information. More specifi-
cally, quantum discord is the difference between two expres-
sions which each, in the classical limit, represent the mutual
information. These two expressions are:

I (A; B) = H(A) + H(B) − H(A, B)

J (A; B) = H(A) − H(A|B)

where, in the classical case, H(A) is the information
entropy, H(A, B) the joint entropy and H(A|B) the
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Figure 2. QE, QD and MIN against τ and μ for two qubits prepared initially in Werner state, |ϕ〉 = sin θ |11〉 + cos θ |00〉 and the field
in a coherent state with initial mean photon number |α|2 = 4 , θ = π

4 and γ = 0.4. (The colour version of this figure is included in the
online version of the journal.)

conditional entropy, and the two expressions yield identical
results. In the non-classical case, the quantum physics anal-
ogy for the three terms are used S(ρ A) the von Neumann
entropy, S(ρ) the joint quantum entropy, and S(ρ A|ρB) the
conditional quantum entropy, respectively, for probability
density function ρ;

I (ρ) = S(ρ A) + S(ρB) − S(ρ)

JA(ρ) = S(ρB) − S(ρB |ρ A)

The difference between the two expressions I (ρ)−JA(ρ)

defines the basis-dependent quantum discord, which is
asymmetrical in the sense that Q A(ρ) can differ from Q B(ρ)

[29,30]. The notation J represents the part of the corre-
lations that can be attributed to classical correlations and
varies in dependence on the chosen eigenbasis, therefore,
in order for the quantum discord to reflect the purely non-
classical correlations independently of basis, it is necessary
that J first be maximized over the set of all possible projec-
tive measurements onto the eigenbasis [31]:

Q A(ρ) = S(ρ A) − S(ρ) + min∏A
J

S
(
ρB

|∏A
J

)
(8)

The von Neumann measurement for the system A is writ-
ten

∏A
J = I ⊗ |J 〉〈J | where I is the identity operator

for system A, ( j = 1, 2). Non-zero quantum discord indi-
cates the presence of correlations that are due to non-
commutativity of quantum operators [31]. For pure states,
the quantum discord becomes a measure of quantum ent-
anglement [32], more specifically, in that case it equals the
entropy of entanglement [28]. The dynamics of the quantum
discord and entanglement has been recently compared under
the same conditions when entanglement dynamic undergoes
a sudden death [33].

Vanishing quantum discord is a criterion for the pointer
states, which constitute preferred effectively classical states
of a system [26] It could be shown that quantum discord
must be non-negative and that states with vanishing quan-
tum discord can in fact be identified with pointer states [34].
Other conditions have been identified which can be seen in
analogy to the criterion [35] and in relation to the strong
subadditivity of the von Neumann entropy [36].

For a two qubit X state, with computation basis {|1〉 = | ↑
〉A| ↑〉B}, {|2〉 = | ↑〉A| ↓〉B}, {|3〉 = | ↓〉A| ↑〉B}, {4〉 =
| ↓〉A| ↓〉B}. The density matrix is written as
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Figure 3. QE, QD and MIN against τ and θ for two qubits prepared initially in Werner state, |ϕ〉 = sin θ |11〉 + cos θ |00〉 and the field
in a coherent state with initial mean photon number |α|2 = 4 , μ = 1 and γ = 0.4. (The colour version of this figure is included in the
online version of the journal.)

ρ AB(t) =

⎛
⎜⎜⎝

ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ∗

23 ρ33 0
ρ∗

14 0 0 ρ44

⎞
⎟⎟⎠ , (9)

The quantum discord for measuring system B is given by
[37]:

Q B(ρ) = min{Q1(ρ), Q2(ρ)} (10)

where

Q1(ρ) = S(ρB) − S(ρ AB) − ϒ,

Q2(ρ) = S(ρB) − S(ρ AB) − .

and S(ρ) = −Trρ log2(ρ) denotes the von Neumann
entropy. Where the two quantities ϒ and  in the form:

ϒ =
2∑

m=1

{
℘(1 + (−1)m)	

2
log2

[
℘(1 + (−1)m)	

2

]

+
(1 + (−1)m)∅
2

log2

[
(1 + (−1)m)∅
2

]}
, (11)

 =
2∑

n=1

1 + (−1)nζ

2
log2

[
1 + (−1)nζ

2

]
(12)

Also

℘ = ρ11 + ρ33, 	 = |ρ11 − ρ33|
℘

,


 = ρ22 + ρ44, ∅ = |ρ22 − ρ44|

 ,

and

ς =
√

(ρ11 + ρ22 − ρ33 − ρ44)2 + 4(|ρ14| + |ρ23|)2.

These formulas are used in the numerical calculation
later on.

3.3. Measurement-induced non-locality (MIN)

MIN can be viewed as a kind of non-classical correla-
tion from a geometric perspective based on the local von
Neumann measurements from which one of the reduced
states is left invariant. Let ρ be any bipartite state shared
between two parties A and B, then MIN is defined by [38],

M(ρ) = max
�A

‖ρ − �A(ρ)‖2 (13)

where maximum is over all von Neumann measurements
�A which do not disturb ρ A, the local density matrix of A,
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Figure 4. The same as in Figure 1 but the two qubits prepared initially in Werner state, |ϕ〉 = sin θ |10〉 + cos θ |01〉. (The colour version
of this figure is included in the online version of the journal.)

i.e.�k�
A
k ρ A�A

k = ρ A and�A(ρ) = �k(�
A
k ⊗IB)ρ(�A

k ⊗
IB). By using Ref. [38], MIN for a two-qubit X state ρ AB

is given by:

M(ρ AB) =
{ 1

4 (T r R Rt − 1
‖x‖ xt R Rt x), x �=0;

1
4 (T r R Rt − λmin), x =0.

(14)

where λmin being minimum eigenvalues of R Rt , Ri j =
T r(ρ AB(σi ⊗ σ j )) are the components of the correlation
matrix [39] and σi are the usual Pauli spin matrices.
Physically, MIN quantifies the global effect caused by
locally invariant measurements. MIN has application in
general dense coding, quantum state steering, etc. MIN
vanishes for product state and remains positive for entan-
gled states. For pure states, MIN reduces to linear entropy
like geometric discord [39]. MIN is invariant under local
unitary, i.e. in true sense, it is a non-local correlation mea-
sure. The set of all zero MIN states is non-convex. The
authors in [40] derived the conditions for the nullity of
MIN. They have found that set of states with zero MIN is a
proper subset of the set of all classical quantum states, i.e.

zero-discord states. MIN for classical quantum state van-
ishes if each eigen-subspace of ρ A is one-dimensional. It
therefore reveals that noncommutativity is the cause of these
kind of non-locality in quantum states. Recently, in [41],
MIN has been quantified in terms of relative entropy to
give it another physical interpretation. The results of this
quantities for our system are considered in the following
section.

4. Numerical results

In the first, one considers the time evolution of QE,
QD and MIN for |ϕ〉 = sin θ |11〉 + cos θ |00〉. In Figure
1(a)–(c), QE, QD, and MIN are plotted against scaled time
and γ for the two qubits with the initial mean photon number
|α|2 = 4 and θ = π

4 , μ = 1, which means that ρ AB

is pure state. When γ = 0 (see Figure 1(a)), (i.e. in the
absence of the damping), this case is corresponding to the
evolution of the entanglement in the standard two-photon
model. And one can find that QE, QD, and MIN have the
same behavior, but they have different amplitude values.
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Figure 5. The same as in Figure 2 but the two qubits prepared initially in Werner state, |ϕ〉 = sin θ |10〉 + cos θ |01〉. (The colour version
of this figure is included in the online version of the journal.)

We can observe that QE, QD, and MIN periodically evolve
with a period π

2 , and the two qubits are entangled. This
evolvement period get shorter with the increasing. Then,
one can note that the possibility to revive them periodically
into their initial values can be observed if and only if γ = 0.
When τ = π

4 (4n − 3)( (n = 1, 2, . . .), QE and MIN don’t
drop to zero but stationary QD drops to zero. In general, the
minimum values of MIN is greater than the minimum values
of QE and QD but the maximum values of QE and QD is
greater than the maximum values of MIN (see Figure 1(c)).
Therefore, collapses and revivals phenomenon appears for
QE, QD, and MIN.

From Figure 1(a)–(c), one can see the influences of the
damping, on QE, QD, and MIN. It is observed that the
weak damping parameter leads to the weak decrease in
the maximal values. Therefore, in order to prepare states
having quantum correlation, the influence of the damping
should be taken into account. It is seen that quantum cor-
relations can be disappeared by introducing the damping.
The stationary correlations can be increased by increasing
γ , after a certain γ , QE and QD vanish, but MIN still exists,
as shown in Figure 1(d) i.e. MIN is more robust than QE
and QD. Quantum correlations cannot be strengthened by

introducing the damping. The appearance time of stationary
correlations gets shorter with the increase in the damping
parameter [42,43]. This is very easily understood since the
period is governed by the decay term (e−αγ τ , (α = 2, 4))

in the solutions 5,6 of master equation.
In Figure 2 (a)–(c), QE, QD, and MIN are plotted against

scaled time and μ for the two qubits with θ = π
4 and

γ = 0.4. Clearly, these measures are independent of the
cavity decay parameter γ (damping parameter). For
γ > 0, stationary QE and QD present sudden death while
MIN presents sudden birth. Looking at the formulas for neg-
ativity, we see that whenever the damping occurs
(γ > 0, τ → ∞) the elements of the density matrix att-
end to zero and, therefore, the density matrix is separa-
ble, QE and QD vanishes. In this sense stationary MIN is
more accurate, because, in this example, is only zero when
the matrix is diagonal (in the computational basis) and
MIN → 0.25 see Figure 2(d). In the intervals of the ent-
anglement death, QE and QD equal zero. It is obvious that
even for different values of μ QE and QD will vanish. So in
this sense, MIN is robust than QE and QD. It is found that the
initial state parameter μ leads to the following: decreasing
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Figure 6. The same as in Figure 1 but the two qubits prepared initially in Werner state, |ϕ〉 = sin θ |10〉 + cos θ |01〉. (The colour version
of this figure is included in the online version of the journal.)

the amplitudes of the QE and QD and the disappearance of
the phenomenon of entanglement sudden birth.

In Figure 3(a)–(c), QE, QD, and MIN are plotted against
scaled time and θ for the two qubits withμ = 1 andγ = 0.4.
When we neglect the damping parameter clearly describes
the time evolution for the standard two photon. Thus, the
time evolution diagram for stationary values QE, QD, and
MIN of the usual two-photon is very regular; it is symmetric
about θ = π

2 . This is due to the periodic nature of the
interaction phenomenon in the two photons. This can be
attributed to the weighted qubit states (the qubit distribution
θ ). In the presence of the damping with a small increase in
the parameter of the damping leads to the localization of the
peaks. The peak centered at θ = π

2 disappears due to the
damping.

To see the effect of the initial state on QE, QD, and MIN
these measures are plotted in Figures 4–6 for the initial state,
|ϕ〉 = sin θ |10〉 + cos θ |01〉 where Figure 4 the same as in
Figures 1 and 5 the same as in Figures 2 and 6 the same as in
Figure 3. From Figure 4(a) and (b), we note that collapses
and revivals phenomenon disappears for QE, QD and MIN.
The maximum values for QE and QD occur when γ = 0.
We find that QE and QD evolve with respective to damping
parameter γ . There is no entanglement for γ > 0.2. It is

shown that stationary QE and QD experiences a sudden
transition when entanglement changes from a finite value
to zero, while quantum correlation evolves continuously
with respective to damping even it tends to be zero. After
a particular value for γ , stationary MIN has a sudden tran-
sition to a fixed value (see Figures 4–6(d)). In Figures 4–6,
also shows that there is no asymptotic decay for MIN while
asymptotic decay exists for QD and QE. The inevitable
onset of the sudden decrease in the quantum discord can be
substantially delayed by the decrease in the noise γ defines
the environment.

5. Conclusions

In this paper, quantum correlation is investigated, using QD
and MIN, in a two-qubit system. It is seen that quantum cor-
relation cannot be strengthened by introducing the damping
interaction. It is found that there exists not only quantum
non-locality without entanglement but also quantum non-
locality without quantum discord. Also with weak initial
entanglement, there are QE and QD in an interval of death
quantum discord. After a certain γ , QE and QD vanish, but
MIN still exists, MIN is more robust than QE and QD. It
is found that the stationary correlations QE and QD present
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sudden death, while MIN presents sudden birth. Finally, a
uniform damping qubit can affect the stationary correlations
when the qubits are initially in an entangled state.
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