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In this paper, we establish some fixed point results for αqsp -admissible mappings embedded in L-simulation functions in the
context of b-metric-like spaces. As an application, we discuss the existence of a unique solution for fractional hybrid differential
equation with multipoint boundary conditions via Caputo fractional derivative of order 1 < α ≤ 2. Some examples and corollaries
are also considered to illustrate the obtained results.

1. Introduction

Fixed point theory has received much attention due to its
applications in pure mathematics and applied sciences.
Generalization of this theory depends on generalizing the
metric type space or the contractive type mapping. The
concept of metric spaces has been extended in various
directions by reducing or modifying the metric axioms.
Since, losing or weakening some of the metric axioms
causes loss of some topological properties, hence bringing
obstacles in proving some fixed point theorems. These
obstacles force researchers to develop new techniques in
the development of fixed point theory in order to resolve
more real concrete applications.

In 1989, Bakhtin [1] (and also Czerwik [2]) introduced
the concept of b −metric spaces and presented a generaliza-
tion of Banach contraction principle. Amini-Harandi [3]
introduced the notion of metric-like spaces which play an
important role in topology and logical programming. In
2013, Alghamdi et al. [4] generalized the notions of b −
metric and metric-like spaces by introducing a new space
called b −metric-like space and proved some related fixed
point results. Recently, many results of fixed point of map-
pings under certain contractive conditions in such spaces
have been obtained (see [5–8]).

Zoto et al. [9] introduced the concept of αqsp − admissible
mappings and provided some fixed point theorems for these
mappings under some new conditions of contractivity in the
setting of b −metric-like spaces. Recently, Cho [10] proposed
the notion of θL − contractions and confine his fixed point
results for such contractions to generalized metric spaces.
Aydi et al. [11] proved that those results are also valid in par-
tial metric spaces.

Fractional calculus is a field of mathematics that deals
with the derivatives and integrals of arbitrary order. Indeed,
it is found to be more realistic in describing and modeling
several natural phenomena than the classical one. In recent
years, many researchers have focused on joining fixed point
theory with fractional calculus, see for example [12–15].

The study of differential equations with fractional order
has attracted many authors because of its intensive develop-
ment of fractional calculus itself and its applications in vari-
ous fields of science and engineering, see [16–19].

On the other hand, hybrid differential equations have
attracted much attention after the pioneering works
appeared in [20, 21] which discussed main aspects about
first-order hybrid differential equations with perturbations
of 1st and 2nd types, respectively.

Fractional hybrid differential equations (in short,
FHDEs) have been studied using Riemann-Liouville and
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Caputo fractional derivatives of order α > 0 in many litera-
tures, see [22–27].

In [23], Derbazi et al. applied Dhage hybrid fixed point
theorem [28] to provide sufficient conditions that guarantee
the existence only of solutions for a class of FHDEs with
three-point boundary conditions due to Caputo fractional
derivative of order 1 < α ≤ 2 in Banach algebra spaces.

Inspired by the above works, we investigate the existence
of a unique fixed point for αqsp-admissible mapping via L

-simulation function ξ : ½1,∞Þ × ½1,∞Þ→ℝ and control
function θ : ð0,∞Þ→ ð1,∞Þ in more general setting (b-met-
ric-like space) than partial metric, b −metric and metric-like
spaces. Also, as an application, we provide appropriate con-
ditions that guarantee the existence of a unique solution to
the following FHDE.
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where cDα and cDβ denote the Caputo fractional derivatives
of orders α and β, respectively, 0 < α ≤ 2, q > 0, 0 < β ≤ 1, 0
< ηi < T , ζi, i = 1,2,3,⋯,m + 1,m ∈ℕ are real constants such
that

ζ1 + ζ2 ≠ 0, 〠
m

i=3
ζiη

1−β
i + ζm+1T

1−β ≠ 0,

g ∈ C J ×ℝ,ℝ \ 0f gð Þ and f , h ∈ C J ×ℝ,ℝð Þ:
ð2Þ

2. Basic Concepts

In order to fix the framework needed to state our main
results, we recall the following notions.

Definition 1 [1]. Let X be a nonempty set and s ≥ 1 be a given
real number. A function d : X × X→ ½0,∞Þ is a b −metric if
for all x, y, z ∈ X, the following conditions are satisfied.

(b1) dðx, yÞ = 0⇔ x = y
(b2) dðx, yÞ = dðy, xÞ
(b3) dðx, yÞ ≤ s½dðx, zÞ + dðz, yÞ�
The pair ðX, dÞ is called a b −metric space, and s is the

coefficient of it.

Note that, every metric space is a b −metric space with
coefficient s = 1.

Definition 2 [3]. A metric-like space on a nonempty set X is a
function σ : X × X → ½0,∞Þ such that for all x, y, z ∈ X:

(σ1) σðx, yÞ = 0⇒ x = y
(σ2) σðx, yÞ = σðy, xÞ
(σ3) σðx, yÞ ≤ σðx, zÞ + σðz, yÞ
Then, the pair ðX, σÞ is called a metric-like space.

It should be noted that σ satisfies all of the conditions of a
metric except that σðx, xÞ may be positive for x ∈ X.

Definition 3 [4]. A function σb : X × X→ ½0,∞Þ on a non-
empty set X is called b −metric-like if for any x, y, z ∈ X,
the following conditions hold true.

(σb1) σbðx, yÞ = 0⇒ x = y
(σb2) σbðx, yÞ = σbðy, xÞ
(σb3) σbðx, yÞ ≤ s½σbðx, zÞ + σbðz, yÞ�
The pair ðX, σbÞ is called a b −metric-like space.

Remark 4. The class of b −metric-like spaces is considerably
larger than both b −metric spaces and metric-like spaces.
Since, every b −metric is a b −metric-like with same coeffi-
cient and zero self-distance. Also, every metric-like is a b −
metric-like with s = 1. However, the converse implications
do not hold (see for example, [1, 4]).

Example 5. Let X = R and σb : X × X→ ½0,∞Þ be defined as

σb x, yð Þ = ∣x∣+∣y ∣ð Þp,∀x, y ∈ X and p ∈ℕ, ð3Þ

then, ðX, σbÞ is a b −metric-like space with parameter s =
2p−1.

Example 6. Let X ⊆ℝ and CbðXÞ = f f : X→ R : supx∈X ∣ f ð
xÞ∣<∞g. The function σb : X × X → ½0,∞Þ, defined by

σb f , gð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sup
x∈X

∣f xð Þ∣,∣g xð Þ ∣ð Þnn

r
,∀f , g ∈ Cb Xð Þ, n ∈ℕ, ð4Þ

is a b −metric-like with constant s =
ffiffiffiffiffiffiffiffi
2n−1n

p
, and so, ðX, σbÞ is

a b −metric-like space.

Definition 7. Let ðX, σbÞ be a b −metric-like space and fxng
be a sequence in X, and x ∈ X. Then,

(1) The set

B x, rð Þ = y ∈ X : σb x, yð Þ − σb x, xð Þj j < rf g, ð5Þ

is called an open ball with center x and radius r. Also, the
family

B x, rð Þ,∀x ∈ X, r > 0f g, ð6Þ

forms a base of the topology τσb generated by σb on X.

(2) fxng is said to converge to x w.r.t. τσb if

lim
n→∞

σb xn, xð Þ = σb x, xð Þ: ð7Þ

(3) fxng is said to be σb − Cauchy if
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lim
n,m→∞

σb xn, xmð Þ, ð8Þ

exists and is finite.

(4) ðX, σbÞ is said to be complete if for every Cauchy
sequence fxng in X, there exists x ∈ X such that

lim
n,m→∞

σb xn, xmð Þ = lim
n→∞

σb xn, xð Þ = σb x, xð Þ: ð9Þ

Lemma 8. Let ðX, σbÞ be a b −metric-like space with param-
eter s ≥ 1 and fxng be a convergent sequence in X such that

lim
n,m→∞

σb xn, xmð Þ = lim
n→∞

σb xn, xð Þ = σb x, xð Þ = 0, x ∈ X:

ð10Þ

Then, every subsequence fxnkg with nk ≥ k ∈ℕ con-
verges to the same limit x ∈ X.

Proof. Since xn → x and limn→∞σbðxn, xÞ = 0, then for a given
ε > 0

∃n0 ∈ℕ : n > n0 ⇒ σb xn, xð Þ < ε: ð11Þ

From ðσb3Þ and (10), we have

σb xnk , x
� �

< s σb xnk , xk
� �

+ σb xk, xð Þ� �
→ 0 as nk ≥ k→∞:

ð12Þ

Therefore,

lim
k→∞

σb xnk , x
� �

= 0 = σb x, xð Þ: ð13Þ

Definition 9 [10]. LetL be the set of allL − simulation func-
tions ξ : ½1,∞Þ × ½1,∞Þ→ℝ that fulfil:

(ξ1) ξð1, 1Þ = 1
(ξ2) ξðu, vÞ < v/u, ∀u, v > 1
(ξ3) For any two sequences fung, fvng ∈ ð1,∞Þ with un

< vn, ∀ n ∈ℕ

lim
n→∞

un = lim
n→∞

vn > 1⇒ lim sup
n→∞

ξ un, vnð Þ < 1: ð14Þ

In [10], authors used the function θ : ð0,∞Þ→ ð1,∞Þ
defined by Jleli and Samet in [29] to propose the following
result.

Definition 10 [29]. Let Θ be the set of all functions θ : ð0,∞
Þ→ ð1,∞Þ that fulfil:

(θ1) θ is non-decreasing
(θ2) For any sequence fung ∈ ð0,∞Þ

lim
n→∞

θ unð Þ = 1⇒ lim
n→∞

un = 0: ð15Þ

Theorem 11 [10]. Let ðX, dÞ be a complete generalized metric

space and T : X → X satisfy

ξ θ d Tx, Tyð Þð Þ, θ d x, yð Þð Þð Þ ≥ 1,∀x, y ∈ X with d Tx, Tyð Þ
> 0, ξ ∈L , θ ∈Θ:

ð16Þ

Then, T has a unique fixed point, and for every initial
point x0 ∈ X, the Picard sequence fTnx0g converges to that
fixed point.

Definition 12 [9]. Let ðX, σbÞ be a b −metric-like space with
parameter s ≥ 1, α : X × X → ½0,∞Þ be a function, and q ≥ 1
and p ≥ 2 be arbitrary constants. A mapping T : X→ X is
αqsp − admissible if

α x, Txð Þ ≥ qsp ⇒ α Tx, T2x
� �

≥ qsp,∀x ∈ X: ð17Þ

In addition, T is said to be triangular αqsp − admissible if
it is αqsp − admissible and

α x, yð Þ and α y, Tyð Þ ≥ qsp ⇒ α x, Tyð Þ ≥ qsp,∀x, y ∈ X: ð18Þ

Definition 13 [18, 19]. The Riemann-Liouville fractional inte-
gral of order α > 0 of a function x : ½0,∞Þ→ℝ is given by

Iαx tð Þ = 1
Γ αð Þ

ðt
0
t − sð Þα−1x sð Þds: ð19Þ

The Caputo fractional derivative of order α of x is given
by

cDαx tð Þ = 1
Γ n − αð Þ

ðt
0
t − sð Þn−α−1x nð Þ sð Þds, ð20Þ

where n = ½α� + 1 and Γ denote the gamma function, pro-
vided that the right side is point-wise defined on ½0,∞Þ.

Lemma 14 [23]. Let 0 < β ≤ α and x ∈ Cnð½0, T�Þ. Then, for all
t ∈ ½0, T�, we have:

(1) IαIβxðtÞ = Iα+βxðtÞ and cDβIαxðtÞ = Iα−β f ðtÞ
(2) IαcDαxðtÞ = xðtÞ +∑n−1

i=0 cit
i, for some c0,⋯, cn−1 ∈ℝ

(3) Iα : Cð½0, T�Þ→ Cð½0, T�Þ

3. A Set of Fixed Point Results

Our first main result is the following theorem.

Theorem 15. Let ðX, σbÞ be a complete b −metric-like space
with parameter s ≥ 1. Suppose that T : X → X is a triangular
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αqsp − admissible mapping and satisfy

ξ α x, yð Þθ σb Tx, Tyð Þð Þ, θ σb x, yð Þð Þð Þ ≥ 1,∀x, y ∈ X, ξ ∈L , θ ∈Θ:

ð21Þ

Consider that the following properties hold true

(a) If fxng is a sequence in X such that xn → x ∈ X as n
→∞ and αðxn, xn+1Þ ≥ qsp, then αðxn, xÞ ≥ qsp, ∀n
∈ℕ

(b) For all x, y ∈ FixðTÞ, we have αðx, yÞ ≥ qsp, where Fi
xðTÞ denotes the set of fixed points of T

Moreover, if there exists x0 ∈ X such that αðx0, Tx0Þ ≥ qsp,
then T has a unique fixed point.

Proof. Starting with that point x0 ∈ X : αðx0, Tx0Þ ≥ qsp. We
define a sequence fxng ⊂ X by

xn+1 = Txn,∀n ∈ℕ0 =ℕ ∪ 0f g: ð22Þ

Regarding that T is an αqsp − admissible, then by induc-
tion, we get

α xn, xn+1ð Þ ≥ qsp,∀n ∈ℕ0: ð23Þ

If σbðxn, xn+1Þ = 0 for some n, then xn = xn+1, that is, xn is
a fixed point of T , and the proof is completed. So, we assume
that

σb xn, xn+1ð Þ > 0, ∀ n: ð24Þ

From (23) and (24), we apply (21) at x = xn−1 and y = xn
to get

1 ≤ ξ α xn−1, xnð Þθ σb Txn−1, Txnð Þð Þ, θ σb xn−1, xnð Þð Þð Þ
< θ σb xn−1, xnð Þð Þ
α xn−1, xnð Þθ σb xn, xn+1ð Þð Þ ,⇒ θ σb xn, xn+1ð Þð Þ

≤ α xn−1, xnð Þθ σb xn, xn+1ð Þð Þ < θ σb xn−1, xnð Þð Þ:

ð25Þ

Hence, the sequence fθðσbðxn, xn+1ÞÞg is monotone
decreasing and bounded below by 1. Therefore, there exists
m ≥ 1 such that

lim
n→∞

θ σb xn, xn+1ð Þð Þ =m: ð26Þ

To prove thatm = 1, suppose the contrary thatm > 1 and
obtain a contradiction. From (25), (26), and ðξ3Þ, we have

1 ≤ lim sup
n→∞

ξ α xn−1, xnð Þθ σb Txn−1, Txnð Þð Þ, θ σb xn−1, xnð Þð Þð Þ < 1,

ð27Þ

that is all we need. Thus, m = 1 and

lim
n→∞

θ σb xn, xn+1ð Þð Þ = 1: ð28Þ

Also, ðθ2Þ implies

lim
n→∞

σb xn, xn+1ð Þ = 0: ð29Þ

Now, we show that

lim
n,m→∞

σb xn, xmð Þ = 0: ð30Þ

Consider the sequence

Rk = sup θ σb xn, xmð Þð Þ: m ≥ n ≥ kf g,∀k = 1,2,3,⋯: ð31Þ

It is easy to verify that

lim
k→∞

Rk = 1 ⇒ lim
n,m→∞

θ σb xn, xmð Þð Þ = 1,

1 ≤⋯≤ Rk+1 ≤ Rk ≤⋯ ≤ R1:
ð32Þ

Hence, the sequence fRkg is decreasing and bounded
below by 1. Consequently, there exists r ≥ 1 such that

lim
k→∞

Rk = r: ð33Þ

Assume that r > 1, then from (31), we conclude that

∀k = 1,2,3,⋯ 1
k
> 0

	 

,∃mk ≥ nk ≥ k

: Rk −
1
k
< θ σb xnk , xmk

� �� �
< Rk: ð34Þ

Taking limit as k→∞, together with (33), implies

lim
k→∞

θ σb xnk , xmk

� �� �
= r: ð35Þ

Also, we have

θ σb xnk , xmk

� �
− σb xnk , xnk−1

� �
− σb xmk−1, xmk

� �� �
≤ θ σb xnk−1, xmk−1

� �� �
< Rk orRk−1ð Þ:

ð36Þ

Again, taking limit as k→∞, together with (33), (35)
implies

lim
k→∞

θ σb xnk−1, xmk−1
� �� �

= r: ð37Þ

According to (23) and the fact that T is a triangular αqsp −
admissible, we derive

α xnk−1, xmk−1
� �

≥ 1: ð38Þ

On account of the above observations, we apply

4 Journal of Function Spaces



condition (21) and then (ξ3) to obtain

1 ≤ ξ α xnk−1, xmk−1
� �

θ σb xnk , xmk

� �� �
, θ σb xnk−1, xmk−1

� �� �� �
<

θ σb xnk−1, xmk−1
� �� �

α xnk−1, xmk−1
� �

θ σb xnk , xmk

� �� � ,⇒ θ σb xnk , xmk

� �� �
≤ α xnk−1, xmk−1

� �
θ σb xnk , xmk

� �� �
< θ σb xnk−1, xmk−1

� �� �
:

ð39Þ

Therefore, we have

lim
k→∞

α xnk−1, xmk−1
� �

θ σb xnk , xmk

� �� �
= r: ð40Þ

And hence

1 ≤ lim sup
k→∞

ξ α xnk−1, xmk−1
� ��

θ σb xnk , xmk

� �� �
, θ σb xnk−1, xmk−1

� �� �
< 1,

ð41Þ

which is a contradiction, then r = 1 and

lim
n,m→∞

θ σb xn, xmð Þð Þ = 1: ð42Þ

Thus, (30) holds true, and the sequence fxng is σb −
Cauchy. By the completeness of ðX, σbÞ, there exists x ∈ X
such that

lim
n→∞

σb xn, xð Þ = σb x, xð Þ = lim
n,m→∞

σb xn, xmð Þ = 0: ð43Þ

Now, consider the subsequence fxnkg of the sequence
fxng such that

σb xnk , x
� �

> 0 andσb xnk+1, Tx
� �

> 0,∀nk ≥ k ∈ℕ: ð44Þ

Lemma 8, together with (43), imply that

lim
k→∞

σb xnk , x
� �

= 0: ð45Þ

Apply (21), we obtain

1 ≤ ξ α xnk , x
� �

θ σb xnk+1, Tx
� �� �

, θ σb xnk , x
� �� �� �

<
θ σb xnk , x

� �� �
α xnk , x
� �

θ σb xnk+1, Tx
� �� � :

⇒θ σb xnk+1, Tx
� �� �

≤ α xnk , x
� �

θ σb xnk+1, Tx
� �� �

< θ σb xnk , x
� �� �

, 0 ≤ σb xnk+1, Tx
� �

≤ σb xnk , x
� �

→ 0 as k→∞:

ð46Þ

Hence,

lim
k→∞

σb xnk+1, Tx
� �

= 0: ð47Þ

From (45), (47), and ðσ3Þ, we conclude that

σb x, Txð Þ ≤ s σb x, xnk
� �

+ σb xnk , Tx
� �� �

→ 0 as k→∞,
⇒ σb x, Txð Þ = 0⇒ x = Tx:

ð48Þ

To see that this fixed point in unique, suppose that y
∈ X is another fixed point of T and apply (21) to get
the opposite.

1 ≤ ξ α x, yð Þθ σb Tx, Tyð Þð Þ, θ σb x, yð Þð Þð Þ
< θ σb x, yð Þð Þ
α x, yð Þθ σb Tx, Tyð Þð Þ ,

⇒ θ σb x, yð Þð Þ ≤ α x, yð Þθ σb x, yð Þð Þ < θ σb x, yð Þð Þ:

ð49Þ

This is impossible, so x = y, and the fixed point is
unique.

Let R denote the class of β : ½0,∞Þ→ ½0, 1Þ which sat-
isfies the condition

lim
n→∞

tn > 0⇒ lim
n→∞

β tnð Þ < 1: ð50Þ

Remark 16. Since b −metric-like space is a proper extension
of partial metric, metric-like, and b −metric spaces. Then,
we can derive our main results in the setting of these spaces.

Corollary 17. Let ðX, σÞ be a complete metric-like space and
T : X→ X be a mapping such that

σ Tx, Tyð Þ ≤ β σ x, yð Þð Þσ x, yð Þ,∀x, y ∈ X, β ∈R: ð51Þ

Then, T has a unique fixed point.

Proof. For all x, y ∈ X with x ≠ y and Tx ≠ Ty, condition (51)
can be written as

eσ Tx,Tyð Þ ≤ eσ x,yð Þ
� �β ln eσ x,yð Þð Þ

: ð52Þ

Therefore, Corollary 17 follows from Theorem 15 by tak-
ing

q = s = 1, ; α x, yð Þ = 1, θ tð Þ = et and ξ u, vð Þ = vβ ln vð Þ

u
,

ð53Þ

for all x, y ∈ X, t ∈ ð0,∞Þ, and u, v ∈ ð1,∞Þ.

4. Fractional Hybrid Differential Equations

Here, we place our considered problem (1) in the space

X = C J ,ℝð Þ = x : J →ℝ ; x is continuous on Jf g, ð54Þ
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with a mapping σb : X × X→ℝ+ ∪ f0g defined on it as:

σb x, yð Þ = sup
t∈J

∣x tð Þ∣+∣y tð Þ ∣ð Þp,∀x, y ∈ X, t ∈ J , p > 1: ð55Þ

It is evident that ðX, σbÞ is a complete b −metric-like
space with coefficient s = 2p−1.

For convenience, we define the following functions ρi
: J →ℝ, i = 1,2,3,4:

ρ1 tð Þ = ζ2Γ 2 − βð ÞT
ζ1 + ζ2ð Þ ∑m

i=3ζiη
1−β
i + ζm+1T

1−β
� � −

Γ 2 − βð Þt
∑m

i=3ζiη
1−β
i + ζm+1T

1−β

2
4

3
5,

ρ2 tð Þ = ζ2ζm+1Γ 2 − βð ÞT
ζ1 + ζ2ð Þ ∑m

i=3ζiη
1−β
i + ζm+1T

1−β
� � −

ζm+1Γ 2 − βð Þt
∑m

i=3ζiη
1−β
i + ζm+1T

1−β

2
4

3
5,

ρ3 tð Þ = −
ζ2

ζ1 + ζ2
,

ρ4 tð Þ = −
ζ1Γ 2 − βð ÞTλ2

ζ1 + ζ2ð Þ ∑m
i=3ζiη

1−β
i + ζm+1T

1−β
� � + λ1

ζ1 + ζ2

2
4

+ Γ 2 − βð Þtλ2
∑m

i=3ζiη
1−β
i + ζm+1T

1−β

#
:

ð56Þ

Lemma 18. Let h ∈ CðJÞ, then the integral representation of
the boundary value problem

cDα x tð Þ − f t, x tð Þð Þ
g t, x tð Þð Þ

� �
= h tð Þ,∀t ∈ J , ð57Þ

ζ1
x tð Þ − f t, x tð Þð Þ

g t, x tð Þð Þ
� �

t=0
+ ζ2

x tð Þ − f t, x tð Þð Þ
g t, x tð Þð Þ

� �
t=T

= λ1,

〠
m

i=3
ζi
c
Dβ x tð Þ − f t, x tð Þð Þ

g t, x tð Þð Þ
� �

t=ηi
+ ζm+1

c
Dβ x tð Þ − f t, x tð Þð Þ

g t, x tð Þð Þ
� �

t=T
= λ2,

ð58Þ
where 1 < α ≤ 2, 0 < β ≤ 1, 0 < ηi < T and ζi, i = 1; 2; 3,⋯,m
+ 1, m ∈ℕ are real constants such that

ζ1 + ζ2 ≠ 0, 〠
m

i=3
ζiη

1−β
i + ζm+1T

1−β ≠ 0, ð59Þ

is given by

x tð Þ = g t, x tð Þð Þ
ðT
0
G t, sð Þh sð Þds + ρ4 tð Þ

� �
+ f t, x tð Þð Þ,

ð60Þ

where Gðt, sÞ is the Green function and is given by

G t, sð Þ = t − sð Þα−1
Γ αð Þ + ρ1 tð Þ

Γ α − βð Þ〠
m

j=i
ζj ηj − s
� �α−β−1

+ ρ2 tð Þ
Γ α − βð Þ T − sð Þα−β−1 + ρ3 tð Þ

Γ αð Þ T − sð Þα−1, if

� s< t, ηi−1< s<ηi
� �

, = ρ1 tð Þ
Γ α − βð Þ〠

m

j=i
ζj ηj − s
� �α−β−1

+ ρ2 tð Þ
Γ α − βð Þ T − sð Þα−β−1 + ρ3 tð Þ

Γ αð Þ T − sð Þα−1, if

� s ≥ t, ηi−1< s<ηi
� �

:

ð61Þ

Proof. Applying the operator Iα on both sides of (57) and
using Lemma 14, we have

x tð Þ − f t, x tð Þð Þ
g t, x tð Þð Þ = Iαh tð Þ − c0 − c1t: ð62Þ

Using the boundary conditions (58), we get

−ζ1c0 + ζ2 Iα − c0 − c1Tð Þ = λ1, ð63Þ

〠
m

i=3
ζi Iα−βh ηið Þ − c1

η
1−β
i

Γ 2 − βð Þ

" #
+ ζm+1 Iα−βh Tð Þ − c1

T1−β

Γ 2 − βð Þ

" #
= λ2:

ð64Þ

Note that,

cDβc0 = 0 andcDβt = t1−β

Γ 2 − βð Þ : ð65Þ

Solving (63) and (64) for c0, c1 yields

c0 = −
ζ2TΓ 2 − βð Þ ∑m

i=3ζiI
α−βh ηið Þ + ζm+1I

α−βh Tð Þ − λ2
� �

ζ1 + ζ2ð Þ ∑m
i=3ζiη

1−β
i + ζm+1T

1−β
� �

+ ζ2
ζ1 + ζ2

Iαh Tð Þ − λ1
ζ1 + ζ2

,

c1 =
Γ 2 − βð Þ ∑m

i=3ζiI
α−βh ηið Þ + ζm+1I

α−βh Tð Þ − λ2
� �

∑m
i=3ζiη

1−β
i + ζm+1T

1−β
: ð66Þ
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Substituting the values of c0 and c1 into (62), we get

x tð Þ − f t, x tð Þð Þ
g t, x tð Þð Þ =

ðt
0

t − sð Þα−1
Γ αð Þ h sð Þds

+ ζ2Γ 2 − βð ÞT
ζ1 + ζ2ð Þ ∑m

i=3ζiη
1−β
i + ζm+1T

1−β
� �

2
4

−
Γ 2 − βð Þt

∑m
i=3ζiη

1−β
i + ζm+1T

1−β

#
:〠
m

i=3
ζi

ðηi
0

ηi − sð Þα−β−1
Γ α − βð Þ h sð Þds

+ ζ2ζm+1Γ 2 − βð ÞT
ζ1 + ζ2ð Þ ∑m

i=3ζiη
1−β
i + ζm+1T

1−β
� �

2
4

−
ζm+1Γ 2 − βð Þt

∑m
i=3ζiη

1−β
i + ζm+1T

1−β

#
:

ðT
0

T − sð Þα−β−1
Γ α − βð Þ h sð Þds

−
ζ2

ζ1 + ζ2
:

ðT
0

T − sð Þα−1
Γ αð Þ h sð Þds

+ −
ζ1Γ 2 − βð ÞTλ2

ζ1 + ζ2ð Þ ∑m
i=3ζiη

1−β
i + ζm+1T

1−β
� �

2
4

+ λ1
ζ1 + ζ2

+ Γ 2 − βð Þtλ2
∑m

i=3ζiη
1−β
i + ζm+1T

1−β

#
:

ð67Þ

Provided the functions ρiðtÞ, i = 1,2,3,4 are defined as in
Eq. (56), we obtain

x tð Þ − f t, x tð Þð Þ
g t, x tð Þð Þ =

ðt
0

t − sð Þα−1
Γ αð Þ h sð Þds + ρ1 tð Þ

Γ α − βð Þ〠
m

i=3
ζi

ðηi
0

� ηi − sð Þα−β−1h sð Þds + ρ2 tð Þ
Γ α − βð Þ

ðT
0

� T − sð Þα−β−1h sð Þds + ρ3 tð Þ
Γ αð Þ

ðT
0

� T − sð Þα−1h sð Þds + ρ4 tð Þ:
ð68Þ

One can easily verify that

〠
m

i=3
ζi

ðηi
0
ηi − sð Þα−β−1h sð Þds =

ðη3
0
〠
m

j=3
ζj ηj − s
� �α−β−1

h sð Þds

+ 〠
m

i=4

ðηi
ηi−1

〠
m

j=i
ζj ηj − s
� �α−β−1

h sð Þds:

ð69Þ

Thus, for 0 ≤ t ≤ η3

x tð Þ − f t, x tð Þð Þ
g t, x tð Þð Þ =

ðt
0

t − sð Þα−1
Γ αð Þ + ρ1 tð Þ

Γ α − βð Þ〠
m

j=3
ζj ηj − s
� �α−β−1

"

+ ρ2 tð Þ
Γ α − βð Þ T − sð Þα−β−1 + ρ3 tð Þ

Γ αð Þ T − sð Þα−1
�
h sð Þds

+
ðη3
t

ρ1 tð Þ
Γ α − βð Þ〠

m

j=3
ζj ηj − s
� �α−β−1

+ ρ2 tð Þ
Γ α − βð Þ

"

� T − sð Þα−β−1 + ρ3 tð Þ
Γ αð Þ T − sð Þα−1

�
h sð Þds + 〠

m

i=4

ðηi
ηi−1

� ρ1 tð Þ
Γ α − βð Þ〠

m

j=i
ζj ηj − s
� �α−β−1

+ ρ2 tð Þ
Γ α − βð Þ

"

� T − sð Þα−β−1 + ρ3 tð Þ
Γ αð Þ T − sð Þα−1

�
h sð Þds +

ðT
ηm

� ρ2 tð Þ
Γ α − βð Þ T − sð Þα−β−1 + ρ3 tð Þ

Γ αð Þ T − sð Þα−1
� �

h sð Þds

+ ρ4 tð Þ:
ð70Þ

For ηk−1 ≤ t ≤ ηk, we have

x tð Þ − f t, x tð Þð Þ
g t, x tð Þð Þ =

ðη3
0

t − sð Þα−1
Γ αð Þ + ρ1 tð Þ

Γ α − βð Þ〠
m

j=3
ζ j ηj − s
� �α−β−1

"

+ ρ2 tð Þ
Γ α − βð Þ T − sð Þα−β−1 + ρ3 tð Þ

Γ αð Þ T − sð Þα−1
�
h sð Þds

+ 〠
k−1

i=4

ðηi
ηi−1

t − sð Þα−1
Γ αð Þ + ρ1 tð Þ

Γ α − βð Þ〠
m

j=i
ζj ηj − s
� �α−β−1

"

+ ρ2 tð Þ
Γ α − βð Þ T − sð Þα−β−1 + ρ3 tð Þ

Γ αð Þ T − sð Þα−1
�
h sð Þds

+
ðt
ηk−1

t − sð Þα−1
Γ αð Þ + ρ1 tð Þ

Γ α − βð Þ〠
m

j=k
ζ j ηj − s
� �α−β−1

"

+ ρ2 tð Þ
Γ α − βð Þ T − sð Þα−β−1 + ρ3 tð Þ

Γ αð Þ T − sð Þα−1
�
h sð Þds

+
ðηk−1
t

ρ1 tð Þ
Γ α − βð Þ〠

m

j=k
ζj ηj − s
� �α−β−1

+ ρ2 tð Þ
Γ α − βð Þ

"

� T − sð Þα−β−1 + ρ3 tð Þ
Γ αð Þ T − sð Þα−1

�
h sð Þds + 〠

m

i=k+1

ðηi
ηi−1

� ρ1 tð Þ
Γ α − βð Þ〠

m

j=1
ζj ηj − s
� �α−β−1

+ ρ2 tð Þ
Γ α − βð Þ

"

� T − sð Þα−β−1 + ρ3 tð Þ
Γ αð Þ T − sð Þα−1

�
h sð Þds +

ðT
ηm

� ρ2 tð Þ
Γ α − βð Þ T − sð Þα−β−1 + ρ3 tð Þ

Γ αð Þ T − sð Þα−1
� �

h sð Þds

+ ρ4 tð Þ:
ð71Þ
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For ηm ≤ t ≤ T , we get

x tð Þ − f t, x tð Þð Þ
g t, x tð Þð Þ =

ðη3
0

t − sð Þα−1
Γ αð Þ + ρ1 tð Þ

Γ α − βð Þ〠
m

j=3
ζj ηj − s
� �α−β−1

"

+ ρ2 tð Þ
Γ α − βð Þ T − sð Þα−β−1 + ρ3 tð Þ

Γ αð Þ T − sð Þα−1
�
h sð Þds

+ 〠
m

i=4

ðηi
ηi−1

t − sð Þα−1
Γ αð Þ + ρ1 tð Þ

Γ α − βð Þ〠
m

j=i
ζ j ηj − s
� �α−β−1

"

+ ρ2 tð Þ
Γ α − βð Þ T − sð Þα−β−1 + ρ3 tð Þ

Γ αð Þ T − sð Þα−1
�
h sð Þds

+
ðt
ηm

t − sð Þα−1
Γ αð Þ + ρ2 tð Þ

Γ α − βð Þ T − sð Þα−β−1
"

+ ρ3 tð Þ
Γ αð Þ T − sð Þα−1

�
h sð Þds +

ðT
t

� ρ2 tð Þ
Γ α − βð Þ T − sð Þα−β−1 + ρ3 tð Þ

Γ αð Þ T − sð Þα−1
� �

h sð Þds

+ ρ4 tð Þ:
ð72Þ

Joining the previous three cases together, we get (60).
Define the operator T : CðJ ,ℝÞ→ CðJ ,ℝÞ by

Tx tð Þ = g t, x tð Þð Þ
ðT
0
G t, sð Þh s, x sð Þ, Iqx sð Þð Þds + ρ4 tð Þ

� �
+ f t, x tð Þð Þ:

ð73Þ

In view of Lemma 18, fixed points of T are solutions of
the FHDE (1). Now, we assume the following conditions
which allow us to establish the existence and uniqueness
results for the solution of the multipoint boundary value
problem (1) by applying Theorem 15.

(C1) The functions g : J ×ℝ→ℝ \ f0g and f , h : J ×ℝ
→ℝ are continuous

(C2) There exist two functions φ1, φ2 : J →ℝ with
bounds kφ1k and kφ2k, respectively, such that

f t, xð Þj j + f t, yð Þj j ≤ φ1 tð Þj j xj j + yj jð Þ,
g t, xð Þj j + g t, yð Þj j ≤ φ2 tð Þj j xj j + yj jð Þ,∀ t, x, yð Þ ∈ J ,ℝ2� �

:

ð74Þ

(C3) There exist a functions p ∈ L∞ðJ ,ℝÞ and a continu-
ous nondecreasing function ψ : ½0,∞Þ→ ½0,∞Þ such that

h t, x, yð Þj j ≤ p tð Þj jψ xj j + yj jð Þ,∀ t, xð Þ ∈ J ,ℝð Þ: ð75Þ

(C4) Let ℓ1 and ℓ2 be equal

ℓ1 = 8p−1 φ2k kp
ðT
0
G t, sð Þp sð Þj jds

	 
p

, ð76Þ

ℓ2 = 1 + ðT/Γðq + 1ÞÞ,ℓ3 = 8p−1kφ2kpkρ4kp + 4p−1kφ1kp,then,

ℓ1ψ ℓ2 ln tð Þp + ℓ3 < 1,∀t > 1: ð77Þ

Theorem 19. If ðC1Þ − ðC4Þ hold true, then the problem (1)
has one solution in X.

Proof. First, we show that T is θL − contraction on X.

σb Tx, Tyð Þ = sup
t∈J

Tx tð Þj j + Ty tð Þj jð Þp ≤ sup
t∈J

g t, x tð Þð Þj jð

� ψ 1 + T
Γ q + 1ð Þ

	 

σb x, yð Þ

	 
ðT
0

�
� G t, sð Þp sð Þj jds + ρ4 tð Þj j� + f t, x tð Þð Þj j

+ g t, y tð Þð Þj j ψ 1 + T
Γ q + 1ð Þ

	 

σb x, yð Þ

	 
ðT
0
Gj

�
� t, sð Þp sð Þjds + ρ4 tð Þj j� + f t, y tð Þð Þj jÞp ≤ sup

t∈J

� φ2 tð Þj j x tð Þj j + y tð Þj jð Þð Þ ψ 1 + T
Γ q + 1ð Þ

	 

σb

	�	

� x, yð ÞÞ
ðT
0
G t, sð Þp sð Þj jds + ρ4 tð Þj j� + φ1 tð Þj j x tð Þj jð

+ y tð Þj jÞÞp ≤ 2p−1 2p−1 φ2k kpσb x, yð Þ�
� ψ 1 + T

Γ q + 1ð Þ
	 


σb x, yð Þ
	 
p ðT

0
G t, sð Þp sð Þj jds

	 
p
"

+ ρ4k kp� + φ1k kpσb x, yð Þ� �
≤ 2p−1 2p−1 φ2k kp�

� ψ 1 + T
Γ q + 1ð Þ

	 

σb x, yð Þ

	 
p ðT
0
G t, sð Þp sð Þj jds

	 
p
"

+ ρ4k kp� + φ1k kpÞσb x, yð Þ:
ð78Þ

Now, we define the functions ϕ : ½1,∞Þ→ ½0, 1Þ, θ ∈Θ,
and ξ ∈ Las

ϕ tð Þ = ℓ1ψ ℓ2 ln tð Þp + ℓ3, ð79Þ

θðtÞ = et ,
ξðs, tÞ = tϕðtÞ/s:
Consequently, we obtain

α x, yð Þeσb Tx,Tyð Þ ≤ eσb x,yð Þ
� �ϕ eσb x,yð Þð Þ1 ≤ ξ α x, yð Þθ σb Tx, Tyð Þð Þ, θð
� σb x, yð Þð ÞÞ,

ð80Þ

where αðx, yÞ = 2p−1, ∀x, y ∈ X. Also, other hypothesis of
Theorem 15 is satisfied. Hence, T has a unique fixed point,
and then, FHDE (1) has on solution in X. This completes
the proof.

Now, we present an example to support our results.
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Example 20. Let us consider the following FHDE with five-
point boundary conditions.

cD3/2 x tð Þ − f t, x tð Þð Þ
g t, x tð Þð Þ

� �
= h t, x tð Þ, I5/2x tð Þ� �

, t ∈ J = 0, 1½ �,

� x tð Þ − f t, x tð Þð Þ
g t, x tð Þð Þ

� �
t=0

+ 1
2

x tð Þ − f t, x tð Þð Þ
g t, x tð Þð Þ

� �
t=1

= 1
2 , 〠

5

i=3
ζi
c
D1/2 x tð Þ − f t, x tð Þð Þ

g t, x tð Þð Þ
� �

t=ηi

+ 1
4
c

D1/2 x tð Þ − f t, x tð Þð Þ
g t, x tð Þð Þ

� �
t=1

= 1,

ð81Þ

where ν > 0. To show the existence of a unique solution
of (81), we apply Theorem 19 with

α = 3
2 , β = 1

2 , q =
5
2 , ζ1 = 1, ζ2 =

1
2 , ζ3 =

5
8 , ζ4 =

5
12 , ζ5

= 5
16 , ζ6 =

1
4 , η3 =

4
25 , η4 =

9
25 , η5 =

16
25 ,

f t, xð Þ = 1
4

1
2 x +

ffiffiffiffiffiffiffiffiffiffiffiffi
x2 + 1

p� �
− eνt

	 

,

g t, xð Þ = 1
4
ln 1 + x2

� �
x

,

h t, x, yð Þ = cos ∣x∣+∣y ∣ð Þ,∀t ∈ 0, 1½ � and x, y ∈ℝ: ð82Þ

By computation, we can show that the hypotheses ðC1Þ
− ðC4Þ are satisfied with

pk k = 1, φ1k k = φ2k k = 1
4 : ð83Þ

Therefore, we conclude that problem (81) has one
solution.

5. Concluding Remarks and Observations

Our results extend the results of [10, 11] and many others.
Indeed, we deal with a class of αqsp-admissible θL-contrac-
tions in a larger structure such as a b-metric-like space. Also,
the problem we used as an application is different from that
one appeared in [23] in the sense that we discussed not only
existence but also uniqueness for our considered problem
under multipoint boundary conditions via Caputo fractional
derivatives.
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